示例#1
0
/* traverse the quadtree to find the best renking cluster */
static void findBestCluster(layerObj* layer, msClusterLayerInfo* layerinfo, clusterTreeNode *node)
{
  int i;
  double rank;
  clusterInfo* s = node->shapes;
  while (s) {
    if (s->filter < 0 && layer->cluster.filter.string != NULL) {
      InitShapeAttributes(layer, s);
      s->filter = msClusterEvaluateFilter(&layer->cluster.filter, &s->shape);
    }

    if (s->numsiblings == 0 || s->filter == 0) {
      /* individual or filtered shapes must be removed for sure */
      layerinfo->current = s;
      return;
    }

    /* calculating the rank */
    rank = (s->x - s->avgx) * (s->x - s->avgx) + (s->y - s->avgy) * (s->y - s->avgy) /*+ s->varx + s->vary*/ + (double)1/ (1 + s->numsiblings);

    if (rank < layerinfo->rank) {
      layerinfo->current = s;
      layerinfo->rank = rank;
    }
    s = s->next;
  }

  /* Recurse to subnodes if they exist */
  for (i = 0; i < 4; i++) {
    if (node->subnode[i])
      findBestCluster(layer, layerinfo, node->subnode[i]);
  }
}
示例#2
0
void clusterize(int k, entryList &l) {
	printf("Clusterizing in %d clusters\n", k);
	cluster *clusters = new cluster[k];
	selectSeeds(clusters, l, k);
	double RSS = printRSS(clusters, k);
	double prevRSS = 1e+20;

	int iterations = 0;
	while(iterations < MAX_ITERATIONS && (prevRSS - RSS) > THRESHOLD) {
		iterations++;
		printf("Iteration %d\n", iterations);
		// Clear cluster members.
		for(int i=0; i<k; i++)
			clusters[i].members.clear();

		// Find the best cluster for each entry
		// and add as a member
		for(int i=0; i<l.size(); i++) {
			article_entry* entry = l.get(i);
			cluster& cl = findBestCluster(clusters, k, entry->v);
			cl.members.add(entry);
		}

		// Recompute centroids
		printf("Computing centroids ");
		for(int i=0; i<k; i++) {
			printf("%d ", i);
			recomputeCentroid(clusters[i]);
		}
		printf("\n");

		prevRSS = RSS;
		RSS = printRSS(clusters, k);
	}

	delete[] clusters;
}
示例#3
0
/* rebuild the clusters according to the current extent */
int RebuildClusters(layerObj *layer, int isQuery)
{
  mapObj* map;
  layerObj* srcLayer;
  double distance, maxDistanceX, maxDistanceY, cellSizeX, cellSizeY;
  rectObj searchrect;
  int status;
  clusterInfo* current;
  int depth;
#ifdef USE_CLUSTER_EXTERNAL
  int layerIndex;
#endif

  msClusterLayerInfo* layerinfo = layer->layerinfo;

  if (!layerinfo) {
    msSetError(MS_MISCERR, "Layer is not open: %s", "RebuildClusters()", layer->name);
    return MS_FAILURE;
  }

  if (!layer->map) {
    msSetError(MS_MISCERR, "No map associated with this layer: %s", "RebuildClusters()", layer->name);
    return MS_FAILURE;
  }

  if (layer->debug >= MS_DEBUGLEVEL_VVV)
    msDebug("Clustering started.\n");

  map = layer->map;

  layerinfo->current = layerinfo->finalized; /* restart */

  /* check whether all shapes should be returned from a query */
  if(msLayerGetProcessingKey(layer, "CLUSTER_GET_ALL_SHAPES") != NULL)
    layerinfo->get_all_shapes = MS_TRUE;
  else
    layerinfo->get_all_shapes = MS_FALSE;

  /* identify the current extent */
  if(layer->transform == MS_TRUE)
    searchrect = map->extent;
  else {
    searchrect.minx = searchrect.miny = 0;
    searchrect.maxx = map->width-1;
    searchrect.maxy = map->height-1;
  }

  if (searchrect.minx == layerinfo->searchRect.minx &&
      searchrect.miny == layerinfo->searchRect.miny &&
      searchrect.maxx == layerinfo->searchRect.maxx &&
      searchrect.maxy == layerinfo->searchRect.maxy) {
    /* already built */
    return MS_SUCCESS;
  }

  /* destroy previous data*/
  clusterDestroyData(layerinfo);

  layerinfo->searchRect = searchrect;

  /* reproject the rectangle to layer coordinates */
#ifdef USE_PROJ
  if((map->projection.numargs > 0) && (layer->projection.numargs > 0))
    msProjectRect(&map->projection, &layer->projection, &searchrect); /* project the searchrect to source coords */
#endif

  /* determine the compare method */
  layerinfo->fnCompare = CompareRectangleRegion;
  if (layer->cluster.region) {
    if (EQUAL(layer->cluster.region, "ellipse"))
      layerinfo->fnCompare = CompareEllipseRegion;
  }

  /* trying to find a reasonable quadtree depth */
  depth = 0;
  distance = layer->cluster.maxdistance;
  while ((distance < map->width || distance < map->height) && depth <= TREE_MAX_DEPTH) {
    distance *= 2;
    ++depth;
  }

  layerinfo->depth = depth;

  cellSizeX = MS_CELLSIZE(searchrect.minx, searchrect.maxx, map->width);
  cellSizeY = MS_CELLSIZE(searchrect.miny, searchrect.maxy, map->height);

  maxDistanceX = layer->cluster.maxdistance * cellSizeX;
  maxDistanceY = layer->cluster.maxdistance * cellSizeY;

  /* increase the search rectangle so that the neighbouring shapes are also retrieved */
  searchrect.minx -= layer->cluster.buffer * cellSizeX;
  searchrect.maxx += layer->cluster.buffer * cellSizeX;
  searchrect.miny -= layer->cluster.buffer * cellSizeY;
  searchrect.maxy += layer->cluster.buffer * cellSizeY;

  /* create the root node */
  if (layerinfo->root)
    clusterTreeNodeDestroy(layerinfo, layerinfo->root);
  layerinfo->root = clusterTreeNodeCreate(layerinfo, searchrect);

  srcLayer = &layerinfo->srcLayer;

  /* start retrieving the shapes */
  status = msLayerWhichShapes(srcLayer, searchrect, isQuery);
  if(status == MS_DONE) {
    /* no overlap */
    return MS_SUCCESS;
  } else if(status != MS_SUCCESS) {
    return MS_FAILURE;
  }

  /* step through the source shapes and populate the quadtree with the tentative clusters */
  if ((current = clusterInfoCreate(layerinfo)) == NULL)
    return MS_FAILURE;

  while((status = msLayerNextShape(srcLayer, &current->shape)) == MS_SUCCESS) {
#if defined(USE_PROJ) && defined(USE_CLUSTER_EXTERNAL)
    /* transform the shape to the projection of this layer */
    if(srcLayer->transform == MS_TRUE && srcLayer->project && layer->transform == MS_TRUE && layer->project &&msProjectionsDiffer(&(srcLayer->projection), &(layer->projection)))
      msProjectShape(&srcLayer->projection, &layer->projection, &current->shape);
#endif
    /* set up positions and variance */
    current->avgx = current->x = current->shape.bounds.minx;
    current->avgy = current->y = current->shape.bounds.miny;
    current->varx = current->vary = 0;
    /* set up the area of interest when searching for the neighboring shapes */
    current->bounds.minx = current->x - maxDistanceX;
    current->bounds.miny = current->y - maxDistanceY;
    current->bounds.maxx = current->x + maxDistanceX;
    current->bounds.maxy = current->y + maxDistanceY;

    /* if the shape doesn't overlap we must skip it to avoid further issues */
    if(!msRectOverlap(&searchrect, &current->bounds)) {
      msFreeShape(&current->shape);
      msInitShape(&current->shape);

      msDebug("Skipping an invalid shape falling outside of the given extent\n");
      continue;
    }

    /* construct the item array */
    if (layer->iteminfo)
      BuildFeatureAttributes(layer, layerinfo, &current->shape);

    /* evaluate the group expression */
    if (layer->cluster.group.string)
      current->group = msClusterGetGroupText(&layer->cluster.group, &current->shape);

    /*start a query for the related shapes */
    findRelatedShapes(layerinfo, layerinfo->root, current);

    /* add this shape to the tree */
    if (treeNodeAddShape(layerinfo, layerinfo->root, current, depth) != MS_SUCCESS) {
      clusterInfoDestroyList(layerinfo, current);
      return MS_FAILURE;
    }

    if ((current = clusterInfoCreate(layerinfo)) == NULL) {
      clusterInfoDestroyList(layerinfo, current);
      return MS_FAILURE;
    }
  }

  clusterInfoDestroyList(layerinfo, current);

  while (layerinfo->root) {
#ifdef TESTCOUNT
    int n;
    double avgx, avgy;
#endif

    /* pick up the best cluster from the tree and do the finalization */
    /* the initial rank must be big enough */
    layerinfo->rank = (searchrect.maxx - searchrect.minx) * (searchrect.maxx - searchrect.minx) +
                      (searchrect.maxy - searchrect.miny) * (searchrect.maxy - searchrect.miny) + 1;

    layerinfo->current = NULL;
    findBestCluster(layer, layerinfo, layerinfo->root);

    if (layerinfo->current == NULL) {
      if (layer->debug >= MS_DEBUGLEVEL_VVV)
        msDebug("Clustering terminated.\n");
      break; /* completed */
    }

    /* Update the feature count of the shape */
    InitShapeAttributes(layer, layerinfo->current);

    /* collecting the shapes of the cluster */
    collectClusterShapes(layerinfo, layerinfo->root, layerinfo->current);

    if (layer->debug >= MS_DEBUGLEVEL_VVV) {
      msDebug("processing cluster %p: rank=%lf fcount=%d ncoll=%d nfin=%d nfins=%d nflt=%d bounds={%lf %lf %lf %lf}\n", layerinfo->current, layerinfo->rank, layerinfo->current->numsiblings + 1,
              layerinfo->current->numcollected, layerinfo->numFinalized, layerinfo->numFinalizedSiblings,
              layerinfo->numFiltered, layerinfo->current->bounds.minx, layerinfo->current->bounds.miny,
              layerinfo->current->bounds.maxx, layerinfo->current->bounds.maxy);
      if (layerinfo->current->node) {
        char pszBuffer[TREE_MAX_DEPTH + 1];
        clusterTreeNode* node = layerinfo->current->node;
        int position = node->position;
        int i = 1;
        while (position > 0 && i <= TREE_MAX_DEPTH) {
          pszBuffer[TREE_MAX_DEPTH - i] = '0' + (position % 4);
          position = position >> 2;
          ++i;
        }
        pszBuffer[TREE_MAX_DEPTH] = 0;

        msDebug(" ->node %p: count=%d index=%d pos=%s subn={%p %p %p %p} rect={%lf %lf %lf %lf}\n",
                node, node->numshapes, node->index, pszBuffer + TREE_MAX_DEPTH - i + 1,
                node->subnode[0], node->subnode[1], node->subnode[2], node->subnode[3],
                node->rect.minx, node->rect.miny, node->rect.maxx, node->rect.maxy);
      }
    }