示例#1
0
int calibrate_dc(struct cli_state *s, unsigned int ops)
{
    int retval = 0;
    int status = BLADERF_ERR_UNEXPECTED;
    struct settings rx_settings, tx_settings;
    bladerf_loopback loopback;
    int16_t dc_i, dc_q;

    if (IS_RX_CAL(ops)) {
        status = backup_and_update_settings(s->dev, BLADERF_MODULE_RX,
                                            &rx_settings);
        if (status != 0) {
            s->last_lib_error = status;
            return CLI_RET_LIBBLADERF;
        }
    }

    if (IS_TX_CAL(ops)) {
        status = backup_and_update_settings(s->dev, BLADERF_MODULE_TX,
                                            &tx_settings);
        if (status != 0) {
            s->last_lib_error = status;
            return CLI_RET_LIBBLADERF;
        }
    }

    status = bladerf_get_loopback(s->dev, &loopback);
    if (status != 0) {
        s->last_lib_error = status;
        return CLI_RET_LIBBLADERF;
    }

    if (IS_RX_CAL(ops)) {
        status = set_rx_dc(s->dev, 0, 0);
        if (status != 0) {
            goto error;
        }

        status = bladerf_enable_module(s->dev, BLADERF_MODULE_RX, true);
        if (status != 0) {
            goto error;
        }
    }

    if (IS_TX_CAL(ops)) {
        status = bladerf_enable_module(s->dev, BLADERF_MODULE_RX, true);
        if (status != 0) {
            goto error;
        }

        status = bladerf_set_loopback(s->dev, BLADERF_LB_BB_TXVGA1_RXVGA2);
        if (status != 0) {
            goto error;
        }

        status = bladerf_enable_module(s->dev, BLADERF_MODULE_TX, true);
        if (status != 0) {
            goto error;
        }

        status = dummy_tx(s->dev);
        if (status != 0) {
            goto error;
        }

        status = bladerf_enable_module(s->dev, BLADERF_MODULE_TX, false);
        if (status != 0) {
            goto error;
        }
    }

    status = bladerf_set_loopback(s->dev, BLADERF_LB_NONE);
    if (status != 0) {
        goto error;
    }

    putchar('\n');

    if (IS_CAL(CAL_DC_LMS_TUNING, ops)) {
        printf("  Calibrating LMS LPF tuning module...\n");
        status = bladerf_calibrate_dc(s->dev, BLADERF_DC_CAL_LPF_TUNING);
        if (status != 0) {
            goto error;
        } else {
            struct bladerf_lms_dc_cals dc_cals;
            status = bladerf_lms_get_dc_cals(s->dev, &dc_cals);
            if (status != 0) {
                goto error;
            }

            printf("    LPF tuning module: %d\n\n", dc_cals.lpf_tuning);
        }
    }

    if (IS_CAL(CAL_DC_LMS_TXLPF, ops)) {
        printf("  Calibrating LMS TX LPF modules...\n");
        status = bladerf_calibrate_dc(s->dev, BLADERF_DC_CAL_TX_LPF);
        if (status != 0) {
            goto error;
        } else {
            struct bladerf_lms_dc_cals dc_cals;
            status = bladerf_lms_get_dc_cals(s->dev, &dc_cals);
            if (status != 0) {
                goto error;
            }

            printf("    TX LPF I filter: %d\n", dc_cals.tx_lpf_i);
            printf("    TX LPF Q filter: %d\n\n", dc_cals.tx_lpf_q);
        }
    }

    if (IS_CAL(CAL_DC_LMS_RXLPF, ops)) {
        printf("  Calibrating LMS RX LPF modules...\n");
        status = bladerf_calibrate_dc(s->dev, BLADERF_DC_CAL_RX_LPF);
        if (status != 0) {
            goto error;
        } else {
            struct bladerf_lms_dc_cals dc_cals;
            status = bladerf_lms_get_dc_cals(s->dev, &dc_cals);
            if (status != 0) {
                goto error;
            }

            printf("    RX LPF I filter: %d\n", dc_cals.rx_lpf_i);
            printf("    RX LPF Q filter: %d\n\n", dc_cals.rx_lpf_q);
        }
    }

    if (IS_CAL(CAL_DC_LMS_RXVGA2, ops)) {
        printf("  Calibrating LMS RXVGA2 modules...\n");
        status = bladerf_calibrate_dc(s->dev, BLADERF_DC_CAL_RXVGA2);
        if (status != 0) {
            goto error;
        } else {
            struct bladerf_lms_dc_cals dc_cals;
            status = bladerf_lms_get_dc_cals(s->dev, &dc_cals);
            if (status != 0) {
                goto error;
            }

            printf("    RX VGA2 DC reference module: %d\n", dc_cals.dc_ref);
            printf("    RX VGA2 stage 1, I channel: %d\n", dc_cals.rxvga2a_i);
            printf("    RX VGA2 stage 1, Q channel: %d\n", dc_cals.rxvga2a_q);
            printf("    RX VGA2 stage 2, I channel: %d\n", dc_cals.rxvga2b_i);
            printf("    RX VGA2 stage 2, Q channel: %d\n\n", dc_cals.rxvga2b_q);
        }
    }


    if (IS_CAL(CAL_DC_AUTO_RX, ops)) {
        int16_t avg_i, avg_q;
        status = calibrate_dc_rx(s, &dc_i, &dc_q, &avg_i, &avg_q);
        if (status != 0) {
            goto error;
        } else {
            printf("  RX DC I Setting = %d, error ~= %d\n", dc_i, avg_i);
            printf("  RX DC Q Setting = %d, error ~= %d\n\n", dc_q, avg_q);
        }
    }

    if (IS_CAL(CAL_DC_AUTO_TX, ops)) {
        float error_i, error_q;
        status = calibrate_dc_tx(s, &dc_i, &dc_q, &error_i, &error_q);
        if (status != 0) {
            goto error;
        } else {
            printf("  TX DC I Setting = %d, error ~= %f\n", dc_i, error_i);
            printf("  TX DC Q Setting = %d, error ~= %f\n\n", dc_q, error_q);
        }
    }

error:
    retval = status;

    if (IS_RX_CAL(ops)) {
        status = restore_settings(s->dev, BLADERF_MODULE_RX, &rx_settings);
        retval = first_error(retval, status);
    }


    if (IS_TX_CAL(ops)) {
        status = restore_settings(s->dev, BLADERF_MODULE_TX, &tx_settings);
        retval = first_error(retval, status);
    }

    status = bladerf_enable_module(s->dev, BLADERF_MODULE_RX, false);
    retval = first_error(retval, status);

    status = bladerf_enable_module(s->dev, BLADERF_MODULE_TX, false);
    retval = first_error(retval, status);

    status = bladerf_set_loopback(s->dev, loopback);
    retval = first_error(retval, status);

    if (retval != 0) {
        s->last_lib_error = retval;
        retval = CLI_RET_LIBBLADERF;
    }

    return retval;
}
示例#2
0
/* See libbladeRF's dc_cal_table.c for the packed table data format */
int calibrate_dc_gen_tbl(struct cli_state *s, bladerf_module module,
                         const char *filename, unsigned int f_low,
                         unsigned f_inc, unsigned int f_high)
{
    int retval, status;
    size_t off;
    struct bladerf_lms_dc_cals lms_dc_cals;
    unsigned int f;
    struct settings settings;
    bladerf_loopback loopback_backup;
    struct bladerf_image *image = NULL;

    const uint16_t magic = HOST_TO_LE16(0x1ab1);
    const uint32_t reserved = HOST_TO_LE32(0x00000000);
    const uint32_t tbl_version = HOST_TO_LE32(0x00000001);

    const size_t lms_data_size = 10; /* 10 uint8_t register values */

    const uint32_t n_frequencies = (f_high - f_low) / f_inc + 1;
    const uint32_t n_frequencies_le = HOST_TO_LE32(n_frequencies);

    const size_t entry_size = sizeof(uint32_t) +   /* Frequency */
                              2 * sizeof(int16_t); /* DC I and Q valus */

    const size_t table_size = n_frequencies * entry_size;

    const size_t data_size = sizeof(magic) + sizeof(reserved) +
                             sizeof(tbl_version) + sizeof(n_frequencies_le) +
                             lms_data_size + table_size;

    assert(data_size <= UINT_MAX);

    status = backup_and_update_settings(s->dev, module, &settings);
    if (status != 0) {
        return status;
    }

    status = bladerf_get_loopback(s->dev, &loopback_backup);
    if (status != 0) {
        return status;
    }

    status = bladerf_lms_get_dc_cals(s->dev, &lms_dc_cals);
    if (status != 0) {
        goto out;
    }

    if (module == BLADERF_MODULE_RX) {
        image = bladerf_alloc_image(BLADERF_IMAGE_TYPE_RX_DC_CAL,
                                    0xffffffff, (unsigned int) data_size);
    } else {
        image = bladerf_alloc_image(BLADERF_IMAGE_TYPE_TX_DC_CAL,
                                    0xffffffff, (unsigned int) data_size);
    }

    if (image == NULL) {
        status = BLADERF_ERR_MEM;
        goto out;
    }

    status = bladerf_get_serial(s->dev, image->serial);
    if (status != 0) {
        goto out;
    }

    if (module == BLADERF_MODULE_RX) {
        status = bladerf_set_loopback(s->dev, BLADERF_LB_NONE);
        if (status != 0) {
            goto out;
        }
    }

    off = 0;

    memcpy(&image->data[off], &magic, sizeof(magic));
    off += sizeof(magic);

    memcpy(&image->data[off], &reserved, sizeof(reserved));
    off += sizeof(reserved);

    memcpy(&image->data[off], &tbl_version, sizeof(tbl_version));
    off += sizeof(tbl_version);

    memcpy(&image->data[off], &n_frequencies_le, sizeof(n_frequencies_le));
    off += sizeof(n_frequencies_le);

    image->data[off++] = (uint8_t)lms_dc_cals.lpf_tuning;
    image->data[off++] = (uint8_t)lms_dc_cals.tx_lpf_i;
    image->data[off++] = (uint8_t)lms_dc_cals.tx_lpf_q;
    image->data[off++] = (uint8_t)lms_dc_cals.rx_lpf_i;
    image->data[off++] = (uint8_t)lms_dc_cals.rx_lpf_q;
    image->data[off++] = (uint8_t)lms_dc_cals.dc_ref;
    image->data[off++] = (uint8_t)lms_dc_cals.rxvga2a_i;
    image->data[off++] = (uint8_t)lms_dc_cals.rxvga2a_q;
    image->data[off++] = (uint8_t)lms_dc_cals.rxvga2b_i;
    image->data[off++] = (uint8_t)lms_dc_cals.rxvga2b_q;

    putchar('\n');

    for (f = f_low; f <= f_high; f += f_inc) {
        const uint32_t frequency = HOST_TO_LE32((uint32_t)f);
        int16_t dc_i, dc_q;

        printf("  Calibrating @ %u Hz...", f);

        status = bladerf_set_frequency(s->dev, module, f);
        if (status != 0) {
            goto out;
        }

        if (module == BLADERF_MODULE_RX) {
            int16_t error_i, error_q;
            status = calibrate_dc_rx(s, &dc_i, &dc_q, &error_i, &error_q);
            printf("    I=%-4d (avg: %-4d), Q=%-4d (avg: %-4d)\r",
                    dc_i, error_i, dc_q, error_q);
        } else {
            float error_i, error_q;
            status = calibrate_dc_tx(s, &dc_i, &dc_q, &error_i, &error_q);
            printf("    I=%-4d (avg: %3.3f), Q=%-4d (avg: %3.3f)\r",
                    dc_i, error_i, dc_q, error_q);
        }

        if (status != 0) {
            goto out;
        }

        fflush(stdout);

        dc_i = HOST_TO_LE16(dc_i);
        dc_q = HOST_TO_LE16(dc_q);

        memcpy(&image->data[off], &frequency, sizeof(frequency));
        off += sizeof(frequency);

        memcpy(&image->data[off], &dc_i, sizeof(dc_i));
        off += sizeof(dc_i);

        memcpy(&image->data[off], &dc_q, sizeof(dc_q));
        off += sizeof(dc_q);
    }

    status = bladerf_image_write(image, filename);

    printf("\n  Done.\n\n");

out:
    retval = status;

    if (module == BLADERF_MODULE_RX) {
        status = bladerf_set_loopback(s->dev, loopback_backup);
        retval = first_error(retval, status);
    }

    status = bladerf_enable_module(s->dev, BLADERF_MODULE_RX, false);
    retval = first_error(retval, status);

    status = restore_settings(s->dev, module, &settings);
    retval = first_error(retval, status);

    bladerf_free_image(image);
    return retval;
}
示例#3
0
int calibrate_dc_tx(struct cli_state *s,
                    int16_t *dc_i, int16_t *dc_q,
                    float *error_i, float *error_q)
{
    int retval, status;
    unsigned int rx_freq, tx_freq;
    int16_t *rx_samples = NULL;
    struct cal_tx_task tx_task;

    struct point p0, p1, p2, p3;
    struct point result;

    status = bladerf_get_frequency(s->dev, BLADERF_MODULE_RX, &rx_freq);
    if (status != 0) {
        return status;
    }

    status = bladerf_get_frequency(s->dev, BLADERF_MODULE_TX, &tx_freq);
    if (status != 0) {
        return status;
    }

    rx_samples = (int16_t*) malloc(CAL_BUF_LEN * 2 * sizeof(rx_samples[0]));
    if (rx_samples == NULL) {
        return BLADERF_ERR_MEM;
    }

    status = init_tx_task(s, &tx_task);
    if (status != 0) {
        goto out;

    }

    status = bladerf_set_frequency(s->dev, BLADERF_MODULE_TX,
                                   rx_freq + (CAL_SAMPLERATE / 4));
    if (status != 0) {
        goto out;
    }

    if (tx_freq < UPPER_BAND) {
        status = bladerf_set_loopback(s->dev, BLADERF_LB_RF_LNA1);
    } else {
        status = bladerf_set_loopback(s->dev, BLADERF_LB_RF_LNA2);
    }

    if (status != 0) {
        goto out;
    }

    /* Ensure old samples are flushed */
    status = bladerf_enable_module(s->dev, BLADERF_MODULE_RX, false);
    if (status != 0) {
        goto out;
    }

    status = bladerf_enable_module(s->dev, BLADERF_MODULE_TX, false);
    if (status != 0) {
        goto out;
    }

    status = bladerf_sync_config(s->dev, BLADERF_MODULE_RX,
                                 BLADERF_FORMAT_SC16_Q11,
                                 CAL_NUM_BUFS, CAL_BUF_LEN,
                                 CAL_NUM_XFERS, CAL_TIMEOUT);
    if (status != 0) {
        goto out;
    }

    status = bladerf_sync_config(s->dev, BLADERF_MODULE_TX,
                                 BLADERF_FORMAT_SC16_Q11,
                                 CAL_NUM_BUFS, CAL_BUF_LEN,
                                 CAL_NUM_XFERS, CAL_TIMEOUT);
    if (status != 0) {
        goto out;
    }

    status = bladerf_enable_module(s->dev, BLADERF_MODULE_RX, true);
    if (status != 0) {
        goto out;
    }

    status = bladerf_enable_module(s->dev, BLADERF_MODULE_TX, true);
    if (status != 0) {
        goto out;
    }

    status = start_tx_task(&tx_task);
    if (status != 0) {
        goto out;
    }

    /* Sample the results of 4 points, which should yield 2 intersecting lines,
     * for 4 different DC offset settings of the I channel */
    p0.x = -2048;
    p1.x = -512;
    p2.x = 512;
    p3.x = 2048;

    status = rx_avg_magnitude(s->dev, rx_samples, (int16_t) p0.x, 0, &p0.y);
    if (status != 0) {
        goto out;
    }

    status = rx_avg_magnitude(s->dev, rx_samples, (int16_t) p1.x, 0, &p1.y);
    if (status != 0) {
        goto out;
    }

    status = rx_avg_magnitude(s->dev, rx_samples, (int16_t) p2.x, 0, &p2.y);
    if (status != 0) {
        goto out;
    }

    status = rx_avg_magnitude(s->dev, rx_samples, (int16_t) p3.x, 0, &p3.y);
    if (status != 0) {
        goto out;
    }

    status = intersection(s, &p0, &p1, &p2, &p3, &result);
    if (status != 0) {
        goto out;
    }

    if (result.x < CAL_DC_MIN || result.x > CAL_DC_MAX) {
        cli_err(s, "Error", "Obtained out-of-range TX I DC cal value (%f).\n",
                result.x);
        status = BLADERF_ERR_UNEXPECTED;
        goto out;
    }

    *dc_i = (int16_t) (result.x + 0.5);
    *error_i = result.y;

    status = set_tx_dc(s->dev, *dc_i, 0);
    if (status != 0) {
        goto out;
    }

    /* Repeat for the Q channel */
    status = rx_avg_magnitude(s->dev, rx_samples, *dc_i, (int16_t) p0.x, &p0.y);
    if (status != 0) {
        goto out;
    }

    status = rx_avg_magnitude(s->dev, rx_samples, *dc_i, (int16_t) p1.x, &p1.y);
    if (status != 0) {
        goto out;
    }

    status = rx_avg_magnitude(s->dev, rx_samples, *dc_i, (int16_t) p2.x, &p2.y);
    if (status != 0) {
        goto out;
    }

    status = rx_avg_magnitude(s->dev, rx_samples, *dc_i, (int16_t) p3.x, &p3.y);
    if (status != 0) {
        goto out;
    }

    status = intersection(s, &p0, &p1, &p2, &p3, &result);
    if (status != 0) {
        goto out;
    }

    *dc_q = (int16_t) (result.x + 0.5);
    *error_q = result.y;

    status = set_tx_dc(s->dev, *dc_i, *dc_q);

out:
    retval = status;

    status = stop_tx_task(&tx_task);
    retval = first_error(retval, status);

    free(rx_samples);
    free(tx_task.samples);

    status = bladerf_enable_module(s->dev, BLADERF_MODULE_TX, false);
    retval = first_error(retval, status);

    /* Restore RX frequency */
    status = bladerf_set_frequency(s->dev, BLADERF_MODULE_TX, tx_freq);
    retval = first_error(retval, status);

    return retval;
}
示例#4
0
static int run(struct bladerf *dev, struct app_params *p,
               int16_t *samples, const struct test_case *t)
{
    int status, status_out;
    struct bladerf_metadata meta;
    uint64_t timestamp;
    unsigned int gap;
    uint32_t counter;
    uint64_t tscount_diff;
    unsigned int i;
    bool suppress_overrun_msg = false;
    unsigned int overruns = 0;
    bool prev_iter_overrun = false;

    /* Clear out metadata and request that we just received any available
     * samples, with the timestamp filled in for us */
    memset(&meta, 0, sizeof(meta));
    meta.flags = BLADERF_META_FLAG_RX_NOW;

    status = enable_counter_mode(dev, true);
    if (status != 0) {
        goto out;
    }

    status = perform_sync_init(dev, BLADERF_MODULE_RX, 0, p);
    if (status != 0) {
        goto out;
    }

    /* Initial read to get a starting timestamp, and counter value */
    gap = get_gap(p, t);
    status = bladerf_sync_rx(dev, samples, gap, &meta, p->timeout_ms);
    if (status != 0) {
        fprintf(stderr, "Intial RX failed: %s\n", bladerf_strerror(status));
        goto out;
    }

    counter = extract_counter_val((uint8_t*) samples);
    timestamp = meta.timestamp;

    assert(timestamp >= (uint64_t) counter);
    tscount_diff = timestamp - (uint64_t) counter;

    if (t->gap != 0) {
        printf("\nTest Case: Read size=%"PRIu64" samples, %u iterations\n",
                t->gap, t->iterations);
    } else {
        printf("\nTest Case: Random read size, %u iterations\n", t->iterations);
    }

    printf("--------------------------------------------------------\n");

    assert((timestamp - tscount_diff) <= UINT32_MAX);
    status = check_data(samples, &meta, UINT64_MAX,
                        (uint32_t) (timestamp - tscount_diff),
                        meta.actual_count, &suppress_overrun_msg);

    if (status == DETECTED_OVERRUN) {
        overruns++;
        status = 0;
    }

    printf("Timestamp-counter diff: %"PRIu64"\n", tscount_diff);
    printf("Initial timestamp:      0x%016"PRIx64"\n", meta.timestamp);
    printf("Intital counter value:  0x%08"PRIx32"\n", counter);
    printf("Initial status:         0x%08"PRIu32"\n", meta.status);

    for (i = 0; i < t->iterations && status == 0; i++) {

        timestamp = meta.timestamp + gap;
        gap = get_gap(p, t);

        status = bladerf_sync_rx(dev, samples, gap, &meta, p->timeout_ms);
        if (status != 0) {
            fprintf(stderr, "RX %u failed: %s\n", i, bladerf_strerror(status));
            goto out;
        }

        /* If an overrun occured on the previous iteration, we don't know what
         * the timestamp will actually be on this iteration. */
        if (prev_iter_overrun) {
            timestamp = meta.timestamp;
        }

        status = check_data(samples, &meta, timestamp,
                            (uint32_t) (timestamp - tscount_diff),
                            gap, &suppress_overrun_msg);

        if (status == DETECTED_OVERRUN) {
            overruns++;
            status = 0;

            prev_iter_overrun = true;
        }
    }

    if (status != 0) {
        printf("Test failed due to errors.\n");
    } else if (overruns != 0) {
        printf("Test failed due to %u overruns.\n", overruns);
        status = -1;
    } else {
        printf("Test passed.\n");
    }

out:
    status_out = bladerf_enable_module(dev, BLADERF_MODULE_RX, false);
    if (status_out != 0) {
        fprintf(stderr, "Failed to disable RX module: %s\n",
                bladerf_strerror(status));
    }

    status = first_error(status, status_out);

    status_out = enable_counter_mode(dev, false);
    status = first_error(status, status_out);

    return status;
}
示例#5
0
/* See libbladeRF's dc_cal_table.c for the packed table data format */
int calibrate_dc_gen_tbl(struct cli_state *s, bladerf_module module,
                         const char *filename, unsigned int f_low,
                         unsigned f_inc, unsigned int f_high)
{
    int retval, status;
    size_t off;
    struct bladerf_lms_dc_cals lms_dc_cals;
    unsigned int f;
    struct settings settings;
    bladerf_loopback loopback_backup;
    struct bladerf_image *image = NULL;
    FILE *write_check;

    const uint16_t magic = HOST_TO_LE16(0x1ab1);
    const uint32_t reserved = HOST_TO_LE32(0x00000000);
    const uint32_t tbl_version = HOST_TO_LE32(0x00000001);

    const size_t lms_data_size = 10; /* 10 uint8_t register values */

    const uint32_t n_frequencies = (f_high - f_low) / f_inc + 1;
    const uint32_t n_frequencies_le = HOST_TO_LE32(n_frequencies);

    const size_t entry_size = sizeof(uint32_t) +   /* Frequency */
                              2 * sizeof(int16_t); /* DC I and Q valus */

    const size_t table_size = n_frequencies * entry_size;

    const size_t data_size = sizeof(magic) + sizeof(reserved) +
                             sizeof(tbl_version) + sizeof(n_frequencies_le) +
                             lms_data_size + table_size;

    assert(data_size <= UINT_MAX);

    /* This operation may take a bit of time, so let's make sure we
     * actually have write access before kicking things off.  Note that
     * access is checked later when the file is actually written.
     */
    write_check = fopen(filename, "wb");
    if (write_check == NULL) {
        if (errno == EACCES) {
            return BLADERF_ERR_PERMISSION;
        } else {
            return BLADERF_ERR_IO;
        }
    } else {
        fclose(write_check);

        /* Not much we care to do if this fails. Throw away the return value
         * to make this explicit to our static analysis tools */
        (void) remove(filename);
    }

    status = backup_and_update_settings(s->dev, module, &settings);
    if (status != 0) {
        return status;
    }

    status = bladerf_get_loopback(s->dev, &loopback_backup);
    if (status != 0) {
        return status;
    }

    status = bladerf_lms_get_dc_cals(s->dev, &lms_dc_cals);
    if (status != 0) {
        goto out;
    }

    if (module == BLADERF_MODULE_RX) {
        image = bladerf_alloc_image(BLADERF_IMAGE_TYPE_RX_DC_CAL,
                                    0xffffffff, (unsigned int) data_size);
    } else {
        image = bladerf_alloc_image(BLADERF_IMAGE_TYPE_TX_DC_CAL,
                                    0xffffffff, (unsigned int) data_size);
    }

    if (image == NULL) {
        status = BLADERF_ERR_MEM;
        goto out;
    }

    status = bladerf_get_serial(s->dev, image->serial);
    if (status != 0) {
        goto out;
    }

    if (module == BLADERF_MODULE_RX) {
        status = bladerf_set_loopback(s->dev, BLADERF_LB_NONE);
        if (status != 0) {
            goto out;
        }
    }

    off = 0;

    memcpy(&image->data[off], &magic, sizeof(magic));
    off += sizeof(magic);

    memcpy(&image->data[off], &reserved, sizeof(reserved));
    off += sizeof(reserved);

    memcpy(&image->data[off], &tbl_version, sizeof(tbl_version));
    off += sizeof(tbl_version);

    memcpy(&image->data[off], &n_frequencies_le, sizeof(n_frequencies_le));
    off += sizeof(n_frequencies_le);

    image->data[off++] = (uint8_t)lms_dc_cals.lpf_tuning;
    image->data[off++] = (uint8_t)lms_dc_cals.tx_lpf_i;
    image->data[off++] = (uint8_t)lms_dc_cals.tx_lpf_q;
    image->data[off++] = (uint8_t)lms_dc_cals.rx_lpf_i;
    image->data[off++] = (uint8_t)lms_dc_cals.rx_lpf_q;
    image->data[off++] = (uint8_t)lms_dc_cals.dc_ref;
    image->data[off++] = (uint8_t)lms_dc_cals.rxvga2a_i;
    image->data[off++] = (uint8_t)lms_dc_cals.rxvga2a_q;
    image->data[off++] = (uint8_t)lms_dc_cals.rxvga2b_i;
    image->data[off++] = (uint8_t)lms_dc_cals.rxvga2b_q;

    putchar('\n');

    for (f = f_low; f <= f_high; f += f_inc) {
        const uint32_t frequency = HOST_TO_LE32((uint32_t)f);
        int16_t dc_i, dc_q;

        printf("  Calibrating @ %u Hz...", f);

        status = bladerf_set_frequency(s->dev, module, f);
        if (status != 0) {
            goto out;
        }

        if (module == BLADERF_MODULE_RX) {
            int16_t error_i, error_q;
            status = calibrate_dc_rx(s, &dc_i, &dc_q, &error_i, &error_q);
            printf("    I=%-4d (avg: %-4d), Q=%-4d (avg: %-4d)\r",
                    dc_i, error_i, dc_q, error_q);
        } else {
            float error_i, error_q;
            status = calibrate_dc_tx(s, &dc_i, &dc_q, &error_i, &error_q);
            printf("    I=%-4d (avg: %3.3f), Q=%-4d (avg: %3.3f)\r",
                    dc_i, error_i, dc_q, error_q);
        }

        if (status != 0) {
            goto out;
        }

        fflush(stdout);

        dc_i = HOST_TO_LE16(dc_i);
        dc_q = HOST_TO_LE16(dc_q);

        memcpy(&image->data[off], &frequency, sizeof(frequency));
        off += sizeof(frequency);

        memcpy(&image->data[off], &dc_i, sizeof(dc_i));
        off += sizeof(dc_i);

        memcpy(&image->data[off], &dc_q, sizeof(dc_q));
        off += sizeof(dc_q);
    }

    status = bladerf_image_write(image, filename);

    printf("\n  Done.\n\n");

out:
    retval = status;

    if (module == BLADERF_MODULE_RX) {
        status = bladerf_set_loopback(s->dev, loopback_backup);
        retval = first_error(retval, status);
    }

    status = bladerf_enable_module(s->dev, BLADERF_MODULE_RX, false);
    retval = first_error(retval, status);

    status = restore_settings(s->dev, module, &settings);
    retval = first_error(retval, status);

    bladerf_free_image(image);
    return retval;
}
示例#6
0
static int run(struct bladerf *dev, struct app_params *p,
               const struct test_case *t)
{
    int status, status_out, status_wait;
    unsigned int samples_left;
    size_t i;
    struct bladerf_metadata meta;
    int16_t *samples, *buf;

    samples = calloc(2 * sizeof(int16_t), t->burst_len + 2);
    if (samples == NULL) {
        perror("malloc");
        return BLADERF_ERR_MEM;
    }

    /* Leave the last two samples zero */
    for (i = 0; i < (2 * t->burst_len); i += 2) {
        samples[i] = samples[i + 1] = MAGNITUDE;
    }

    memset(&meta, 0, sizeof(meta));

    status = perform_sync_init(dev, BLADERF_MODULE_TX, t->buf_len, p);
    if (status != 0) {
        goto out;
    }

    status = bladerf_get_timestamp(dev, BLADERF_MODULE_TX, &meta.timestamp);
    if (status != 0) {
        fprintf(stderr, "Failed to get timestamp: %s\n",
                bladerf_strerror(status));
        goto out;
    } else {
        printf("Initial timestamp: 0x%016"PRIx64"\n", meta.timestamp);
    }

    meta.timestamp += 200000;


    for (i = 0; i < t->iterations && status == 0; i++) {
        meta.flags = BLADERF_META_FLAG_TX_BURST_START;
        samples_left = t->burst_len + 2;
        buf = samples;


        printf("Sending burst @ %llu\n", (unsigned long long) meta.timestamp);

        while (samples_left && status == 0) {
            unsigned int to_send = uint_min(p->buf_size, samples_left);

            if (to_send == samples_left) {
                meta.flags |= BLADERF_META_FLAG_TX_BURST_END;
            } else {
                meta.flags &= ~BLADERF_META_FLAG_TX_BURST_END;
            }

            status = bladerf_sync_tx(dev, buf, to_send, &meta, 10000); //p->timeout_ms);
            if (status != 0) {
                fprintf(stderr, "TX failed @ iteration (%u) %s\n",
                        (unsigned int )i, bladerf_strerror(status));
            }

            meta.flags &= ~BLADERF_META_FLAG_TX_BURST_START;
            samples_left -= to_send;
            buf += 2 * to_send;
        }

        meta.timestamp += (t->burst_len + t->gap_len - 2);
    }

    printf("Waiting for samples to finish...\n");
    fflush(stdout);

    /* Wait for samples to be transmitted before shutting down the TX module */
    status_wait = wait_for_timestamp(dev, BLADERF_MODULE_TX,
                                     meta.timestamp - t->gap_len + 2,
                                     3000);
    if (status_wait != 0) {
        status = first_error(status, status_wait);
        fprintf(stderr, "Failed to wait for TX to finish: %s\n",
                bladerf_strerror(status_wait));
    }

out:
    status_out = bladerf_enable_module(dev, BLADERF_MODULE_TX, false);
    if (status_out != 0) {
        fprintf(stderr, "Failed to disable TX module: %s\n",
                bladerf_strerror(status));
    } else {
        printf("Done waiting.\n");
        fflush(stdout);
    }

    status = first_error(status, status_out);

    free(samples);
    return status;
}