示例#1
0
int main()
{
	int gen = 0;
	char go = 1;

	srand(time(NULL));

	/* 1. Choose the initial ppopulation */
	initial_population();
	/* 2. Evaluate the fitness of each individual in the population */
	fitness();
	/* 3. Repeat */
	while((gen++ < MAX_GENS)  && go)
	{
/*		printf("Find the best fittest\n");*/
	/* 	1. Select the best-ranking individuals to reproduce */
		find_the_best_individuals();
		/* Select the reproduce no, dynamicly (Ver. 2) */
		reproduce();
	/*		2. Breed new generation through crossover and mutation (genetic operations) and give birth to offspring */
	/*		3. Evaluate the individual fitnesses of the offspring */
	/*		4. Replace worst ranked part of the population with offspring */
		fitness();
		find_the_best_individuals();
		if (population[0].fitness < OK_SNIT)
			go = 0;
	}
	/* 4. Until <terminating condition> */
	print_population();
	printf("No of gen: %d\n",gen);
	return 0;
}
示例#2
0
文件: main.cpp 项目: shubh24/MfoPaper
int main()
{
    srand(time(NULL));
    data dat;
    readfile(dat, "../../data/ks_19_0");
    int items = dat[0].value;
    population *pop, popalpha;
    initialize_population(popalpha, items);
    pop = &popalpha;
    //print(*pop);

    bat best = get_best(*pop);

    int iterations = 200;
    while(iterations > 0){
        new_solutions(*pop,dat);
        calc_fitness(*pop, dat);
        if(getrand()> 0.5){
            best = get_best(*pop);
            move_bat(best, rand()%5, dat); // amplitude is 2
        }

        if(fitness(best, dat) > fitness((*pop).best, dat))
            (*pop).best = best;

        iterations--;
    }
    print(*pop);
}
示例#3
0
文件: optim.c 项目: jreinhardt/sudoku
//structured monte carlo
//maintains correct blockstructure doesnt work very good
void oku_mcblksol(oku_sod* sod, double temp){
	int i,j,k,val;
	int fit1, fit2, num,blk,idx1,idx2,tmp;
	int size = sod->size;
	int blkunk[size],cnt[size];
	int blkunkidx[size][size];

	for(i=0;i<size;i++){
		blkunk[i] = 0;
		for(j=0;j<size;j++)
			cnt[j] = 0;

		//find unknowns for every block
		for(j=0;j<size;j++){
			val = get_blk(sod,i,j);
			if(val == 0){
				blkunkidx[i][blkunk[i]++] = j;
			} else {
				if(cnt[val-1] == 0){
					cnt[val-1] = 1;
				} else printf("Fehler in oku_mcblocksol: Invalid hint: %d\n",val);
			}
		}

		//fill them
		k=0;
		for(j=0;j<size;j++)
			if(cnt[j] == 0)
				set_blk(sod,i,blkunkidx[i][k++],j+1);
	}

	oku_sod_print(sod);

	fit1 = fitness(sod);
	num = 0;
	while(fit1){
		//choose block and two indizes inside
		blk = rndi() % size;
		idx1 = rndi() % blkunk[blk];
		idx2 = rndi() % blkunk[blk];

		//swap
		tmp = get_blk(sod,blk,idx1);
		set_blk(sod,blk,idx1,get_blk(sod,blk,idx2));
		set_blk(sod,blk,idx2,tmp);

		fit2 = fitness(sod); 

		if(fit2 > fit1 && exp((fit1 - fit2)/temp) < rndf()){
			//swap back
			tmp = get_blk(sod,blk,idx1);
			set_blk(sod,blk,idx1,get_blk(sod,blk,idx2));
			set_blk(sod,blk,idx2,tmp);
		} else fit1 = fit2;
		num++;
		if(num % 2000 == 0)
			printf("Step:%d Fitness: %d\n",num,fit1);
	}

}
示例#4
0
文件: gp.c 项目: trumae/tabuada
int torneio (Populacao *pop, void (*fitness)(Populacao *pop, int i1, int i2, int *champion, int *loser, int verb) , int verbose) {
    Individuo *rind1;
    Individuo *rind2;
    int champion1, champion2;
    int loser1, loser2;
    int i1 = mysorteiounico(pop->tam, -1,-1,-1);
    int i2 = mysorteiounico(pop->tam, i1,-1,-1);
    int i3 = mysorteiounico(pop->tam, i1,i2,-1);
    int i4 = mysorteiounico(pop->tam, i1,i2,i3);
    
    //printf("Sorteados %d %d %d %d\n", i1,i2,i3,i4);
    fitness(pop, i1, i2,&champion1, &loser1, verbose);
    fitness(pop, i3, i4,&champion2, &loser2, verbose);
    
    crossover(pop->data[champion1], pop->data[champion2], pop->txcross,
		 &rind1, &rind2);
    
    mutation(rind1, pop->txmut);
    mutation(rind2, pop->txmut);
	
    freeIndividuo(pop->data[loser1]);
    freeIndividuo(pop->data[loser2]);
    pop->data[loser1] = rind1;
    pop->data[loser2] = rind2;
}
示例#5
0
文件: main.cpp 项目: artpdr/LPA
void max_fitness(char S[], char bit) {
	//count++;
	if (bit == 0) {
		double maybe_best = fitness(S);
		if (maybe_best > best)
			best = maybe_best;

		S[(int)bit] = 1;
		maybe_best = fitness(S);
		S[(int)bit] = 0;
		if (maybe_best > best)
			best = maybe_best;

		return;
	}

	max_fitness(S, bit - 1);

	S[(int)bit] = 1;
	
	if (bit < n/2 && upper_bound(S, bit) <= best) {
		S[(int)bit] = 0;
		return;
	}

	max_fitness(S, bit - 1);

	S[(int)bit] = 0;
	
}
示例#6
0
void main()
{
	int i, test = 0;
	// set from global variable
	int generation = m;
	Individual best;

	randomize();

	worldInit();
	populationInit(1); // 100% of population
	fitness(); // explicit, not in populationInit()

	best = getBestIndividual();

	for(i = 0; i < maxGenerations; i++){

		if(test){
			printf("#generation: %4d, fitness: %4d\n", i, best.fitness);
		}else{
			printf("#generation: %4d, fitness: %4d\n", i, best.fitness);
			printAxisOfBest(best);
		}

		if(generation == 0){
			// a)
			(K == xAxis) ? K = 1 : K++;

			// b)
			//K = random(xAxis);

			// c)
			//if(K == 10) K = 25; else K = 10;

			worldInit();
			populationInit(3); // reinicialize 30% of population
			fitness();
			generation = m;

		}else{
			generation--;
		}

		selection();
		crossover();
		mutation();
		fitness();

		best = getBestIndividual();
	}


	printf("#generation: %4d, fitness: %4d\n", i, best.fitness);
	if(!test)
		printAxisOfBest(best);
}
示例#7
0
文件: pso.c 项目: benbee/Learning
void find_gbest(void)
{
    int i;

    for (i = 0; i < 10; i++) {
        if (fitness(gbest) > fitness(p[i].current)) {
            gbest = p[i].current;
        }
    }
}
示例#8
0
int main()
{
    std::cout << "[moeoChebyshevMetric] => ";

    // objective vectors
    ObjectiveVector obj0, obj1, obj2, obj3, obj4, obj5, obj6;
    obj0[0] = 3;
    obj0[1] = 3;

    obj1[0] = 2;
    obj1[1] = 2;

    obj2[0] = 1;
    obj2[1] = 1;

    obj4[0] = 0;
    obj4[1] = 0;

    
    std::vector<double> poids;
    poids.resize(2);
    
    poids[0]=2;
    poids[1]=3;
    ObjectiveVector obj_poids(poids);


    // population
    eoPop < Solution > pop;
    pop.resize(3);
    pop[0].objectiveVector(obj0); 
    pop[1].objectiveVector(obj1);
    pop[2].objectiveVector(obj2);
    Solution reference;
    reference.objectiveVector(obj4);
    unsigned int rho=2;

    moeoObjectiveVectorNormalizer<Solution> normalizer(pop,10);

    moeoAugmentedAchievementScalarizingFunctionMetricFitnessAssignment<Solution> fitness(rho,obj4,obj_poids,normalizer,eval);
    moeoAugmentedAchievementScalarizingFunctionMetricFitnessAssignment<Solution> fitness1(rho,obj4,obj_poids);
    moeoAugmentedAchievementScalarizingFunctionMetricFitnessAssignment<Solution> fitness2(rho,obj4,obj_poids,normalizer);
    moeoAugmentedAchievementScalarizingFunctionMetricFitnessAssignment<Solution> fitness3(rho,obj4,obj_poids,eval);
    fitness(pop);
    fitness(reference);
    
    assert(pop[0].fitness()<pop[1].fitness());
    assert(pop[1].fitness()<pop[2].fitness());
 
    std::cout << "Ok" << std::endl;
    
    return EXIT_SUCCESS;
}
 /**
 * Check fitness of this tree
 * @param pos position to check
 * @param min minimum value
 * @param max maximum value
 * @param deepness deepness level
 * @return fitness of the tree
 **/
 double fitness(int pos, int min=INT_MIN, int max=INT_MAX, double deepness=1) {
     int lpos = 2*pos+1;
     int rpos = 2*pos+2;
     double fit=0;
     if(values[pos] > max)
     fit=(fit+1)*deepness;
     if(values[pos] < min)
     fit=(fit+1)*deepness;
     if(lpos < SIZE)
     fit+=fitness(lpos, min, values[pos], deepness/2);
     if(rpos < SIZE)
     fit+=fitness(rpos, values[pos], max, deepness/2);
     return fit;
 }
示例#10
0
文件: optim.c 项目: jreinhardt/sudoku
// first monte carlo solver, mildly constraint
void oku_mcsol(oku_sod* sod, double temp){
	int i,j,num,size = sod->size;
	int cnt[size+1];
	int fit1, fit2, idx1, idx2,tmp,tmp2;

	//refresh list of unknowns in sod
	unk_find(sod);

	//fill sudoku with missing symbols
	for(i=1;i<size+1;i++) cnt[i] = size;

	for(i=0;i<size*size;i++)
		cnt[get_idx(sod,i)]--;

	j=1;
	for(i=0;i<get_numunk(sod);i++){
		while(cnt[j] < 1 && j <= size+1) j++;
		cnt[j]--;
		set_idx(sod,get_unkidx(sod,i),j);
	}

	fit1 = fitness(sod);
	num=0;

	while(fit1 && num < 200000){
		//choose 2 indices
		idx1 = get_unkidx(sod,rndi() % get_numunk(sod));
		idx2 = get_unkidx(sod,rndi() % get_numunk(sod));

		//swap
		tmp = get_idx(sod,idx1);
		if(tmp == (tmp2 = get_idx(sod,idx2))) continue;
		set_idx(sod,idx1,tmp2);
		set_idx(sod,idx2,tmp);

		fit2 = fitness(sod);

		if(fit2 > fit1 && exp((fit1 - fit2)/temp) < rndf()){
			//swap back
			tmp = get_idx(sod,idx1);
			set_idx(sod,idx1,get_idx(sod,idx2));
			set_idx(sod,idx2,tmp);
		} else fit1 = fit2;
		num++;
			
	}
	printf("Solution found after %d MC Steps\n",num);

};
示例#11
0
文件: main.cpp 项目: CCJY/coliru
void print_population(char **population) {
	int i;
	for (i = 0; i < PSIZE; i++) {
		printf("population[%02d]: %s (%d)\n", i, population[i],
				fitness(population[i]));
	}
}
void simu_controller_loop(MBSdataStruct *MBSdata)
{
    double tsim;

    ControllerStruct *cvs;
    UserIOStruct *uvs;

    uvs = MBSdata->user_IO;
	cvs = uvs->cvs;

    tsim = MBSdata->tsim;
    
    // controller
    if (tsim >= uvs->last_t_ctrl + PERIOD_CTRL - TIME_EPSILON)
    {
        uvs->last_t_ctrl = tsim;
        
        controller_inputs(MBSdata);
        controller_loop(cvs);
        controller_outputs(MBSdata);
    }

    // simulation outputs
    simu_outputs(MBSdata);
    
    // objective function
    fitness(MBSdata);

	// stopping the simulation if needed
	stop_simu(MBSdata);
}
示例#13
0
/*midgeneプールの適応度の計算*/
void setfvalue(char midgene[POOLSIZE*2][RULESIZE][LOCUSSIZE],
            int fvalue[],char lines[MAXLINES][LINESIZE],int lineno)
{
 int i ;
 for(i=0;i<POOLSIZE*2;++i)
  fvalue[i]=fitness(midgene[i],lines,lineno)+1 ;
}
void GeneticAlgorithm<T>::working_thread()
{
    //cout <<"Anzahl: "<<m_populationsize<<endl;
    Farbe ** buffer = new Farbe*[picsizex];
    for(uint i = 0;i<picsizex;i++)
        buffer[i] = new Farbe[picsizey];
    while(1)
    {
        number_action.lock();
        if(actnum == m_populationsize)
        {
            for(uint i = 0;i<picsizex;i++)
                delete [] buffer[i];
            delete [] buffer;
            number_action.unlock();
            ready--;
            return;
        }
        uint arbeit = actnum;
        actnum++;
        number_action.unlock();
        fitn[arbeit] = fitness(arbeit,buffer,fitnessmode);
        //cout <<"Fitness von "<<arbeit<<" ist "<<fitn[arbeit]<<endl;
    }
}
int main(int argc, char *argv[]) {
	int my_rank;
	double mpi_start_time, mpi_end_time;
	deme *subpop = (deme*) malloc(sizeof(deme));

	MPI_Init(&argc, &argv);
	MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
	init_population(subpop, argc, argv);
	mpi_start_time = MPI_Wtime();

	while (!subpop->complete) {
		migration(subpop);
		reproduction(subpop);
		crossover(subpop);
		mutation(subpop);
		fitness(subpop);
		subpop->old_pop = subpop->new_pop;
		subpop->cur_gen++;
		check_complete(subpop);
		sync_complete(subpop);
		report_all(subpop);
	}
	
	mpi_end_time = MPI_Wtime();
	report_fittest(subpop);
	MPI_Finalize();
	printf("[%i] Elapsed time: %f\n", my_rank, mpi_end_time - mpi_start_time);
	return 1;
}
示例#16
0
文件: ga.cpp 项目: allagar/junkcode
float
MinEntropy(GAGenome& g)
{
  GA1DBinaryStringGenome & genome = (GA1DBinaryStringGenome &)g;

  return fitness(gen2rule(genome));
}
示例#17
0
void GQAP::CopyProblem(GQAP & _problem) {
	// Copy Problem Parameters
	transportCost 	= _problem.transportCost;
	numLocation 	= _problem.numLocation;
	numEquip 		= _problem.numEquip;
	vectorSpaceCap 	= _problem.vectorSpaceCap;
	vectorSpaceReq 	= _problem.vectorSpaceReq;
	matrixDist 		= _problem.matrixDist;
	matrixFlow 		= _problem.matrixFlow;
	matrixInstallCost = _problem.matrixInstallCost;
	
	// Copy Current Solution and its Fitness-Value
	solution = _problem.solution;
	if (!_problem.invalid()) {
		fitness(_problem.fitness());
	}
	
	// Copy Helper Variables
	numViolatedCapacityUnits  = _problem.numViolatedCapacityUnits;
	numViolatedLocations     = _problem.numViolatedLocations;
	
	installationPenalty	  = _problem.installationPenalty;
	transportationPenalty = _problem.transportationPenalty;
	
	UsedCapacity = _problem.UsedCapacity;
}
示例#18
0
/*Callback function that is called during each GA run*/
int callbackf(int gen, void ** pop, int popsz)
{
   int i,j;
   double x;
   void * y;
   Parameters * p;
   
   y = pop[0];
   x = fitness(y);

   if (PRINT_STEPS)
   {
       printf("%i  %lf\n", gen, x);
       if (x == 1.0) printf("target reached.\n\n");
   }
   if (x == 1.0) 
   { 
       return (1); 
   }

   if (gen > 0 && (gen % 20) == 0)
   {
       p = 0;
       for (i=0; i < popsz/2; ++i)
       {
           p = (Parameters*)pop[i];
           for (j=0; j < p->numVars; ++j) p->alphas[j] *= 2.0 * randnum;
           for (j=0; j < p->numParams; ++j) p->params[j] *= 2.0 * randnum;
           normalize (p->alphas , p->numVars);
           normalize (p->params , p->numParams);
       }
   }

   return (0);
}
示例#19
0
文件: main.cpp 项目: CCJY/coliru
void selection(char **population, int *x, int *y) {
	int total_fitness = totalFitness(population);
	//printf("total fitness: %d\n",total_fitness);
//printf("xy: %d %d",*x,*y);
//	while (*x == *y) {  //make sure the two parents are different
		int random1 = rand() % (total_fitness + 1);
		int random2 = rand() % (total_fitness + 1);
		if (random1 > random2) {
			int temp = 0;
			temp = random1;
			random1 = random2;
			random2 = temp;
		} //let random 1 < random2
		  //printf("random 1: %d 2: %d\n", random1, random2);
		int t = 0;
		int i;
		for (i = 0; i < PSIZE; i++) {
			t += fitness(population[i]);
			if (t > random1 && *x == 0)
				*x = i;
			if (t > random2 && *y == 0) {
				*y = i;
				break;
			}
		}
//	}
}
示例#20
0
void calc_fitness(population &pop, data &dat)
{
    for(int i = 0; i < No_of_Bats; i++)
    {
        pop.bats[i].fitness = fitness(pop.bats[i], dat);
    }
}
int main()
{
    std::cout << "[moeoAggregationFitnessAssignment] => ";

    // objective vectors
    ObjectiveVector obj0, obj1, obj2, obj3, obj4, obj5, obj6;
    obj0[0] = 0;
    obj0[1] = 2;

    obj1[0] = 2;
    obj1[1] = 0;

    obj2[0] = 4;
    obj2[1] = 2;

    obj4[0] = 3;
    obj4[1] = 0;

    
    std::vector<double> poids;
    poids.resize(2);
    
    poids[0]=2;
    poids[1]=1;

    // population
    eoPop < Solution > pop;
    pop.resize(3);
    pop[0].objectiveVector(obj0); 
    pop[1].objectiveVector(obj1);
    pop[2].objectiveVector(obj2);

    moeoObjectiveVectorNormalizer<Solution> normalizer;

    moeoConstraintFitnessAssignment < Solution > fitness(poids,obj4,1,normalizer);
    moeoConstraintFitnessAssignment < Solution > fitness2(poids,obj4,1,normalizer,defaultEval);

    fitness(pop);

    assert(pop[0].fitness()==-2);
    assert(pop[1].fitness()==0);
    assert(pop[2].fitness()==-4);
 
    std::cout << "Ok" << std::endl;
    
    return EXIT_SUCCESS;
}
示例#22
0
文件: main.cpp 项目: CCJY/coliru
int totalFitness(char **population) {
	int total_fitness = 0;
	int i;
	for (i = 0; i < PSIZE; i++) {
		total_fitness += fitness(population[i]);
	}
	return total_fitness;
}
示例#23
0
/*遺伝子プールの世代平均適応度の計算*/
double fave(char gene[POOLSIZE][RULESIZE][LOCUSSIZE],char lines[MAXLINES][LINESIZE],int lineno)
{
 int i ;
 double fsum=0.0 ;
 for(i=0;i<POOLSIZE;++i){
  fsum+=fitness(gene[i],lines,lineno) ;
 }
 return fsum/POOLSIZE ;
}
int main()
{
    std::cout << "[moeoAggregationFitnessAssignment] => ";

    // objective vectors
    ObjectiveVector obj0, obj1, obj2, obj3;
    obj0[0] = 2;
    obj0[1] = 5;
    obj1[0] = 3;
    obj1[1] = 3;
    obj2[0] = 4;
    obj2[1] = 1;
    obj3[0] = 5;
    obj3[1] = 5;
    
    std::vector<double> poids;
    poids.resize(2);
    
    poids[0]=2;
    poids[1]=3;

    // population
    eoPop < Solution > pop;
    pop.resize(4);
    pop[0].objectiveVector(obj0); 
    pop[1].objectiveVector(obj1);
    pop[2].objectiveVector(obj2);
    pop[3].objectiveVector(obj3);

    moeoAggregationFitnessAssignment < Solution > fitness(poids);

    fitness(pop);
    
    assert(pop[0].fitness() == 19.0);
    assert(pop[1].fitness() == 15.0);
    assert(pop[2].fitness() == 11.0);
    assert(pop[3].fitness() == 25.0);
 
    std::cout << "Ok" << std::endl;
    
    return EXIT_SUCCESS;
}
 /**
 * Mutates the tree
 **/
 void mutate() {
     if((rand() % 100) <= MUTATION_RATE) {
         double f0 = fitness(0);
         mc++;
         int i = rand() % SIZE;
         int j = rand() % SIZE;
         int tmp=values[i];
         values[i]=values[j];
         values[j]=tmp;
     }
 }
// Find the current performance of the swarm.
void findPerformance(double swarm[swarmsize][datasize], double perf[swarmsize], 
		     double age[swarmsize], char type, int robots, 
		     int neighbors[swarmsize][swarmsize]) {
  double particles[robots][datasize];
  double fit[robots];
  int i,j,k;                   // FOR-loop counters

  for (i = 0; i < swarmsize; i+=robots) {
    for (j=0;j<robots && i+j<swarmsize;j++) {
      sprintf(label2,"Particle: %d\n", i+j);
      wb_supervisor_set_label(1,label2,0.01,0.05,0.05,0xffffff,0);
      for (k=0;k<datasize;k++) 
        particles[j][k] = swarm[i+j][k];
    }
    // USER MUST IMPLEMENT FITNESS FUNCTION
    if (type == EVOLVE_AVG) {
  	  // Evalute current fitness
  	  fitness(particles,fit,neighbors);
  	  // TODO : performance as moving average of previous perf and latest fitness
  	  // TODO : pay attention to age[]
      for (j=0;j<robots && i+j<swarmsize;j++) {

      }
    } else if (type == EVOLVE) {
      fitness(particles,fit,neighbors);
      for (j=0;j<robots && i+j<swarmsize;j++)
      	perf[i+j] = fit[j];
      } else if (type == SELECT) {
      for (j=0;j<robots && i+j<swarmsize;j++)
	      perf[i+j] = 0.0;
      for (k=0;k<5;k++) {
	      fitness(particles,fit,neighbors);
	      for (j=0;j<robots && i+j<swarmsize;j++)
	        perf[i+j] += fit[j];
      }
      for (j=0;j<robots && i+j<swarmsize;j++) {
	      perf[i+j] /= 5.0;
      }
    }
  }
}
示例#27
0
void GQAP::operator=(GQAP_Solution& _solution) {
	if (_solution.solution.size() != solution.size()) {
		throw std::runtime_error("ERROR: Trying to GQAP_Solution with differen size to a GQAP");
	}
	
	for (int i = 0; i < solution.size(); i++) {
		solution[i] = _solution[i];
	}
	
	fitness(_solution.fitness());
	CalculateCapacityViolations();
}
示例#28
0
文件: pso.c 项目: benbee/Learning
void pso(void)
{
    int i, iter_num;
    iter_num = 1;

    while (iter_num < MAX_ITERATIONS) {
        for (i = 0 ; i < 10; i++) {
            if (fitness(p[i].current) < fitness(p[i].pbest)) {
                p[i].pbest = p[i].current;
            }
        }

        find_gbest();
        adjust_v();
        for (i = 0; i < 10; i++) {
            p[i].current += v[i];
        }

        iter_num++;
    }
}
示例#29
0
// Find the current performance of the swarm.
// Lower performance is better
void findPerformance(double swarm[swarmsize][datasize], double perf[swarmsize], 
                     double age[swarmsize], char type, int robots,
                     int neighbors[swarmsize][swarmsize]) {
    double particles[robots][datasize];
    double fit[robots];
    int i,j,k;                   // FOR-loop counters

    for (i = 0; i < swarmsize; i+=robots) {
        for (j=0;j<robots && i+j<swarmsize;j++) {
            for (k=0;k<datasize;k++)
                particles[j][k] = swarm[i+j][k];
        }

        // USER MUST IMPLEMENT FITNESS FUNCTION
        if (type == EVOLVE_AVG) {
            fitness(particles,fit,neighbors);
            for (j=0;j<robots && i+j<swarmsize;j++) {
                perf[i+j] = ((age[i+j]-1.0)*perf[i+j] + fit[j])/age[i+j];
                age[i+j]++;
            }
        }
        else if (type == EVOLVE) {
            fitness(particles,fit,neighbors);
            for (j=0;j<robots && i+j<swarmsize;j++)
                perf[i+j] = fit[j];
        }
        else if (type == SELECT) {
            for (j=0;j<robots && i+j<swarmsize;j++)
                perf[i+j] = 0.0;
            for (k=0;k<5;k++) {
                fitness(particles,fit,neighbors);
                for (j=0;j<robots && i+j<swarmsize;j++)
                    perf[i+j] += fit[j];
            }
            for (j=0;j<robots && i+j<swarmsize;j++) {
                perf[i+j] /= 5.0;
            }
        }
    }
}
示例#30
0
bool Villager::operator >(const Individuo &v)
{
    /*
    const Villager *ptr = ((const Villager*) &v);
    if (attack() > ptr->attack())return true;
    else if (attack() == ptr->attack()){
        if (defense() > ptr->defense())return true;
        else if (defense() == ptr->defense())return blot() < ptr->blot();
    }
    return false;
    */
    return fitness() > v.fitness();
}