void LayerNet::gen_init ( TrainingSet *tptr , // Training set to use struct LearnParams *lptr // User's general learning parameters ) { int i, istart, individual, best_individual, generation, n_cross ; int first_child, parent1, parent2, improved, crosspt, nchoices, *choices ; int initpop, popsize, gens, climb, nvars, chromsize, split, ind ; float pcross, pmutate, error, besterror, *errors, *fitness, worst ; float fquit, favor_best, fitfac, maxerr, minerr, avgerr, overinit ; SingularValueDecomp *sptr ; struct GenInitParams *gptr ; // User's genetic initialization parameters char *pool1, *pool2, *oldpop, *newpop, *popptr, *temppop, *best ; char msg[80] ; gptr = lptr->gp ; popsize = gptr->pool ; gens = gptr->gens ; climb = gptr->climb ; overinit = gptr->overinit ; pcross = gptr->pcross ; pmutate = gptr->pmutate ; fquit = lptr->quit_err ; favor_best = 3.1 ; fitfac = -20.0 ; /* -------------------------------------------------------------------------------- Do all scratch memory allocation. -------------------------------------------------------------------------------- */ /* Allocate the singular value decomposition object for REGRESS. */ if (nhid2 == 0) // One hidden layer nvars = nhid1 + 1 ; else // Two hidden layers nvars = nhid2 + 1 ; MEMTEXT ( "GEN_INIT: new SingularValueDecomp" ) ; sptr = new SingularValueDecomp ( tptr->ntrain , nvars , 1 ) ; if ((sptr == NULL) || ! sptr->ok) { memory_message("for genetic initialization. Try ANNEAL NOREGRESS."); neterr = 1.0 ; // Flag failure to LayerNet::learn which called us if (sptr != NULL) delete sptr ; return ; } chromsize = nhid1 * (nin+1) ; // Length of an individual's chromosome if (nhid2) // is the number of hidden weights chromsize += nhid2 * (nhid1+1) ; errors = fitness = NULL ; choices = NULL ; pool1 = pool2 = NULL ; MEMTEXT ( "GEN_INIT: errors, fitness, choices, best, pool1,pool2"); if (((errors = (float*) MALLOC ( popsize * sizeof(float))) == NULL) || ((fitness = (float*) MALLOC ( popsize * sizeof(float))) == NULL) || ((best = (char*) MALLOC( chromsize )) == NULL) || ((choices = (int*) MALLOC ( popsize * sizeof(int))) == NULL) || ((pool1 = (char*) MALLOC( popsize * chromsize )) == NULL) || ((pool2 = (char*) MALLOC( popsize * chromsize )) == NULL)) { if (errors != NULL) FREE ( errors ) ; if (fitness != NULL) FREE ( fitness ) ; if (choices != NULL) FREE ( choices ) ; if (pool1 != NULL) FREE ( pool1 ) ; if (pool2 != NULL) FREE ( pool2 ) ; delete sptr ; memory_message("for genetic initialization. Try ANNEAL NOREGRESS." ) ; neterr = 1.0 ; // Flag failure to LayerNet::learn which called us return ; } /* Generate initial population pool. We also preserve the best weights across all generations, as this is what we will ultimately return to the user. Its mean square error is besterror. */ besterror = 1.e30 ; // For saving best (across all individuals and gens) maxerr = avgerr = 0.0 ; // For progress display only best_individual = 0 ; // Safety only initpop = popsize * overinit ; // Overinitialization of initial population progress_message ( "\nGenerating initial population" ) ; for (ind=0 ; ind<initpop ; ind++) { // Try overinitialization times if (ind<popsize) // If still in pop size limit individual = ind ; // just use next avail space else { // Else we search entire pop worst = -1. ; // for the worst member for (i=0 ; i<popsize ; i++) { // which we will then replace if (errors[i] > worst) { worst = errors[i] ; individual = i ; } } avgerr -= worst ; // Exclude discards from average } popptr = pool1 + individual * chromsize ; // Build init pop in pool1 rand_ind ( popptr , chromsize ) ; // Randomly generate individual decode ( popptr , nin , nhid1 , nhid2 , // Convert genotype (chromosome) hid1_coefs , hid2_coefs ); // to phenotype (weights) error = regress ( tptr , sptr ) ; // Evaluate network error errors[individual] = error ; // and keep all errors if (error < besterror) { // Keep track of best besterror = error ; // as it is returned to user best_individual = individual ; // This is its index in pool1 } if (error > maxerr) // Max and average error are maxerr = error ; // for progress display only avgerr += error ; if (error <= fquit) break ; progress_message ( "." ) ; } sprintf (msg , "\nInitial pop: Min err=%7.4lf Max=%7.4lf Avg=%7.4lf", 100. * besterror, 100. * maxerr, 100.0 * avgerr / (float) popsize); progress_message ( msg ) ; /* The initial population has been built in pool1. Copy its best member to 'best' in case it never gets beat (unlikely but possible!). Also, we will need best if the climb option is true. */ popptr = pool1 + best_individual * chromsize ; // Point to best memcpy ( best , popptr , chromsize ) ; // and save it /* This is the main generation loop. There are two areas for population pool storage: pool1 and pool2. At any given time, oldpop will be set to one of them, and newpop to the other. This avoids a lot of copying. */ oldpop = pool1 ; // This is the initial population newpop = pool2 ; // The next generation is created here for (generation=0 ; generation<gens ; generation++) { if (error <= fquit) // We may have satisfied this in init pop break ; // So we test at start of generation loop error_to_fitness ( popsize , favor_best , fitfac , errors , fitness ) ; fitness_to_choices ( popsize , fitness , choices ) ; nchoices = popsize ; // Will count down as choices array emptied n_cross = pcross * popsize ; // Number crossing over first_child = 1 ; // Generating first of parent's 2 children? improved = 0 ; // Flags if we beat best if (climb) { // If we are to hill climb memcpy ( newpop , best , chromsize ) ; // start with best errors[0] = besterror ; // Record its error istart = 1 ; // and start children past it } else istart = 0 ; /* Generate the children */ maxerr = avgerr = 0.0 ; // For progress display only minerr = 1.0 ; // Ditto for (individual=istart ; individual<popsize ; individual++) { popptr = newpop + individual * chromsize ; // Will put this child here if (first_child) // If this is the first of 2 children, pick parents pick_parents ( &nchoices , choices , &parent1 , &parent2 ) ; if (n_cross-- > 0) // Do crossovers first reproduce ( oldpop + parent1 * chromsize , oldpop + parent2 * chromsize , first_child , chromsize , popptr , &crosspt , &split ) ; else if (first_child) // No more crossovers, so just copy parent memcpy ( popptr , oldpop + parent1 * chromsize , chromsize ) ; else memcpy ( popptr , oldpop + parent2 * chromsize , chromsize ); if (pmutate > 0.0) mutate ( popptr , chromsize , pmutate ) ; decode ( popptr , nin , nhid1 , nhid2 , hid1_coefs , hid2_coefs ) ; error = regress ( tptr , sptr ) ; // Evaluate child's error errors[individual] = error ; // and keep each if (error < besterror) { // Keep track of best besterror = error ; // It will be returned to user best_individual = individual ; // This is its index in newpop improved = 1 ; // Flag so we copy it later } if (error > maxerr) // Min, max and average error maxerr = error ; // for progress display only if (error < minerr) minerr = error ; avgerr += error ; if (error <= fquit) break ; first_child = ! first_child ; } // For all genes in population /* We finished generating all children. If we improved (one of these children beat the best so far) then copy that child to the best. Swap oldpop and newpop for the next generation. */ if (improved) { popptr = newpop + best_individual * chromsize ; // Point to best memcpy ( best , popptr , chromsize ) ; // and save it } temppop = oldpop ; // Switch old and new pops for next generation oldpop = newpop ; newpop = temppop ; sprintf(msg, "\nGeneration %3d: Min err=%7.4lf Max=%7.4lf Avg=%7.4lf", generation+1, 100. * minerr, 100. * maxerr, 100.0 * avgerr / (float) popsize ) ; progress_message ( msg ) ; } /* We are all done. */ decode ( best , nin , nhid1 , nhid2 , hid1_coefs , hid2_coefs ) ; besterror = regress ( tptr , sptr ) ; // Evaluate network error MEMTEXT ( "GEN_INIT: errors, fitness, choices, best, pool1,pool2"); FREE ( errors ) ; FREE ( fitness ) ; FREE ( choices ) ; FREE ( best ) ; FREE ( pool1 ) ; FREE ( pool2 ) ; MEMTEXT ( "GEN_INIT: delete sptr" ) ; delete sptr ; }
double genetic ( double (*func)( int n , double *x ) , // Function to be minimized int ngens , // Number of complete generations int popsize , // Number of individuals in population int climb , // Do we hill climb via elitism? double stddev , // Standard deviation for initial population double pcross , // Probability of crossover (.6-.9 typical) double pmutate , // Probability of mutation (.0001 to .001 typical) double favor_best ,// Factor for favoring best over average (2-3 is good) double fitfac , // Factor for converting fval to raw fitness (-20 good) double fquit , // Quit if function reduced to this amount int nvars , // Number of variables in x double *x , // Set to starting estimate when called; returns best double *best, // Work vector nvars long int *choices , // Work vector popsize long double *fvals , // Work vector popsize long double *fitness , // Work vector popsize long double *pool1, // Work vector nvars * popsize long double *pool2 ) // Work vector nvars * popsize long { int istart, individual, best_individual, generation, n_cross ; int first_child, parent1, parent2, improved, crosspt, nchoices ; double fval, bestfval, *oldpop, *newpop, *popptr, *temppop ; /* Generate initial population pool. We also preserve the best point across all generations, as this is what we will ultimately return to the user. Its objective function value is bestfval. */ bestfval = 1.e30 ; // For saving best (across all individuals) best_individual = 0 ; // Safety only for (individual=0 ; individual<popsize ; individual++) { popptr = pool1 + individual * nvars ; // Build population in pool1 shake ( nvars , x , popptr , stddev ) ; // Randomly perturb about init x fval = (*func) ( nvars , popptr ) ; // Evaluate function there fvals[individual] = fval ; // and keep function value of each if (fval < bestfval) { // Keep track of best bestfval = fval ; // as it will be returned to user best_individual = individual ; // This is its index in pool1 } if (fval <= fquit) break ; } /* The initial population has been built in pool1. Copy its best member to 'best' in case it never gets beat (unlikely but possible!). */ popptr = pool1 + best_individual * nvars ; // Point to best memcpy ( best , popptr , nvars * sizeof(double) ) ; // and save it /* This is the main generation loop. There are two areas for population pool storage: pool1 and pool2. At any given time, oldpop will be set to one of them, and newpop to the other. This avoids a lot of copying. */ oldpop = pool1 ; // This is the initial population newpop = pool2 ; // The next generation is created here for (generation=0 ; generation<ngens ; generation++) { if (fval <= fquit) // We may have satisfied this in initial population break ; // So we test at start of generation loop fval_to_fitness ( popsize , favor_best , fitfac , fvals , fitness ) ; fitness_to_choices ( popsize , fitness , choices ) ; nchoices = popsize ; // Will count down as choices array emptied n_cross = pcross * popsize ; // Number crossing over first_child = 1 ; // Generating first of parent's 2 children? improved = 0 ; // Flags if we beat best if (climb) { // If we are to hill climb memcpy ( newpop , best , nvars * sizeof(double) ) ; // start with best fvals[0] = bestfval ; // Record its error istart = 1 ; // and start children past it } else istart = 0 ; /* Generate the children */ for (individual=istart ; individual<popsize ; individual++) { popptr = newpop + individual * nvars ; // Will put this child here if (first_child) // If this is the first of 2 children, pick parents pick_parents ( &nchoices , choices , &parent1 , &parent2 ) ; if (n_cross-- > 0) // Do crossovers first reproduce ( oldpop + parent1 * nvars , oldpop + parent2 * nvars , first_child , nvars , popptr , &crosspt ) ; else if (first_child) // No more crossovers, so just copy parent memcpy( popptr , oldpop + parent1 * nvars , nvars * sizeof(double)); else memcpy( popptr , oldpop + parent2 * nvars , nvars * sizeof(double)); if (pmutate > 0.0) mutate ( popptr , nvars , stddev , pmutate ) ; fval = (*func) ( nvars , popptr ) ; // Evaluate function for this child fvals[individual] = fval ; // and keep function value of each if (fval < bestfval) { // Keep track of best bestfval = fval ; // It will be returned to user best_individual = individual ; // This is its index in newpop improved = 1 ; // Flag so we copy it later } if (fval <= fquit) break ; first_child = ! first_child ; } // For all genes in population /* We finished generating all children. If we improved (one of these children beat the best so far) then copy that child to the best. Swap oldpop and newpop for the next generation. */ if (improved) { popptr = newpop + best_individual * nvars ; // Point to best memcpy ( best , popptr , nvars * sizeof(double) ) ; // and save it } temppop = oldpop ; // Switch old and new pops for next generation oldpop = newpop ; newpop = temppop ; } /* We are all done. Copy the best to x, as that is how we return it. */ memcpy ( x , best , nvars * sizeof(double) ) ; // Return best return bestfval ; }