示例#1
0
// Fuse the SmallEKF velocity estimates - this enables alevel reference to be maintained during constant turns
void SmallEKF::fuseVelocity(bool yawInit)
{
    float R_OBS = 0.25f;
    float innovation[3];
    float varInnov[3];
    Vector3f angErrVec;
    uint8_t stateIndex;
    float K[9];
    // Fuse measurements sequentially
    for (uint8_t obsIndex=0;obsIndex<=2;obsIndex++) {
        stateIndex = 3 + obsIndex;

        // Calculate the velocity measurement innovation using the SmallEKF estimate as the observation
        // if heading isn't aligned, use zero velocity (static assumption)
        if (yawInit) {
            Vector3f measVelNED;
            _main_ekf.getVelNED(measVelNED);
            innovation[obsIndex] = state.velocity[obsIndex] - measVelNED[obsIndex];
        } else {
            innovation[obsIndex] = state.velocity[obsIndex];
        }

        // Zero the attitude error states - they represent the incremental error so must be zero before corrections are applied
        state.angErr.zero();
        // Calculate the innovation variance
        varInnov[obsIndex] = Cov[stateIndex][stateIndex] + R_OBS;
        // Calculate the Kalman gain and correct states, taking advantage of direct state observation
        for (uint8_t rowIndex=0;rowIndex<=8;rowIndex++) {
            K[rowIndex] = Cov[rowIndex][stateIndex]/varInnov[obsIndex];
            states[rowIndex] -= K[rowIndex] * innovation[obsIndex];
        }

        // Store tilt error estimate for external monitoring
        angErrVec = angErrVec + state.angErr;

        // the first 3 states represent the angular misalignment vector. This is
        // is used to correct the estimated quaternion
        // Convert the error rotation vector to its equivalent quaternion
        // truth = estimate + error
        float rotationMag = state.angErr.length();
        if (rotationMag > 1e-6f) {
            Quaternion deltaQuat;
            float temp = sinf(0.5f*rotationMag) / rotationMag;
            deltaQuat[0] = cosf(0.5f*rotationMag);
            deltaQuat[1] = state.angErr.x*temp;
            deltaQuat[2] = state.angErr.y*temp;
            deltaQuat[3] = state.angErr.z*temp;

            // Update the quaternion states by rotating from the previous attitude through the error quaternion
            state.quat *= deltaQuat;

            // re-normalise the quaternion
            state.quat.normalize();
        }

        // Update the covariance
        for (uint8_t rowIndex=0;rowIndex<=8;rowIndex++) {
            for (uint8_t colIndex=0;colIndex<=8;colIndex++) {
                Cov[rowIndex][colIndex] = Cov[rowIndex][colIndex] - K[rowIndex]*Cov[stateIndex][colIndex];
            }
        }

        // force symmetry and constrain diagonals to be non-negative
        fixCovariance();
    }

    // calculate tilt component of angle correction
    TiltCorrection = sqrtf(sq(angErrVec.x) + sq(angErrVec.y));
}
示例#2
0
// Fuse compass measurements from autopilot
void SmallEKF::fuseCompass()
{
    float q0 = state.quat[0];
    float q1 = state.quat[1];
    float q2 = state.quat[2];
    float q3 = state.quat[3];

    float magX = magData.x;
    float magY = magData.y;
    float magZ = magData.z;

    const float R_MAG = 3e-2f;

    // Calculate observation Jacobian
    float t5695 = sq(q0);
    float t5696 = sq(q1);
    float t5697 = sq(q2);
    float t5698 = sq(q3);
    float t5699 = t5695+t5696-t5697-t5698;
    float t5702 = q0*q2*2.0f;
    float t5703 = q1*q3*2.0f;
    float t5704 = t5702+t5703;
    float t5705 = q0*q3*2.0f;
    float t5707 = q1*q2*2.0f;
    float t5706 = t5705-t5707;
    float t5708 = cosTheta*sinPsi;
    float t5709 = sinPhi*sinTheta*cosPsi;
    float t5710 = t5708+t5709;
    float t5711 = t5705+t5707;
    float t5712 = sinTheta*sinPsi;
    float t5730 = cosTheta*sinPhi*cosPsi;
    float t5713 = t5712-t5730;
    float t5714 = q0*q1*2.0f;
    float t5720 = q2*q3*2.0f;
    float t5715 = t5714-t5720;
    float t5716 = t5695-t5696+t5697-t5698;
    float t5717 = sinTheta*cosPsi;
    float t5718 = cosTheta*sinPhi*sinPsi;
    float t5719 = t5717+t5718;
    float t5721 = cosTheta*cosPsi;
    float t5735 = sinPhi*sinTheta*sinPsi;
    float t5722 = t5721-t5735;
    float t5724 = sinPhi*t5706;
    float t5725 = cosPhi*sinTheta*t5699;
    float t5726 = cosPhi*cosTheta*t5704;
    float t5727 = t5724+t5725-t5726;
    float t5728 = magZ*t5727;
    float t5729 = t5699*t5710;
    float t5731 = t5704*t5713;
    float t5732 = cosPhi*cosPsi*t5706;
    float t5733 = t5729+t5731-t5732;
    float t5734 = magY*t5733;
    float t5736 = t5699*t5722;
    float t5737 = t5704*t5719;
    float t5738 = cosPhi*sinPsi*t5706;
    float t5739 = t5736+t5737+t5738;
    float t5740 = magX*t5739;
    float t5741 = -t5728+t5734+t5740;
    float t5742 = 1.0f/t5741;
    float t5743 = sinPhi*t5716;
    float t5744 = cosPhi*cosTheta*t5715;
    float t5745 = cosPhi*sinTheta*t5711;
    float t5746 = -t5743+t5744+t5745;
    float t5747 = magZ*t5746;
    float t5748 = t5710*t5711;
    float t5749 = t5713*t5715;
    float t5750 = cosPhi*cosPsi*t5716;
    float t5751 = t5748-t5749+t5750;
    float t5752 = magY*t5751;
    float t5753 = t5715*t5719;
    float t5754 = t5711*t5722;
    float t5755 = cosPhi*sinPsi*t5716;
    float t5756 = t5753-t5754+t5755;
    float t5757 = magX*t5756;
    float t5758 = t5747-t5752+t5757;
    float t5759 = t5742*t5758;
    float t5723 = tan(t5759);
    float t5760 = sq(t5723);
    float t5761 = t5760+1.0f;
    float t5762 = 1.0f/sq(t5741);
    float H_MAG[3];
    H_MAG[0] = -t5761*(t5742*(magZ*(sinPhi*t5715+cosPhi*cosTheta*t5716)+magY*(t5713*t5716+cosPhi*cosPsi*t5715)+magX*(t5716*t5719-cosPhi*sinPsi*t5715))-t5758*t5762*(magZ*(sinPhi*t5704+cosPhi*cosTheta*t5706)+magY*(t5706*t5713+cosPhi*cosPsi*t5704)+magX*(t5706*t5719-cosPhi*sinPsi*t5704)));
    H_MAG[1] =  t5761*(t5742*(magZ*(cosPhi*cosTheta*t5711-cosPhi*sinTheta*t5715)+magY*(t5711*t5713+t5710*t5715)+magX*(t5711*t5719+t5715*t5722))+t5758*t5762*(magZ*(cosPhi*cosTheta*t5699+cosPhi*sinTheta*t5704)+magY*(t5699*t5713-t5704*t5710)+magX*(t5699*t5719-t5704*t5722)));
    H_MAG[2] =  t5761*(t5742*(-magZ*(sinPhi*t5711+cosPhi*sinTheta*t5716)+magY*(t5710*t5716-cosPhi*cosPsi*t5711)+magX*(t5716*t5722+cosPhi*sinPsi*t5711))-t5758*t5762*(magZ*(sinPhi*t5699-cosPhi*sinTheta*t5706)+magY*(t5706*t5710+cosPhi*t5699*cosPsi)+magX*(t5706*t5722-cosPhi*t5699*sinPsi)));

    // Calculate innovation variance and Kalman gains, taking advantage of the fact that only the first 3 elements in H are non zero
    float PH[3];
    float varInnov = R_MAG;
    for (uint8_t rowIndex=0;rowIndex<=2;rowIndex++) {
        PH[rowIndex] = 0.0f;
        for (uint8_t colIndex=0;colIndex<=2;colIndex++) {
            PH[rowIndex] += Cov[rowIndex][colIndex]*H_MAG[colIndex];
        }
        varInnov += H_MAG[rowIndex]*PH[rowIndex];
    }
    float K_MAG[9];
    float varInnovInv = 1.0f / varInnov;
    for (uint8_t rowIndex=0;rowIndex<=8;rowIndex++) {
        K_MAG[rowIndex] = 0.0f;
        for (uint8_t colIndex=0;colIndex<=2;colIndex++) {
            K_MAG[rowIndex] += Cov[rowIndex][colIndex]*H_MAG[colIndex];
        }
        K_MAG[rowIndex] *= varInnovInv;
    }

    // Calculate the innovation
    float innovation = calcMagHeadingInnov();

    // limit the innovation so that initial corrections are not too large
    if (innovation > 0.5f) {
        innovation = 0.5f;
    } else if (innovation < -0.5f) {
        innovation = -0.5f;
    }

    // correct the state vector
    state.angErr.zero();
    for (uint8_t i=0;i<=8;i++) {
        states[i] -= K_MAG[i] * innovation;
    }

    // the first 3 states represent the angular error vector where truth = estimate + error. This is is used to correct the estimated quaternion
    float rotationMag = state.angErr.length();
    if (rotationMag > 1e-6f) {
        // Convert the error rotation vector to its equivalent quaternion
        Quaternion deltaQuat;
        float temp = sinf(0.5f*rotationMag) / rotationMag;
        deltaQuat[0] = cosf(0.5f*rotationMag);
        deltaQuat[1] = state.angErr.x*temp;
        deltaQuat[2] = state.angErr.y*temp;
        deltaQuat[3] = state.angErr.z*temp;

        // Bring the quaternion state estimate back to 'truth' by adding the error
        state.quat *= deltaQuat;

        // re-normalise the quaternion
        state.quat.normalize();
    }

    // correct the covariance using P = P - K*H*P taking advantage of the fact that only the first 3 elements in H are non zero
    float HP[9];
    for (uint8_t colIndex=0;colIndex<=8;colIndex++) {
        HP[colIndex] = 0.0f;
        for (uint8_t rowIndex=0;rowIndex<=2;rowIndex++) {
            HP[colIndex] += H_MAG[rowIndex]*Cov[rowIndex][colIndex];
        }
    }
    for (uint8_t rowIndex=0;rowIndex<=8;rowIndex++) {
        for (uint8_t colIndex=0;colIndex<=8;colIndex++) {
            Cov[rowIndex][colIndex] -= K_MAG[rowIndex] * HP[colIndex];
        }
    }

    // force symmetry and constrain diagonals to be non-negative
    fixCovariance();
}
示例#3
0
// Fuse the SoloGimbalEKF velocity estimates - this enables alevel reference to be maintained during constant turns
void SoloGimbalEKF::fuseVelocity()
{
    if (!_ahrs.have_inertial_nav()) {
        return;
    }

    float R_OBS = 0.25f;
    float innovation[3];
    float varInnov[3];
    Vector3f angErrVec;
    uint8_t stateIndex;
    float K[9];
    // Fuse measurements sequentially
    for (uint8_t obsIndex=0;obsIndex<=2;obsIndex++) {
        stateIndex = 3 + obsIndex;

        // Calculate the velocity measurement innovation using the SoloGimbalEKF estimate as the observation
        // if heading isn't aligned, use zero velocity (static assumption)
        if (YawAligned) {
            Vector3f measVelNED = Vector3f(0,0,0);
            nav_filter_status main_ekf_status;

            if (_ahrs.get_filter_status(main_ekf_status)) {
                if (main_ekf_status.flags.horiz_vel) {
                    _ahrs.get_velocity_NED(measVelNED);
                }
            }

            innovation[obsIndex] = state.velocity[obsIndex] - measVelNED[obsIndex];
        } else {
            innovation[obsIndex] = state.velocity[obsIndex];
        }

        // Zero the attitude error states - they represent the incremental error so must be zero before corrections are applied
        state.angErr.zero();
        // Calculate the innovation variance
        varInnov[obsIndex] = Cov[stateIndex][stateIndex] + R_OBS;
        // Calculate the Kalman gain and correct states, taking advantage of direct state observation
        for (uint8_t rowIndex=0;rowIndex<=8;rowIndex++) {
            K[rowIndex] = Cov[rowIndex][stateIndex]/varInnov[obsIndex];
            states[rowIndex] -= K[rowIndex] * innovation[obsIndex];
        }

        // Store tilt error estimate for external monitoring
        angErrVec = angErrVec + state.angErr;

        // the first 3 states represent the angular error vector where truth = estimate + error. This is is used to correct the estimated quaternion
        // Bring the quaternion state estimate back to 'truth' by adding the error
        state.quat.rotate(state.angErr);

        // re-normalise the quaternion
        state.quat.normalize();

        // Update the covariance
        for (uint8_t rowIndex=0;rowIndex<=8;rowIndex++) {
            for (uint8_t colIndex=0;colIndex<=8;colIndex++) {
                Cov[rowIndex][colIndex] = Cov[rowIndex][colIndex] - K[rowIndex]*Cov[stateIndex][colIndex];
            }
        }

        // force symmetry and constrain diagonals to be non-negative
        fixCovariance();
    }

    // calculate tilt component of angle correction
    TiltCorrection = sqrtf(sq(angErrVec.x) + sq(angErrVec.y));
}