示例#1
0
char
erfseries(
  floatnum x,
  int digits)
{
  floatstruct xsqr, smd, pwr;
  int i, workprec, expx;

  expx = float_getexponent(x);
  workprec = digits + 2*expx + 2;
  if (workprec <= 0 || float_iszero(x))
    /* for tiny arguments approx. == x */
    return 1;
  float_create(&xsqr);
  float_create(&smd);
  float_create(&pwr);
  float_mul(&xsqr, x, x, workprec + 1);
  workprec = digits + float_getexponent(&xsqr) + 1;
  float_copy(&pwr, x, workprec + 1);
  i = 1;
  while (workprec > 0)
  {
    float_mul(&pwr, &pwr, &xsqr, workprec + 1);
    float_divi(&pwr, &pwr, -i, workprec + 1);
    float_divi(&smd, &pwr, 2 * i++ + 1, workprec);
    float_add(x, x, &smd, digits + 3);
    workprec = digits + float_getexponent(&smd) + expx + 2;
  }
  float_free(&pwr);
  float_free(&smd);
  float_free(&xsqr);
  return 1;
}
示例#2
0
char
_cosminus1ltPiDiv4(
  floatnum x,
  int digits)
{
  floatstruct tmp;
  int reductions;

  if (float_iszero(x))
    return 1;
  float_abs(x);
  reductions = 0;
  while(float_getexponent(x) >= -2)
  {
    float_mul(x, x, &c1Div2, digits+1);
    ++reductions;
  }
  if (!cosminus1near0(x, digits) && reductions == 0)
    return !float_iszero(x);
  float_create(&tmp);
  for(; reductions-- > 0;)
  {
    float_mul(&tmp, x, x, digits);
    float_add(x, x, x, digits+2);
    float_add(x, x, &tmp, digits+2);
    float_add(x, x, x, digits+2);
  }
  float_free(&tmp);
  return 1;
}
示例#3
0
char
binetasymptotic(floatnum x,
                int digits)
{
  floatstruct recsqr;
  floatstruct sum;
  floatstruct smd;
  floatstruct pwr;
  int i, workprec;

  if (float_getexponent(x) >= digits)
  {
    /* if x is very big, ln(gamma(x)) is
    dominated by x*ln x and the Binet function
    does not contribute anything substantial to
    the final result */
    float_setzero(x);
    return 1;
  }
  float_create(&recsqr);
  float_create(&sum);
  float_create(&smd);
  float_create(&pwr);

  float_copy(&pwr, &c1, EXACT);
  float_setzero(&sum);
  float_div(&smd, &c1, &c12, digits+1);
  workprec = digits - 2*float_getexponent(x)+3;
  i = 1;
  if (workprec > 0)
  {
    float_mul(&recsqr, x, x, workprec);
    float_reciprocal(&recsqr, workprec);
    while (float_getexponent(&smd) > -digits-1
           && ++i <= MAXBERNOULLIIDX)
    {
      workprec = digits + float_getexponent(&smd) + 3;
      float_add(&sum, &sum, &smd, digits+1);
      float_mul(&pwr, &recsqr, &pwr, workprec);
      float_muli(&smd, &cBernoulliDen[i-1], 2*i*(2*i-1), workprec);
      float_div(&smd, &pwr, &smd, workprec);
      float_mul(&smd, &smd, &cBernoulliNum[i-1], workprec);
    }
  }
  else
    /* sum reduces to the first summand*/
    float_move(&sum, &smd);
  if (i > MAXBERNOULLIIDX)
      /* x was not big enough for the asymptotic
    series to converge sufficiently */
    float_setnan(x);
  else
    float_div(x, &sum, x, digits);
  float_free(&pwr);
  float_free(&smd);
  float_free(&sum);
  float_free(&recsqr);
  return i <= MAXBERNOULLIIDX;
}
示例#4
0
/* evaluates ln(Gamma(x)) for all those x big
   enough to let the asymptotic series converge directly.
   Returns 0, if the result overflows
   relative error for a 100 gigit calculation < 5e-100 */
static char
_lngammabigx(
  floatnum x,
  int digits)
{
  floatstruct tmp1, tmp2;
  char result;

  result = 0;
  float_create(&tmp1);
  float_create(&tmp2);
  /* compute (ln x-1) * (x-0.5) - 0.5 + ln(sqrt(2*pi)) */
  float_copy(&tmp2, x, digits+1);
  _ln(&tmp2, digits+1);
  float_sub(&tmp2, &tmp2, &c1, digits+2);
  float_sub(&tmp1, x, &c1Div2, digits+2);
  if (float_mul(&tmp1, &tmp1, &tmp2, digits+2))
  {
    /* no overflow */
    lngammaasymptotic(x, digits);
    float_add(x, &tmp1, x, digits+3);
    float_add(x, x, &cLnSqrt2PiMinusHalf, digits+3);
    result = 1;
  }
  float_free(&tmp2);
  float_free(&tmp1);
  return result;
}
示例#5
0
char
_gamma0_5(
  floatnum x,
  int digits)
{
  floatstruct tmp;
  int ofs;

  if (float_getexponent(x) >= 2)
    return _gamma(x, digits);
  float_create(&tmp);
  float_sub(&tmp, x, &c1Div2, EXACT);
  ofs = float_asinteger(&tmp);
  float_free(&tmp);
  if (ofs >= 0)
  {
    float_copy(x, &c1Div2, EXACT);
    if(!_pochhammer_su(x, ofs, digits))
      return 0;
    return float_mul(x, x, &cSqrtPi, digits);
  }
  if(!_pochhammer_su(x, -ofs, digits))
    return 0;
  return float_div(x, &cSqrtPi, x, digits);
}
示例#6
0
/* evaluates arctan x for |x| <= 1
   relative error for a 100 digit result is 6e-100 */
void
_arctanlt1(
  floatnum x,
  int digits)
{
  floatstruct tmp;
  int reductions;

  if (float_iszero(x))
    return;
  float_create(&tmp);
  reductions = 0;
  while(float_getexponent(x) >= -2)
  {
    float_mul(&tmp, x, x, digits);
    float_add(&tmp, &tmp, &c1, digits+2);
    float_sqrt(&tmp, digits);
    float_add(&tmp, &tmp, &c1, digits+1);
    float_div(x, x, &tmp, digits);
    ++reductions;
  }
  arctannear0(x, digits);
  for (;reductions-- > 0;)
    float_add(x, x, x, digits+1);
  float_free(&tmp);
}
示例#7
0
static char
_lngamma_prim(
  floatnum x,
  floatnum revfactor,
  int* infinity,
  int digits)
{
  floatstruct tmp;
  char result;
  char odd;

  *infinity = 0;
  if (float_getsign(x) > 0)
    return _lngamma_prim_xgt0(x, revfactor, digits);
  float_copy(revfactor, x, digits + 2);
  float_sub(x, &c1, x, digits+2);
  float_create(&tmp);
  result = _lngamma_prim_xgt0(x, &tmp, digits);
  if (result)
  {
    float_neg(x);
    odd = float_isodd(revfactor);
    _sinpix(revfactor, digits);
    if (float_iszero(revfactor))
    {
      *infinity = 1;
      float_setinteger(revfactor, odd? -1 : 1);
    }
    else
      float_mul(&tmp, &tmp, &cPi, digits+2);
    float_div(revfactor, revfactor, &tmp, digits+2);
  }
  float_free(&tmp);
  return result;
}
示例#8
0
/* series expansion of cos/cosh - 1 used for small x,
   |x| <= 0.01.
   The function returns 0, if an underflow occurs.
   The relative error seems to be less than 5e-100 for
   a 100-digit calculation with |x| < 0.01 */
char
cosminus1series(
  floatnum x,
  int digits,
  char alternating)
{
  floatstruct sum, smd;
  int expsqrx, pwrsz, addsz, i;

  expsqrx = 2 * float_getexponent(x);
  float_setexponent(x, 0);
  float_mul(x, x, x, digits+1);
  float_mul(x, x, &c1Div2, digits+1);
  float_setsign(x, alternating? -1 : 1);
  expsqrx += float_getexponent(x);
  if (float_iszero(x) || expsqrx < EXPMIN)
  {
    /* underflow */
    float_setzero(x);
    return expsqrx == 0;
  }
  float_setexponent(x, expsqrx);
  pwrsz = digits + expsqrx + 2;
  if (pwrsz <= 0)
    /* for very small x, cos/cosh(x) - 1 = (-/+)0.5*x*x */
    return 1;
  addsz = pwrsz;
  float_create(&sum);
  float_create(&smd);
  float_copy(&smd, x, pwrsz);
  float_setzero(&sum);
  i = 2;
  while (pwrsz > 0)
  {
    float_mul(&smd, &smd, x, pwrsz+1);
    float_divi(&smd, &smd, i*(2*i-1), pwrsz);
    float_add(&sum, &sum, &smd, addsz);
    ++i;
    pwrsz = digits + float_getexponent(&smd);
  }
  float_add(x, x, &sum, digits+1);
  float_free(&sum);
  float_free(&smd);
  return 1;
}
示例#9
0
Error
pack2floatnum(
  floatnum x,
  p_number_desc n)
{
  floatstruct tmp;
  int digits;
  int saveerr;
  int saverange;
  Error result;
  signed char base;

  if ((result = _pack2int(x, &n->intpart)) != Success)
    return result;
  if (float_isnan(x))
    return Success;
  saveerr = float_geterror();
  saverange = float_setrange(MAXEXP);
  float_create(&tmp);
  float_move(&tmp, x);
  float_setzero(x);
  digits = DECPRECISION - float_getexponent(&tmp);
  if (digits <= 0
      || (result = _pack2frac(x, &n->fracpart, digits)) == Success)
    float_add(x, x, &tmp, DECPRECISION);
  if (result != Success)
    return result;
  if ((!float_getlength(x)) == 0) /* no zero, no NaN? */
  {
    base = n->prefix.base;
    float_setinteger(&tmp, base);
    if (n->exp >= 0)
    {
      _raiseposi_(&tmp, n->exp, DECPRECISION + 2);
      float_mul(x, x, &tmp, DECPRECISION + 2);
    }
    else
    {
      _raiseposi_(&tmp, -n->exp, DECPRECISION + 2);
      float_div(x, x, &tmp, DECPRECISION + 2);
    }
  }
  float_free(&tmp);
  float_setsign(x, n->prefix.sign == IO_SIGN_COMPLEMENT? -1 : n->prefix.sign);
  float_geterror();
  float_seterror(saveerr);
  float_setrange(saverange);
  if (!float_isvalidexp(float_getexponent(x)))
    float_setnan(x);
  return float_isnan(x)? IOExpOverflow : Success;
}
示例#10
0
void
_sinpix(
  floatnum x,
  int digits)
{
  char odd;

  odd = float_isodd(x);
  float_frac(x);
  float_mul(x, &cPi, x, digits+1);
  _sin(x, digits);
  if (odd)
    float_neg(x);
}
示例#11
0
char
erfcasymptotic(
  floatnum x,
  int digits)
{
  floatstruct smd, fct;
  int i, workprec, newprec;

  float_create(&smd);
  float_create(&fct);
  workprec = digits - 2 * float_getexponent(x) + 1;
  if (workprec <= 0)
  {
    float_copy(x, &c1, EXACT);
    return 1;
  }
  float_mul(&fct, x, x, digits + 1);
  float_div(&fct, &c1Div2, &fct, digits);
  float_neg(&fct);
  float_copy(&smd, &c1, EXACT);
  float_setzero(x);
  newprec = digits;
  workprec = newprec;
  i = 1;
  while (newprec > 0 && newprec <= workprec)
  {
    workprec = newprec;
    float_add(x, x, &smd, digits + 4);
    float_muli(&smd, &smd, i, workprec + 1);
    float_mul(&smd, &smd, &fct, workprec + 2);
    newprec = digits + float_getexponent(&smd) + 1;
    i += 2;
  }
  float_free(&fct);
  float_free(&smd);
  return newprec <= workprec;
}
示例#12
0
文件: core.c 项目: rbryan/rplisp
void _mul(){
	struct atom *a, *b;

	a = u_pop_atom();
	b = u_pop_atom();

	if(a->type != b->type)
		error("Addition: Numbers need to be of the same type.");
	
	if(a->type == FLOAT)
		float_mul(a,b);
	else
		int_mul(a,b);

}
示例#13
0
/* evaluates arccos(1+x) for -0.5 <= x <= 0
   arccos(1+x) = arctan(sqrt(-x*(2+x))/(1+x))
   the relative error of a 100 digit result is < 5e-100 */
void
_arccosxplus1lt0_5(
  floatnum x,
  int digits)
{
  floatstruct tmp;

  float_create(&tmp);
  float_add(&tmp, x, &c2, digits+1);
  float_mul(x, x, &tmp, digits+1);
  float_setsign(x, 1);
  float_sqrt(x, digits);
  float_sub(&tmp, &tmp, &c1, digits);
  float_div(x, x, &tmp, digits+1);
  _arctan(x, digits);
  float_free(&tmp);
}
示例#14
0
/* evaluates arcsin x for -0.5 <= x <= 0.5
   arcsin x = arctan(x/sqrt(1-x*x))
   the relative error of a 100 digit result is < 5e-100 */
void
_arcsinlt0_5(
  floatnum x,
  int digits)
{
  floatstruct tmp;

  if (2*float_getexponent(x) < -digits)
    return;
  float_create(&tmp);
  float_mul(&tmp, x, x, digits);
  float_sub(&tmp, &c1, &tmp, digits);
  float_sqrt(&tmp, digits);
  float_div(x, x, &tmp, digits+1);
  _arctanlt1(x, digits);
  float_free(&tmp);
}
示例#15
0
文件: core.c 项目: rbryan/rplisp
void _div(){
	struct atom *a, *b;

	a = u_pop_atom();
	b = u_pop_atom();

	if(a->type != b->type)
		error("Subtraction: Numbers need to be of the same type.");
	
	if(a->type == FLOAT){
		a->data.float_t /= 1;
		float_mul(a,b);
	}else{
		a->data.int_t /= 1;
		int_mul(a,b);
	}

}
示例#16
0
static int
_extractexp(
  floatnum x,
  int scale,
  signed char base)
{
  floatstruct pwr;
  floatstruct fbase;
  int decprec;
  int pwrexp;
  int exp;
  int logbase;

  (void)scale;

  logbase = lgbase(base);
  decprec = DECPRECISION + 3;
  exp = (int)(aprxlog10fn(x) * 3.321928095f);
  if (float_getexponent(x) < 0)
    exp -= 3;
  exp /= logbase;
  if (exp != 0)
  {
    float_create(&fbase);
    float_setinteger(&fbase, base);
    float_create(&pwr);
    float_copy(&pwr, &fbase, EXACT);
    _raiseposi(&pwr, &pwrexp, exp < 0? -exp : exp, decprec);
    if (float_getexponent(x) < 0)
    {
      float_addexp(x, pwrexp);
      float_mul(x, x, &pwr, decprec);
    }
    else
    {
      float_addexp(x, -pwrexp);
      float_div(x, x, &pwr, decprec);
    }
    float_free(&pwr);
    float_free(&fbase);
  }
  exp += _checkbounds(x, decprec, base);
  return exp;
}
示例#17
0
void
_longint2floatnum(
  floatnum f,
  t_longint* longint)
{
  floatstruct tmp;
  int idx;

  float_setzero(f);
  if(longint->length == 0)
    return;
  float_create(&tmp);
  idx = longint->length - 1;
  for (; idx >= 0; --idx)
  {
    _setunsigned(&tmp, longint->value[idx]);
    float_mul(f, f, &cUnsignedBound, EXACT);
    float_add(f, f, &tmp, EXACT);
  }
  float_free(&tmp);
}
示例#18
0
/* evaluate sin x for |x| <= pi/4,
   using |sin x| = sqrt((1-cos x)*(2 + cos x-1)) 
   relative error for 100 digit results is < 6e-100*/
void
_sinltPiDiv4(
  floatnum x,
  int digits)
{
  floatstruct tmp;
  signed char sgn;

  if (2*float_getexponent(x)+2 < -digits)
    /* for small x: sin x approx.== x */
    return;
  float_create(&tmp);
  sgn = float_getsign(x);
  _cosminus1ltPiDiv4(x, digits);
  float_add(&tmp, x, &c2, digits+1);
  float_mul(x, x, &tmp, digits+1);
  float_abs(x);
  float_sqrt(x, digits);
  float_setsign(x, sgn);
  float_free(&tmp);
}
示例#19
0
static void
_scale2int(
  floatnum x,
  int scale,
  signed char base)
{
  floatstruct pwr;
  int pwrexp;

  (void)scale;

  if (scale != 0)
  {
    float_create(&pwr);
    float_setinteger(&pwr, base);
    _raiseposi(&pwr, &pwrexp, scale, DECPRECISION+4);
    float_mul(x, x, &pwr, DECPRECISION+4);
    float_addexp(x, pwrexp);
    float_free(&pwr);
  }
  float_roundtoint(x, TONEAREST);
}
示例#20
0
static char
_pochhammer_g(
  floatnum x,
  cfloatnum n,
  int digits)
{
  /* this generalizes the rising Pochhammer symbol using the
     formula pochhammer(x,n) = Gamma(x+1)/Gamma(x-n+1) */
  floatstruct tmp, factor1, factor2;
  int inf1, inf2;
  char result;

  float_create(&tmp);
  float_create(&factor1);
  float_create(&factor2);
  inf2 = 0;
  float_add(&tmp, x, n, digits+1);
  result = _lngamma_prim(x, &factor1, &inf1, digits)
           && _lngamma_prim(&tmp, &factor2, &inf2, digits)
           && (inf2 -= inf1) <= 0;
  if (inf2 > 0)
    float_seterror(ZeroDivide);
  if (result && inf2 < 0)
    float_setzero(x);
  if (result && inf2 == 0)
    result = float_div(&factor1, &factor1, &factor2, digits+1)
             && float_sub(x, &tmp, x, digits+1)
             && _exp(x, digits)
             && float_mul(x, x, &factor1, digits+1);
  float_free(&tmp);
  float_free(&factor2);
  float_free(&factor1);
  if (!result)
    float_setnan(x);
  return result;
}
示例#21
0
char
erfcsum(
  floatnum x, /* should be the square of the parameter to erfc */
  int digits)
{
  int i, workprec;
  floatstruct sum, smd;
  floatnum Ei;

  if (digits > erfcdigits)
  {
    /* cannot re-use last evaluation's intermediate results */
    for (i = MAXERFCIDX; --i >= 0;)
      /* clear all exp(-k*k*alpha*alpha) to indicate their absence */
      float_free(&erfccoeff[i]);
    /* current precision */
    erfcdigits = digits;
    /* create new alpha appropriate for the desired precision
       This alpha need not be high precision, any alpha near the
       one evaluated here would do */
    float_muli(&erfcalpha, &cLn10, digits + 4, 3);
    float_sqrt(&erfcalpha, 3);
    float_div(&erfcalpha, &cPi, &erfcalpha, 3);
    float_mul(&erfcalphasqr, &erfcalpha, &erfcalpha, EXACT);
    /* the exp(-k*k*alpha*alpha) are later evaluated iteratively.
       Initiate the iteration here */
    float_copy(&erfct2, &erfcalphasqr, EXACT);
    float_neg(&erfct2);
    _exp(&erfct2, digits + 3); /* exp(-alpha*alpha) */
    float_copy(erfccoeff, &erfct2, EXACT); /* start value */
    float_mul(&erfct3, &erfct2, &erfct2, digits + 3); /* exp(-2*alpha*alpha) */
  }
  float_create(&sum);
  float_create(&smd);
  float_setzero(&sum);
  for (i = 0; ++i < MAXERFCIDX;)
  {
    Ei = &erfccoeff[i-1];
    if (float_isnan(Ei))
    {
      /* if exp(-i*i*alpha*alpha) is not available, evaluate it from
         the coefficient of the last summand */
      float_mul(&erfct2, &erfct2, &erfct3, workprec + 3);
      float_mul(Ei, &erfct2, &erfccoeff[i-2], workprec + 3);
    }
    /* Ei finally decays rapidly. save some time by adjusting the
       working precision */
    workprec = digits + float_getexponent(Ei) + 1;
    if (workprec <= 0)
      break;
    /* evaluate the summand exp(-i*i*alpha*alpha)/(i*i*alpha*alpha+x) */
    float_muli(&smd, &erfcalphasqr, i*i, workprec);
    float_add(&smd, x, &smd, workprec + 2);
    float_div(&smd, Ei, &smd, workprec + 1);
    /* add summand to the series */
    float_add(&sum, &sum, &smd, digits + 3);
  }
  float_move(x, &sum);
  float_free(&smd);
  return 1;
}
示例#22
0
/* the Taylor series of arctan/arctanh x at x == 0. For small
   |x| < 0.01 this series converges very fast, yielding 4 or
   more digits of the result with every summand. The working
   precision is adjusted, so that the relative error for
   100-digit arguments is around 5.0e-100. This means, the error
   is 1 in the 100-th place (or less) */
void
arctanseries(
  floatnum x,
  int digits,
  char alternating)
{
  int expx;
  int expsqrx;
  int pwrsz;
  int addsz;
  int i;
  floatstruct xsqr;
  floatstruct pwr;
  floatstruct smd;
  floatstruct sum;

  /* upper limit of log(x) and log(result) */
  expx = float_getexponent(x)+1;

  /* the summands of the series from the second on are
     bounded by x^(2*i-1)/3. So the summation yields a
     result bounded by (x^3/(1-x*x))/3.
     For x < sqrt(1/3) approx.= 0.5, this is less than 0.5*x^3.
     We need to sum up only, if the first <digits> places
     of the result (roughly x) are touched. Ignoring the effect of
     a possile carry, this is only the case, if
     x*x >= 2*10^(-digits) > 10^(-digits)
     Example: for x = 9e-51, a 100-digits result covers
     the decimal places from 1e-51 to 1e-150. x^3/3
     is roughly 3e-151, and so is the sum of the series.
     So we can ignore the sum, but we couldn't for x = 9e-50 */
  if (float_iszero(x) || 2*expx < -digits)
    /* for very tiny arguments arctan/arctanh x is approx.== x */
    return;
  float_create(&xsqr);
  float_create(&pwr);
  float_create(&smd);
  float_create(&sum);

  /* we adapt the working precision to the decreasing
     summands, saving time when multiplying. Unfortunately,
     there is no error bound given for the operations of
     bc_num. Tests show, that the last digit in an incomplete
     multiplication is usually not correct up to 5 ULP's. */
  pwrsz = digits + 2*expx + 1;
  /* the precision of the addition must not decrease, of course */
  addsz = pwrsz;
  i = 3;
  float_mul(&xsqr, x, x, pwrsz);
  float_setsign(&xsqr, alternating? -1 : 1);
  expsqrx = float_getexponent(&xsqr);
  float_copy(&pwr, x, pwrsz);
  float_setzero(&sum);

  for(; pwrsz > 0; )
  {
    /* x^i */
    float_mul(&pwr, &pwr, &xsqr, pwrsz+1);
    /* x^i/i */
    float_divi(&smd, &pwr, i, pwrsz);
    /* The addition virtually does not introduce errors */
    float_add(&sum, &sum, &smd, addsz);
    /* reduce the working precision according to the decreasing powers */
    pwrsz = digits - expx + float_getexponent(&smd) + expsqrx + 3;
    i += 2;
  }
  /* add the first summand */
  float_add(x, x, &sum, digits+1);

  float_free(&xsqr);
  float_free(&pwr);
  float_free(&smd);
  float_free(&sum);
}
示例#23
0
文件: main.c 项目: InSoonPark/asf
/**
 * \brief Fractal Algorithm without FPU optimization.
 */
static int draw_mandel_without_fpu(void)
{
  t_cpu_time timer;
  while (i_wofpu<HEIGHT/2+1)
  {
    cpu_set_timeout( cpu_us_2_cy(DELAY_US,pcl_freq_param.cpu_f), &timer );
    while(j_wofpu<WIDTH)
    {
      z_wofpu = 0;
      zi_wofpu = 0;
      inset_wofpu = 1;
      while (k_wofpu<iter_wofpu)
      {
        /* z^2 = (a+bi)(a+bi) = a^2 + 2abi - b^2 */
		newz_wofpu = float_add(
								float_sub(
										float_mul(z_wofpu,z_wofpu),
										float_mul(zi_wofpu,zi_wofpu)),
							    x_wofpu
					);
		newzi_wofpu = float_add(
								2*float_mul(
											z_wofpu,
											zi_wofpu),
								y_wofpu
					);
        z_wofpu = newz_wofpu;
        zi_wofpu = newzi_wofpu;
		if(float_add(
						float_mul(z_wofpu,z_wofpu),
						float_mul(zi_wofpu,zi_wofpu)
			) > 4)
		{
		  inset_wofpu = 0;
		  colour_wofpu = k_wofpu;
		  k_wofpu = iter_wofpu;
		}
        k_wofpu++;
      };
      k_wofpu = 0;
      // Draw Mandelbrot set
      if (inset_wofpu)
      {
       et024006_DrawPixel(j_wofpu+WIDTH,i_wofpu+OFFSET_DISPLAY,BLACK);
       et024006_DrawPixel(j_wofpu+WIDTH,HEIGHT-i_wofpu+OFFSET_DISPLAY,BLACK);
      }
      else
      {
        et024006_DrawPixel(j_wofpu+WIDTH,
			i_wofpu+OFFSET_DISPLAY,
			BLUE_LEV((colour_wofpu*255) / iter_wofpu )+
			GREEN_LEV((colour_wofpu*127) / iter_wofpu )+
			RED_LEV((colour_wofpu*127) / iter_wofpu ));
        et024006_DrawPixel(j_wofpu+WIDTH,
			HEIGHT-i_wofpu+OFFSET_DISPLAY,
			BLUE_LEV((colour_wofpu*255) / iter_wofpu )+
			GREEN_LEV((colour_wofpu*127) / iter_wofpu )+
			RED_LEV((colour_wofpu*127) / iter_wofpu ));
      }
      x_wofpu += xstep_wofpu;
      j_wofpu++;
    };
    j_wofpu = 0;
    y_wofpu += ystep_wofpu;
    x_wofpu = xstart_wofpu;
    i_wofpu++;
    if( cpu_is_timeout(&timer) )
    {
      return 0;
    }
  };
  return 1;
}
示例#24
0
void
floatmath_init()
{
  int i, save;
  floatnum_init();

  save = float_setprecision(MAXDIGITS);
  float_create(&c1);
  float_setinteger(&c1, 1);
  float_create(&c2);
  float_setinteger(&c2, 2);
  float_create(&c3);
  float_setinteger(&c3, 3);
  float_create(&c12);
  float_setinteger(&c12, 12);
  float_create(&c16);
  float_setinteger(&c16, 16);
  float_create(&cMinus1);
  float_setinteger(&cMinus1, -1);
  float_create(&cMinus20);
  float_setinteger(&cMinus20, -20);
  float_create(&c1Div2);
  float_setscientific(&c1Div2, ".5", NULLTERMINATED);
  float_create(&cExp);
  float_setscientific(&cExp, sExp, NULLTERMINATED);
  float_create(&cLn2);
  float_setscientific(&cLn2, sLn2, NULLTERMINATED);
  float_create(&cLn3);
  float_setscientific(&cLn3, sLn3, NULLTERMINATED);
  float_create(&cLn7);
  float_setscientific(&cLn7, sLn7, NULLTERMINATED);
  float_create(&cLn10);
  float_setscientific(&cLn10, sLn10, NULLTERMINATED);
  float_create(&cPhi);
  float_setscientific(&cPhi, sPhi, NULLTERMINATED);
  float_create(&cPi);
  float_setscientific(&cPi, sPi, NULLTERMINATED);
  float_create(&cPiDiv2);
  float_setscientific(&cPiDiv2, sPiDiv2, NULLTERMINATED);
  float_create(&cPiDiv4);
  float_setscientific(&cPiDiv4, sPiDiv4, NULLTERMINATED);
  float_create(&c2Pi);
  float_setscientific(&c2Pi, s2Pi, NULLTERMINATED);
  float_create(&c1DivPi);
  float_setscientific(&c1DivPi, s1DivPi, NULLTERMINATED);
  float_create(&cSqrtPi);
  float_setscientific(&cSqrtPi, sSqrtPi, NULLTERMINATED);
  float_create(&cLnSqrt2PiMinusHalf);
  float_setscientific(&cLnSqrt2PiMinusHalf, sLnSqrt2PiMinusHalf,
                      NULLTERMINATED);
  float_create(&c1DivSqrtPi);
  float_setscientific(&c1DivSqrtPi, s1DivSqrtPi, NULLTERMINATED);
  float_create(&c2DivSqrtPi);
  float_setscientific(&c2DivSqrtPi, s2DivSqrtPi, NULLTERMINATED);
  float_create(&cMinus0_4);
  float_setscientific(&cMinus0_4, "-.4", NULLTERMINATED);
  for (i = -1; ++i < MAXBERNOULLIIDX;)
  {
    float_create(&cBernoulliNum[i]);
    float_create(&cBernoulliDen[i]);
    float_setscientific(&cBernoulliNum[i], sBernoulli[2*i], NULLTERMINATED);
    float_setscientific(&cBernoulliDen[i], sBernoulli[2*i+1], NULLTERMINATED);
  }
  float_create(&cUnsignedBound);
  float_copy(&cUnsignedBound, &c1, EXACT);
  for (i = -1; ++i < 2*(int)sizeof(unsigned);)
    float_mul(&cUnsignedBound, &c16, &cUnsignedBound, EXACT);
  for (i = -1; ++i < MAXERFCIDX;)
    float_create(&erfccoeff[i]);
  float_create(&erfcalpha);
  float_create(&erfcalphasqr);
  float_create(&erfct2);
  float_create(&erfct3);
  float_setprecision(save);
}