示例#1
0
/* compute the mean, the covariance matrix, and the eigenvectors.
   They are stored in the structure itself  */
void pca_online_complete (struct pca_online_s * pca)
{
  int d = pca->d;
  int n = pca->n;

  fvec_div_by (pca->mu, d, n);
  fvec_div_by (pca->cov, d * d, n);

  float * mumut = fvec_new (d*d);
  fmat_mul_tr (pca->mu, pca->mu, d, d, 1, mumut);
  fvec_sub (pca->cov, mumut, d*d);
  free (mumut);

  assert(fvec_all_finite(pca->cov,d*d));
  pca->eigvec = fmat_new_pca_from_covariance (d, pca->cov, pca->eigval);
}
示例#2
0
文件: matrix.c 项目: pombreda/yael
float *fmat_center_columns(int d,int n,float *v) 
{
  assert(n>0);

  float *accu=fvec_new_cpy(v,d);
  long i;

  for(i=1;i<n;i++) 
    fvec_add(accu,v+i*d,d);

  fvec_div_by(accu,d,n);
  
  for(i=0;i<n;i++) 
    fvec_sub(v+i*d,accu,d);

  return accu;  
}
示例#3
0
文件: matrix.c 项目: pombreda/yael
/* compute the mean and covariance matrix */
void pca_online_cov (struct pca_online_s * pca)
{
  int d = pca->d;
  int n = pca->n;

  fvec_div_by (pca->mu, d, n);
  fvec_div_by (pca->cov, d * (long)d, n);

  float * mumut = fvec_new (d*(long)d);
  fmat_mul_tr (pca->mu, pca->mu, d, d, 1, mumut);
  fvec_sub (pca->cov, mumut, d*(long)d);
  free (mumut);
  
  fvec_mul_by (pca->cov, d * (long)d, n / (double) (n-1));
  assert(fvec_all_finite(pca->cov,d*(long)d));
  pca->n = -pca->n;
}
示例#4
0
/*
 * A stres test for the addition of feature vectors
 */
int test_stress_add()
{
    int i, j, err = 0;
    fvec_t *fx, *fy, *fz;
    char buf[STR_LENGTH + 1];

    test_printf("Stress test for addition of feature vectors");

    /* Create empty vector */
    fz = fvec_extract("aa0bb0cc", 8, "zero");
    for (i = 0; i < NUM_VECTORS; i++) {

        /* Create random key and string */
        for (j = 0; j < STR_LENGTH; j++)
            buf[j] = rand() % 10 + '0';
        buf[j] = 0;

        /* Extract features */
        fx = fvec_extract(buf, strlen(buf), "test");

        /* Add fx to fz */
        fy = fvec_add(fz, fx);
        fvec_destroy(fz);

        err += fabs(fvec_norm2(fy) - 1.4142135623) > 1e-7;

        /* Substract fx from fz */
        fz = fvec_sub(fy, fx);
        fvec_sparsify(fz);

        /* Clean up */
        fvec_destroy(fy);
        fvec_destroy(fx);
    }

    fvec_destroy(fz);
    test_return(err, i);
    return err;
}
示例#5
0
文件: matrix.c 项目: pombreda/yael
void fmat_subtract_from_columns(int d,int n,float *v,const float *avg) {
  long i;
  for(i=0;i<n;i++) 
    fvec_sub(v+i*d,avg,d);
}
示例#6
0
文件: gmm.c 项目: czxxjtu/videosearch
/* estimate the GMM parameters */
static void gmm_compute_params (int n, const float * v, const float * p,
                                gmm_t * g,
                                int flags,
                                int n_thread)
{
    long i, j;

    long d=g->d, k=g->k;
    float * vtmp = fvec_new (d);
    float * mu_old = fvec_new_cpy (g->mu, k * d);
    float * w_old = fvec_new_cpy (g->w, k);

    fvec_0 (g->w, k);
    fvec_0 (g->mu, k * d);
    fvec_0 (g->sigma, k * d);

    if(0) {
        /* slow and simple */
        for (j = 0 ; j < k ; j++) {
            double dtmp = 0;
            for (i = 0 ; i < n ; i++) {
                /* contribution to the gaussian weight */
                dtmp += p[i * k + j];
                /* contribution to mu */

                fvec_cpy (vtmp, v + i * d, d);
                fvec_mul_by (vtmp, d, p[i * k + j]);
                fvec_add (g->mu + j * d, vtmp, d);

                /* contribution to the variance */
                fvec_cpy (vtmp, v + i * d, d);
                fvec_sub (vtmp, mu_old + j * d, d);
                fvec_sqr (vtmp, d);
                fvec_mul_by (vtmp, d, p[i * k + j]);
                fvec_add (g->sigma + j * d, vtmp, d);

            }
            g->w[j] = dtmp;
        }

    } else {
        /* fast and complicated */

        if(n_thread<=1)
            compute_sum_dcov(n,k,d,v,mu_old,p,g->mu,g->sigma,g->w);
        else
            compute_sum_dcov_thread(n,k,d,v,mu_old,p,g->mu,g->sigma,g->w,n_thread);
    }

    if(flags & GMM_FLAGS_1SIGMA) {
        for (j = 0 ; j < k ; j++) {
            float *sigma_j=g->sigma+j*d;
            double var=fvec_sum(sigma_j,d)/d;
            fvec_set(sigma_j,d,var);
        }
    }

    long nz=0;
    for(i=0; i<k*d; i++)
        if(g->sigma[i]<min_sigma) {
            g->sigma[i]=min_sigma;
            nz++;
        }

    if(nz) printf("WARN %ld sigma diagonals are too small (set to %g)\n",nz,min_sigma);

    for (j = 0 ; j < k ; j++) {
        fvec_div_by (g->mu + j * d, d, g->w[j]);
        fvec_div_by (g->sigma + j * d, d, g->w[j]);
    }

    assert(finite(fvec_sum(g->mu, k*d)));

    fvec_normalize (g->w, k, 1);

    printf ("w = ");
    fvec_print (g->w, k);
    double imfac = k * fvec_sum_sqr (g->w, k);
    printf (" imfac = %.3f\n", imfac);

    free (vtmp);
    free (w_old);
    free (mu_old);
}
示例#7
0
文件: vlad.c 项目: atroudi/V3V_2
void vlad_compute(int k, int d, const float *centroids, int n, const float *v,int flags, float *desc) 
{

	int i,j,l,n_quantile,i0,i1,ai,a,ma,ni;
	int *perm ;
	float un , diff;
	float *tab,*u,*avg,*sum,*mom2,*dists;
	int *hist,*assign;


	if(flags<11 || flags>=13) 
	{
		assign=ivec_new(n);

		nn(n,k,d,centroids,v,assign,NULL,NULL);    

		if(flags==6 || flags==7) 
		{
			n_quantile = flags==6 ? 3 : 1;
			fvec_0(desc,k*d*n_quantile);
			perm      = ivec_new(n);
			tab       = fvec_new(n);
			ivec_sort_index(assign,n,perm);
			i0=0;
			for(i=0;i<k;i++) 
			{
				i1=i0;
				while(i1<n && assign[perm[i1]]==i) 
				{
					i1++;
				}

				if(i1==i0) continue;

				for(j=0;j<d;j++) 
				{        
					for(l=i0;l<i1;l++)
					{
						tab[l-i0]=v[perm[l]*d+j];
					}
					ni=i1-i0;
					fvec_sort(tab,ni);
					for(l=0;l<n_quantile;l++) 
					{
						desc[(i*d+j)*n_quantile+l]=(tab[(l*ni+ni/2)/n_quantile]-centroids[i*d+j])*ni;
					}
				}

				i0=i1;
			}
			free(perm);
			free(tab);
		} 
		else if(flags==5) 
		{
			fvec_0(desc,k*d);

			for(i=0;i<n;i++) 
			{
				for(j=0;j<d;j++) 
				{
					desc[assign[i]*d+j]+=v[i*d+j];
				}
			}

		} 
		else if(flags==8 || flags==9) 
		{
			fvec_0(desc,k*d);

			u   = fvec_new(d);

			for(i=0;i<n;i++) 
			{
				fvec_cpy(u,v+i*d,d);
				fvec_sub(u,centroids+assign[i]*d,d);
				un=(float)sqrt(fvec_norm2sqr(u,d));

				if(un==0) continue;
				if(flags==8) 
				{        
					fvec_div_by(u,d,un);
				} else if(flags==9) 
				{
					fvec_div_by(u,d,sqrt(un));
				}

				fvec_add(desc+assign[i]*d,u,d);

			}
			free(u);
		} 
		else if(flags==10) 
		{
			fvec_0(desc,k*d);

			for(i=0;i<n;i++) 
			{
				for(j=0;j<d;j++) 
				{
					desc[assign[i]*d+j]+=v[i*d+j];
				}
			}

			for(i=0;i<k;i++) 
			{
				fvec_normalize(desc+i*d,d,2.0);  
			}

		} 
		else if(flags==13) 
		{

			fvec_0(desc,k*d);

			for(i=0;i<n;i++) 
			{
				for(j=0;j<d;j++) 
				{
					desc[assign[i]*d+j]+=(float)sqr(v[i*d+j]-centroids[assign[i]*d+j]);
				}
			}     

		} 
		else if(flags==14) 
		{
			avg = fvec_new_0(k*d);

			for(i=0;i<n;i++) 
			{
				for(j=0;j<d;j++) 
				{
					avg[assign[i]*d+j]+=v[i*d+j]-centroids[assign[i]*d+j];
				}
			}

			hist=ivec_new_histogram(k,assign,n);

			for(i=0;i<k;i++) 
			{
				if(hist[i]>0) 
				{
					for(j=0;j<d;j++) 
					{
						avg[i*d+j]/=hist[i];
					}
				}
			}

			free(hist);

			fvec_0(desc,k*d);
			for(i=0;i<n;i++) 
			{
				for(j=0;j<d;j++) 
				{
					desc[assign[i]*d+j]+=(float)(sqr(v[i*d+j]-centroids[assign[i]*d+j]-avg[assign[i]*d+j]));
				}
			}

			fvec_sqrt(desc,k*d);

			free(avg);
		}  
		else if(flags==15) 
		{
			fvec_0(desc,k*d*2);
			sum = desc;

			for(i=0;i<n;i++) 
			{
				for(j=0;j<d;j++) 
				{
					sum[assign[i]*d+j]+=v[i*d+j]-centroids[assign[i]*d+j];
				}
			}

			hist = ivec_new_histogram(k,assign,n);

			mom2 = desc+k*d;

			for(i=0;i<n;i++) 
			{
				ai=assign[i];
				for(j=0;j<d;j++) 
				{
					mom2[ai*d+j]+=(float)(sqr(v[i*d+j]-centroids[ai*d+j]-sum[ai*d+j]/hist[ai]));
				}
			}
			fvec_sqrt(mom2,k*d);
			free(hist);


		} 
		else if(flags==17) 
		{
			fvec_0(desc,k*d*2);

			for(i=0;i<n;i++) 
			{
				for(j=0;j<d;j++) 
				{
					diff=v[i*d+j]-centroids[assign[i]*d+j];
					if(diff>0)
					{
						desc[assign[i]*d+j]+=diff;
					}
					else 
					{
						desc[assign[i]*d+j+k*d]-=diff;
					}
				}
			}

		} 
		else 
		{
			fvec_0(desc,k*d);

			for(i=0;i<n;i++) 
			{
				for(j=0;j<d;j++) 
				{
					desc[assign[i]*d+j]+=v[i*d+j]-centroids[assign[i]*d+j];
				}
			}


			if(flags==1) 
			{
				hist=ivec_new_histogram(k,assign,n);
				/* printf("unbalance factor=%g\n",ivec_unbalanced_factor(hist,k)); */

				for(i=0;i<k;i++) 
				{
					for(j=0;j<d;j++) 
					{
						desc[i*d+j]/=hist[i];    
					}
				}
				free(hist);
			}

			if(flags==2) 
			{
				for(i=0;i<k;i++) 
				{
					fvec_normalize(desc+i*d,d,2.0);
				}
			}

			if(flags==3 || flags==4) 
			{
				assert(!"not implemented");
			}

			if(flags==16) 
			{
				hist=ivec_new_histogram(k,assign,n);
				for(i=0;i<k;i++) 
				{
					if(hist[i]>0) 
					{
						fvec_norm(desc+i*d,d,2);
						fvec_mul_by(desc+i*d,d,sqrt(hist[i]));
					}
				}
				free(hist);
			}


		}
		free(assign);
	} 
	else if(flags==11 || flags==12) 
	{
		ma=flags==11 ? 4 : 2;
		assign=ivec_new(n*ma);

		dists=knn(n,k,d,ma,centroids,v,assign,NULL,NULL);    

		fvec_0(desc,k*d);

		for(i=0;i<n;i++) 
		{
			for(j=0;j<d;j++) 
			{
				for(a=0;a<ma;a++) 
				{
					desc[assign[ma*i+a]*d+j]+=v[i*d+j]-centroids[assign[ma*i+a]*d+j];
				}
			}
		} 

		free(dists);

		free(assign);
	}

}