main(int argc, char **argv) { l_int32 i; l_float32 pi, scale, angle; PIX *pixc, *pixm, *pix1, *pix2, *pix3; PIXA *pixa; PTA *pta1, *pta2, *pta3, *pta4; static char mainName[] = "smallpix_reg"; /* Make a small test image, the hard way! */ pi = 3.1415926535; pixc = pixCreate(9, 9, 32); pixm = pixCreate(9, 9, 1); pta1 = generatePtaLineFromPt(4, 4, 3.1, 0.0); pta2 = generatePtaLineFromPt(4, 4, 3.1, 0.5 * pi); pta3 = generatePtaLineFromPt(4, 4, 3.1, pi); pta4 = generatePtaLineFromPt(4, 4, 3.1, 1.5 * pi); ptaJoin(pta1, pta2, 0, 0); ptaJoin(pta1, pta3, 0, 0); ptaJoin(pta1, pta4, 0, 0); pixRenderPta(pixm, pta1, L_SET_PIXELS); pixPaintThroughMask(pixc, pixm, 0, 0, 0x00ff0000); ptaDestroy(&pta1); ptaDestroy(&pta2); ptaDestroy(&pta3); ptaDestroy(&pta4); pixDestroy(&pixm); /* Results differ for scaleSmoothLow() w/ and w/out + 0.5. * Neither is properly symmetric (with symm pattern on odd-sized * pix, because the smoothing is destroying the symmetry. */ pixa = pixaCreate(11); pix1 = pixExpandReplicate(pixc, 2); for (i = 0; i < 11; i++) { scale = 0.30 + 0.035 * (l_float32)i; pix2 = pixScaleSmooth(pix1, scale, scale); pix3 = pixExpandReplicate(pix2, 6); pixSaveTiled(pix3, pixa, 1, (i == 0), 20, 32); pixDestroy(&pix2); pixDestroy(&pix3); } pixDestroy(&pix1); DisplayPix(&pixa, 100, 100, NULL); /* Results same for pixScaleAreaMap w/ and w/out + 0.5 */ pixa = pixaCreate(11); pix1 = pixExpandReplicate(pixc, 2); for (i = 0; i < 11; i++) { scale = 0.30 + 0.035 * (l_float32)i; pix2 = pixScaleAreaMap(pix1, scale, scale); pix3 = pixExpandReplicate(pix2, 6); pixSaveTiled(pix3, pixa, 1, (i == 0), 20, 32); pixDestroy(&pix2); pixDestroy(&pix3); } pixDestroy(&pix1); DisplayPix(&pixa, 100, 200, NULL); /* Results better for pixScaleBySampling with + 0.5, for small, * odd-dimension pix. */ pixa = pixaCreate(11); pix1 = pixExpandReplicate(pixc, 2); for (i = 0; i < 11; i++) { scale = 0.30 + 0.035 * (l_float32)i; pix2 = pixScaleBySampling(pix1, scale, scale); pix3 = pixExpandReplicate(pix2, 6); pixSaveTiled(pix3, pixa, 1, (i == 0), 20, 32); pixDestroy(&pix2); pixDestroy(&pix3); } pixDestroy(&pix1); DisplayPix(&pixa, 100, 300, NULL); /* Results same for pixRotateAM w/ and w/out + 0.5 */ pixa = pixaCreate(11); pix1 = pixExpandReplicate(pixc, 1); for (i = 0; i < 11; i++) { angle = 0.10 + 0.05 * (l_float32)i; pix2 = pixRotateAM(pix1, angle, L_BRING_IN_BLACK); pix3 = pixExpandReplicate(pix2, 8); pixSaveTiled(pix3, pixa, 1, (i == 0), 20, 32); pixDestroy(&pix2); pixDestroy(&pix3); } pixDestroy(&pix1); DisplayPix(&pixa, 100, 400, NULL); /* If the size is odd, we express the center exactly, and the * results are better for pixRotateBySampling() w/out 0.5 * However, if the size is even, the center value is not * exact, and if we choose it 0.5 smaller than the actual * center, we get symmetrical results with +0.5. * So we choose not to include + 0.5. */ pixa = pixaCreate(11); pix1 = pixExpandReplicate(pixc, 1); for (i = 0; i < 11; i++) { angle = 0.10 + 0.05 * (l_float32)i; pix2 = pixRotateBySampling(pix1, 4, 4, angle, L_BRING_IN_BLACK); pix3 = pixExpandReplicate(pix2, 8); pixSaveTiled(pix3, pixa, 1, (i == 0), 20, 32); pixDestroy(&pix2); pixDestroy(&pix3); } pixDestroy(&pix1); DisplayPix(&pixa, 100, 500, NULL); /* Results same for pixRotateAMCorner w/ and w/out + 0.5 */ pixa = pixaCreate(11); pix1 = pixExpandReplicate(pixc, 1); for (i = 0; i < 11; i++) { angle = 0.10 + 0.05 * (l_float32)i; pix2 = pixRotateAMCorner(pix1, angle, L_BRING_IN_BLACK); pix3 = pixExpandReplicate(pix2, 8); pixSaveTiled(pix3, pixa, 1, (i == 0), 20, 32); pixDestroy(&pix2); pixDestroy(&pix3); } pixDestroy(&pix1); DisplayPix(&pixa, 100, 600, NULL); /* Results better for pixRotateAMColorFast without + 0.5 */ pixa = pixaCreate(11); pix1 = pixExpandReplicate(pixc, 1); for (i = 0; i < 11; i++) { angle = 0.10 + 0.05 * (l_float32)i; pix2 = pixRotateAMColorFast(pix1, angle, 0); pix3 = pixExpandReplicate(pix2, 8); pixSaveTiled(pix3, pixa, 1, (i == 0), 20, 32); pixDestroy(&pix2); pixDestroy(&pix3); } pixDestroy(&pix1); DisplayPix(&pixa, 100, 700, NULL); /* Results slightly better for pixScaleColorLI() w/out + 0.5 */ pixa = pixaCreate(11); pix1 = pixExpandReplicate(pixc, 1); for (i = 0; i < 11; i++) { scale = 1.0 + 0.2 * (l_float32)i; pix2 = pixScaleColorLI(pix1, scale, scale); pix3 = pixExpandReplicate(pix2, 4); pixSaveTiled(pix3, pixa, 1, (i == 0), 20, 32); pixDestroy(&pix2); pixDestroy(&pix3); } pixDestroy(&pix1); DisplayPix(&pixa, 100, 800, NULL); /* Results slightly better for pixScaleColorLI() w/out + 0.5 */ pixa = pixaCreate(11); pix1 = pixExpandReplicate(pixc, 1); for (i = 0; i < 11; i++) { scale = 1.0 + 0.2 * (l_float32)i; pix2 = pixScaleLI(pix1, scale, scale); pix3 = pixExpandReplicate(pix2, 4); pixSaveTiled(pix3, pixa, 1, (i == 0), 20, 32); pixDestroy(&pix2); pixDestroy(&pix3); } pixDestroy(&pix1); DisplayPix(&pixa, 100, 940, NULL); pixDestroy(&pixc); return 0; }
/*! * selaAddTJunctions() * * Input: sela (<optional>) * hlsize (length of each line of hits from origin) * mdist (distance of misses from the origin) * norient (number of orientations; max of 8) * debugflag (1 for debug output) * Return: sela with additional sels, or null on error * * Notes: * (1) Adds hitmiss Sels for the T-junction of two lines. * If the lines are very thin, they must be nearly orthogonal * to register. * (2) The number of Sels generated is 4 * @norient. * (3) It is suggested that @hlsize be chosen at least 1 greater * than @mdist. Try values of (@hlsize, @mdist) such as * (6,5), (7,6), (8,7), (9,7), etc. */ SELA * selaAddTJunctions(SELA *sela, l_float32 hlsize, l_float32 mdist, l_int32 norient, l_int32 debugflag) { char name[L_BUF_SIZE]; l_int32 i, j, k, w, xc, yc; l_float64 pi, halfpi, radincr, jang, radang; l_float64 angle[3], dist[3]; PIX *pixc, *pixm, *pixt; PIXA *pixa; PTA *pta1, *pta2, *pta3; SEL *sel; PROCNAME("selaAddTJunctions"); if (hlsize <= 2) return (SELA *)ERROR_PTR("hlsizel not > 1", procName, NULL); if (norient < 1 || norient > 8) return (SELA *)ERROR_PTR("norient not in [1, ... 8]", procName, NULL); if (!sela) { if ((sela = selaCreate(0)) == NULL) return (SELA *)ERROR_PTR("sela not made", procName, NULL); } pi = 3.1415926535; halfpi = 3.1415926535 / 2.0; radincr = halfpi / (l_float32)norient; w = (l_int32)(2.4 * (L_MAX(hlsize, mdist) + 0.5)); if (w % 2 == 0) w++; xc = w / 2; yc = w / 2; pixa = pixaCreate(4 * norient); for (i = 0; i < norient; i++) { for (j = 0; j < 4; j++) { /* 4 orthogonal orientations */ jang = (l_float32)j * halfpi; /* Set the don't cares */ pixc = pixCreate(w, w, 32); pixSetAll(pixc); /* Add the green lines of hits */ pixm = pixCreate(w, w, 1); radang = (l_float32)i * radincr; pta1 = generatePtaLineFromPt(xc, yc, hlsize + 1, jang + radang); pta2 = generatePtaLineFromPt(xc, yc, hlsize + 1, jang + radang + halfpi); pta3 = generatePtaLineFromPt(xc, yc, hlsize + 1, jang + radang + pi); ptaJoin(pta1, pta2, 0, -1); ptaJoin(pta1, pta3, 0, -1); pixRenderPta(pixm, pta1, L_SET_PIXELS); pixPaintThroughMask(pixc, pixm, 0, 0, 0x00ff0000); ptaDestroy(&pta1); ptaDestroy(&pta2); ptaDestroy(&pta3); /* Add red misses between the lines */ angle[0] = radang + jang - halfpi; angle[1] = radang + jang + 0.5 * halfpi; angle[2] = radang + jang + 1.5 * halfpi; dist[0] = 0.8 * mdist; dist[1] = dist[2] = mdist; for (k = 0; k < 3; k++) { pixSetPixel(pixc, xc + (l_int32)(dist[k] * cos(angle[k])), yc + (l_int32)(dist[k] * sin(angle[k])), 0xff000000); } /* Add dark green for origin */ pixSetPixel(pixc, xc, yc, 0x00550000); /* Generate the sel */ sel = selCreateFromColorPix(pixc, NULL); sprintf(name, "sel_cross_%d", 4 * i + j); selaAddSel(sela, sel, name, 0); if (debugflag) { pixt = pixScaleBySampling(pixc, 10.0, 10.0); pixaAddPix(pixa, pixt, L_INSERT); } pixDestroy(&pixm); pixDestroy(&pixc); } } if (debugflag) { l_int32 w; pixaGetPixDimensions(pixa, 0, &w, NULL, NULL); pixt = pixaDisplayTiledAndScaled(pixa, 32, w, 4, 0, 10, 2); pixWriteTempfile("/tmp", "tsel1.png", pixt, IFF_PNG, 0); pixDisplay(pixt, 0, 100); pixDestroy(&pixt); pixt = selaDisplayInPix(sela, 15, 2, 20, 4); pixWriteTempfile("/tmp", "tsel2.png", pixt, IFF_PNG, 0); pixDisplay(pixt, 500, 100); pixDestroy(&pixt); selaWriteStream(stderr, sela); } pixaDestroy(&pixa); return sela; }
/*! * \brief selaAddCrossJunctions() * * \param[in] sela [optional] * \param[in] hlsize length of each line of hits from origin * \param[in] mdist distance of misses from the origin * \param[in] norient number of orientations; max of 8 * \param[in] debugflag 1 for debug output * \return sela with additional sels, or NULL on error * * <pre> * Notes: * (1) Adds hitmiss Sels for the intersection of two lines. * If the lines are very thin, they must be nearly orthogonal * to register. * (2) The number of Sels generated is equal to %norient. * (3) If %norient == 2, this generates 2 Sels of crosses, each with * two perpendicular lines of hits. One Sel has horizontal and * vertical hits; the other has hits along lines at +-45 degrees. * Likewise, if %norient == 3, this generates 3 Sels of crosses * oriented at 30 degrees with each other. * (4) It is suggested that %hlsize be chosen at least 1 greater * than %mdist. Try values of (%hlsize, %mdist) such as * (6,5), (7,6), (8,7), (9,7), etc. * </pre> */ SELA * selaAddCrossJunctions(SELA *sela, l_float32 hlsize, l_float32 mdist, l_int32 norient, l_int32 debugflag) { char name[L_BUF_SIZE]; l_int32 i, j, w, xc, yc; l_float64 pi, halfpi, radincr, radang; l_float64 angle; PIX *pixc, *pixm, *pixt; PIXA *pixa; PTA *pta1, *pta2, *pta3, *pta4; SEL *sel; PROCNAME("selaAddCrossJunctions"); if (hlsize <= 0) return (SELA *)ERROR_PTR("hlsize not > 0", procName, NULL); if (norient < 1 || norient > 8) return (SELA *)ERROR_PTR("norient not in [1, ... 8]", procName, NULL); if (!sela) { if ((sela = selaCreate(0)) == NULL) return (SELA *)ERROR_PTR("sela not made", procName, NULL); } pi = 3.1415926535; halfpi = 3.1415926535 / 2.0; radincr = halfpi / (l_float64)norient; w = (l_int32)(2.2 * (L_MAX(hlsize, mdist) + 0.5)); if (w % 2 == 0) w++; xc = w / 2; yc = w / 2; pixa = pixaCreate(norient); for (i = 0; i < norient; i++) { /* Set the don't cares */ pixc = pixCreate(w, w, 32); pixSetAll(pixc); /* Add the green lines of hits */ pixm = pixCreate(w, w, 1); radang = (l_float32)i * radincr; pta1 = generatePtaLineFromPt(xc, yc, hlsize + 1, radang); pta2 = generatePtaLineFromPt(xc, yc, hlsize + 1, radang + halfpi); pta3 = generatePtaLineFromPt(xc, yc, hlsize + 1, radang + pi); pta4 = generatePtaLineFromPt(xc, yc, hlsize + 1, radang + pi + halfpi); ptaJoin(pta1, pta2, 0, -1); ptaJoin(pta1, pta3, 0, -1); ptaJoin(pta1, pta4, 0, -1); pixRenderPta(pixm, pta1, L_SET_PIXELS); pixPaintThroughMask(pixc, pixm, 0, 0, 0x00ff0000); ptaDestroy(&pta1); ptaDestroy(&pta2); ptaDestroy(&pta3); ptaDestroy(&pta4); /* Add red misses between the lines */ for (j = 0; j < 4; j++) { angle = radang + (j - 0.5) * halfpi; pixSetPixel(pixc, xc + (l_int32)(mdist * cos(angle)), yc + (l_int32)(mdist * sin(angle)), 0xff000000); } /* Add dark green for origin */ pixSetPixel(pixc, xc, yc, 0x00550000); /* Generate the sel */ sel = selCreateFromColorPix(pixc, NULL); sprintf(name, "sel_cross_%d", i); selaAddSel(sela, sel, name, 0); if (debugflag) { pixt = pixScaleBySampling(pixc, 10.0, 10.0); pixaAddPix(pixa, pixt, L_INSERT); } pixDestroy(&pixm); pixDestroy(&pixc); } if (debugflag) { l_int32 w; lept_mkdir("lept/sel"); pixaGetPixDimensions(pixa, 0, &w, NULL, NULL); pixt = pixaDisplayTiledAndScaled(pixa, 32, w, 1, 0, 10, 2); pixWrite("/tmp/lept/sel/xsel1.png", pixt, IFF_PNG); pixDisplay(pixt, 0, 100); pixDestroy(&pixt); pixt = selaDisplayInPix(sela, 15, 2, 20, 1); pixWrite("/tmp/lept/sel/xsel2.png", pixt, IFF_PNG); pixDisplay(pixt, 500, 100); pixDestroy(&pixt); selaWriteStream(stderr, sela); } pixaDestroy(&pixa); return sela; }