示例#1
0
文件: btRigidBody.cpp 项目: 93i/godot
btVector3 btRigidBody::computeGyroscopicImpulseImplicit_World(btScalar step) const
{
	// use full newton-euler equations.  common practice to drop the wxIw term. want it for better tumbling behavior.
	// calculate using implicit euler step so it's stable.

	const btVector3 inertiaLocal = getLocalInertia();
	const btVector3 w0 = getAngularVelocity();

	btMatrix3x3 I;

	I = m_worldTransform.getBasis().scaled(inertiaLocal) *
		m_worldTransform.getBasis().transpose();

	// use newtons method to find implicit solution for new angular velocity (w')
	// f(w') = -(T*step + Iw) + Iw' + w' + w'xIw'*step = 0 
	// df/dw' = I + 1xIw'*step + w'xI*step

	btVector3 w1 = w0;

	// one step of newton's method
	{
		const btVector3 fw = evalEulerEqn(w1, w0, btVector3(0, 0, 0), step, I);
		const btMatrix3x3 dfw = evalEulerEqnDeriv(w1, w0, step, I);

		btVector3 dw;
		dw = dfw.solve33(fw);
		//const btMatrix3x3 dfw_inv = dfw.inverse();
		//dw = dfw_inv*fw;

		w1 -= dw;
	}

	btVector3 gf = (w1 - w0);
	return gf;
}
示例#2
0
文件: btRigidBody.cpp 项目: 93i/godot
btVector3 btRigidBody::computeGyroscopicForceExplicit(btScalar maxGyroscopicForce) const
{
	btVector3 inertiaLocal = getLocalInertia();
	btMatrix3x3 inertiaTensorWorld = getWorldTransform().getBasis().scaled(inertiaLocal) * getWorldTransform().getBasis().transpose();
	btVector3 tmp = inertiaTensorWorld*getAngularVelocity();
	btVector3 gf = getAngularVelocity().cross(tmp);
	btScalar l2 = gf.length2();
	if (l2>maxGyroscopicForce*maxGyroscopicForce)
	{
		gf *= btScalar(1.)/btSqrt(l2)*maxGyroscopicForce;
	}
	return gf;
}
示例#3
0
文件: btRigidBody.cpp 项目: 93i/godot
btVector3 btRigidBody::computeGyroscopicImpulseImplicit_Body(btScalar step) const
{	
	btVector3 idl = getLocalInertia();
	btVector3 omega1 = getAngularVelocity();
	btQuaternion q = getWorldTransform().getRotation();
	
	// Convert to body coordinates
	btVector3 omegab = quatRotate(q.inverse(), omega1);
	btMatrix3x3 Ib;
	Ib.setValue(idl.x(),0,0,
				0,idl.y(),0,
				0,0,idl.z());
	
	btVector3 ibo = Ib*omegab;

	// Residual vector
	btVector3 f = step * omegab.cross(ibo);
	
	btMatrix3x3 skew0;
	omegab.getSkewSymmetricMatrix(&skew0[0], &skew0[1], &skew0[2]);
	btVector3 om = Ib*omegab;
	btMatrix3x3 skew1;
	om.getSkewSymmetricMatrix(&skew1[0],&skew1[1],&skew1[2]);
	
	// Jacobian
	btMatrix3x3 J = Ib +  (skew0*Ib - skew1)*step;
	
//	btMatrix3x3 Jinv = J.inverse();
//	btVector3 omega_div = Jinv*f;
	btVector3 omega_div = J.solve33(f);
	
	// Single Newton-Raphson update
	omegab = omegab - omega_div;//Solve33(J, f);
	// Back to world coordinates
	btVector3 omega2 = quatRotate(q,omegab);
	btVector3 gf = omega2-omega1;
	return gf;
}
示例#4
0
btVector3 btRigidBody::computeGyroscopicImpulseImplicit_Cooper(btScalar step) const
{
#if 0
	dReal h = callContext->m_stepperCallContext->m_stepSize; // Step size
	dVector3 L; // Compute angular momentum
	dMultiply0_331(L, I, b->avel);
#endif

	btVector3 inertiaLocal = getLocalInertia();
	btMatrix3x3 inertiaTensorWorld = getWorldTransform().getBasis().scaled(inertiaLocal) * getWorldTransform().getBasis().transpose();
	btVector3 L = inertiaTensorWorld*getAngularVelocity();

	btMatrix3x3 Itild(0, 0, 0, 0, 0, 0, 0, 0, 0);

#if 0
	for (int ii = 0; ii<12; ++ii) {
		Itild[ii] = Itild[ii] * h + I[ii];
	}
#endif

	btSetCrossMatrixMinus(Itild, L*step);
	Itild += inertiaTensorWorld;
	

#if 0
// Compute a new effective 'inertia tensor'
// for the implicit step: the cross-product 
// matrix of the angular momentum plus the
// old tensor scaled by the timestep.  
// Itild may not be symmetric pos-definite, 
// but we can still use it to compute implicit
// gyroscopic torques.
dMatrix3 Itild = { 0 };
dSetCrossMatrixMinus(Itild, L, 4);
for (int ii = 0; ii<12; ++ii) {
	Itild[ii] = Itild[ii] * h + I[ii];
}
#endif

	L *= step;
	//Itild may not be symmetric pos-definite
	btMatrix3x3 itInv = Itild.inverse();
	Itild =  inertiaTensorWorld * itInv;
	btMatrix3x3 ident(1,0,0,0,1,0,0,0,1);
	Itild -= ident;

	


#if 0
// Scale momentum by inverse time to get 
// a sort of "torque"
dScaleVector3(L, dRecip(h));
// Invert the pseudo-tensor
dMatrix3 itInv;
// This is a closed-form inversion.
// It's probably not numerically stable
// when dealing with small masses with
// a large asymmetry.
// An LU decomposition might be better.
if (dInvertMatrix3(itInv, Itild) != 0) {
	// "Divide" the original tensor
	// by the pseudo-tensor (on the right)
	dMultiply0_333(Itild, I, itInv);
	// Subtract an identity matrix
	Itild[0] -= 1; Itild[5] -= 1; Itild[10] -= 1;

	// This new inertia matrix rotates the 
	// momentum to get a new set of torques
	// that will work correctly when applied
	// to the old inertia matrix as explicit
	// torques with a semi-implicit update
	// step.
	dVector3 tau0;
	dMultiply0_331(tau0, Itild, L);

	// Add the gyro torques to the torque 
	// accumulator
	for (int ii = 0; ii<3; ++ii) {
		b->tacc[ii] += tau0[ii];
	}
#endif
	btVector3 tau0 = Itild * L;
//	printf("tau0 = %f,%f,%f\n",tau0.x(),tau0.y(),tau0.z());
	return tau0;
}

btVector3 btRigidBody::computeGyroscopicImpulseImplicit_Ewert(btScalar step) const
{
	// use full newton-euler equations.  common practice to drop the wxIw term. want it for better tumbling behavior.
	// calculate using implicit euler step so it's stable.

	const btVector3 inertiaLocal = getLocalInertia();
	const btVector3 w0 = getAngularVelocity();

	btMatrix3x3 I;

	I = m_worldTransform.getBasis().scaled(inertiaLocal) *
		m_worldTransform.getBasis().transpose();

	// use newtons method to find implicit solution for new angular velocity (w')
	// f(w') = -(T*step + Iw) + Iw' + w' + w'xIw'*step = 0 
	// df/dw' = I + 1xIw'*step + w'xI*step

	btVector3 w1 = w0;

	// one step of newton's method
	{
		const btVector3 fw = evalEulerEqn(w1, w0, btVector3(0, 0, 0), step, I);
		const btMatrix3x3 dfw = evalEulerEqnDeriv(w1, w0, step, I);

		const btMatrix3x3 dfw_inv = dfw.inverse();
		btVector3 dw;

		dw = dfw_inv*fw;

		w1 -= dw;
	}

	btVector3 gf = (w1 - w0);
	return gf;
}


void btRigidBody::integrateVelocities(btScalar step) 
{
	if (isStaticOrKinematicObject())
		return;

	m_linearVelocity += m_totalForce * (m_inverseMass * step);
	m_angularVelocity += m_invInertiaTensorWorld * m_totalTorque * step;

#define MAX_ANGVEL SIMD_HALF_PI
	/// clamp angular velocity. collision calculations will fail on higher angular velocities	
	btScalar angvel = m_angularVelocity.length();
	if (angvel*step > MAX_ANGVEL)
	{
		m_angularVelocity *= (MAX_ANGVEL/step) /angvel;
	}

}

btQuaternion btRigidBody::getOrientation() const
{
		btQuaternion orn;
		m_worldTransform.getBasis().getRotation(orn);
		return orn;
}