long long int countNumSet(int arr[], int lastInd, int numChoose, int remainder, int modNum,
                          long long int memoTable[][MAX_CHOOSE_SIZE + 1][MAX_MOD])
{
    	int r, nextR;

    	if(numChoose == 0)
    	{
        	if(remainder == 0)
            		return 1;
        	return 0;
    	}

    	/* Base cases */
    	if(lastInd + 1 < numChoose)
        	return 0;       /* Cannot choose numChoose numbers */

	if(memoTable[lastInd][numChoose][remainder] >= 0)
		return memoTable[lastInd][numChoose][remainder];

    	long long int numSet = 0;

    	/* Not taking this element */
    	numSet += countNumSet(arr, lastInd - 1, numChoose, remainder, modNum, memoTable);

    	/* Choose this element */
    	r = getRemainder(arr[lastInd], modNum);

    	nextR = remainder - r;
    	if(nextR < 0)
        	nextR = modNum + nextR;
    	numSet += countNumSet(arr, lastInd - 1, numChoose - 1, nextR, modNum, memoTable);

    	memoTable[lastInd][numChoose][remainder] = numSet;
    	return numSet;
}
示例#2
0
static int fcubes(BigInteger *pArgument)
{
  int mod18, modulus, i, mod83, mask;
  int pow, exp;
  boolean converted = FALSE;
  CopyBigInt(&value, pArgument);
  // Compute argument mod 18.
  mod18 = getRemainder(pArgument, 18);
  if (mod18 == 4 || mod18 == 5 || mod18 == 13 || mod18 == 14)
  {
    return -1;  // Applet does not work if the number is congruent to 4 or 5 (mod 9)
  }
  if (mod18 == 16)
  {             // Change sign.
    converted = TRUE;
    BigIntNegate(&value, &value);
  }
  for (i = 0; i<(int)(sizeof(sums)/sizeof(sums[0])); i += 10)
  {
    modulus = sums[i];
    if ((getRemainder(&value, modulus) + modulus)% modulus == sums[i + 1])
    {
      break;
    }
  }
  if (i<(int)(sizeof(sums) / sizeof(sums[0])))
  {
    subtractdivide(&value, sums[i + 1], modulus);      // value <- (value-sums[i+1])/modulus
    multadd(&Base1, sums[i + 2], &value, sums[i + 3]); // Base1 <- sums[i+2]*value+sums[i+3]
    multadd(&Base2, sums[i + 4], &value, sums[i + 5]); // Base2 <- sums[i+4]*value+sums[i+5]
    multadd(&Base3, sums[i + 6], &value, sums[i + 7]); // Base3 <- sums[i+6]*value+sums[i+7]
    multadd(&Base4, sums[i + 8], &value, sums[i + 9]); // Base4 <- sums[i+8]*value+sums[i+9]
  }
  else if (getRemainder(&value, 54) == 2)
  {           // If value == 2 (mod 54)...
    subtractdivide(&value, 2, 54);   // value <- (value-2)/54
    EvaluateQuadraticPoly(&Base1, &value, 29484, 2211, 43);
    EvaluateQuadraticPoly(&Base2, &value, -29484, -2157, -41);
    EvaluateQuadraticPoly(&Base3, &value, 9828, 485, 4);
    EvaluateQuadraticPoly(&Base4, &value, -9828, -971, -22);
  }
  else if (getRemainder(&value, 83 * 108) == 83*46)
  {           // If value == 83*46 (mod 83*108)...
    subtractdivide(&value, 83*46, 83*108); // value <-(value - (83*46)) / (83*108)
    EvaluateQuadraticPoly(&Base1, &value, 29484, 25143, 5371);
    EvaluateQuadraticPoly(&Base2, &value, -29484, -25089, -5348);
    EvaluateQuadraticPoly(&Base3, &value, 9828, 8129, 1682);
    EvaluateQuadraticPoly(&Base4, &value, -9828, -8615, -1889);
  }
  else
  {
      // Perform Pell solution of Demjanenko's theorem
      // Using these values of P, Q, R and S, a and b will be
      // always one and zero (mod 6) respectively.
      // P <- -112488782561 = -(52*2^31+819632865)
      // Q <- -6578430178320 = -(3063*2^31+687764496)
      // R <- -1923517596 = -(0*2^31+1923517596)
      // S <- P
      // P1 <- 1
      // Q1 <- 0
      // R1 <- 0
      // S1 <- 1
    P.limbs[1].x = S.limbs[1].x = 52;
    P.limbs[0].x = S.limbs[0].x = 819632865;
    Q.limbs[1].x = 3063;
    Q.limbs[0].x = 687764496;
    R.limbs[1].x = 0;
    R.limbs[0].x = 1923517596;
    P.nbrLimbs = Q.nbrLimbs = R.nbrLimbs = S.nbrLimbs = 3;
    P.sign = Q.sign = R.sign = S.sign = SIGN_NEGATIVE;
    P1.limbs[0].x = S1.limbs[0].x = 1;
    Q1.limbs[0].x = R1.limbs[0].x = 0;
    P1.nbrLimbs = Q1.nbrLimbs = R1.nbrLimbs = S1.nbrLimbs = 1;
    P1.sign = Q1.sign = R1.sign = S1.sign = SIGN_POSITIVE;
    mod83 = getRemainder(&value, 83);
    pow = 71;
    exp = 0;
    while (pow != mod83)
    {
      exp++;
      pow = (pow * 50) % 83;
    }
    if (exp > 82 / 2)
    {
      exp = 82 - exp;
      Q.sign = R.sign = SIGN_POSITIVE;
    }  // Now exp is in range 0-41.
    mask = 32;
    while (mask > 0)
    {
      // tmpP1 <- P1*P1 + Q1*R1
      // tmpQ1 <- (P1+S1) * Q1
      // tmpR1 <- (P1+S1) * R1
      // tmpS1 <- S1*S1 + Q1*R1
      // P1 <- tmpP1
      // Q1 <- tmpQ1
      // R1 <- tmpR1
      // S1 <- tmpS1
      (void)BigIntMultiply(&P1, &P1, &tmpP1);
      (void)BigIntMultiply(&Q1, &R1, &tmpQ1);
      (void)BigIntMultiply(&S1, &S1, &tmpS1);
      BigIntAdd(&P1, &S1, &tmpR1);
      BigIntAdd(&tmpP1, &tmpQ1, &P1);
      BigIntAdd(&tmpS1, &tmpQ1, &S1);
      (void)BigIntMultiply(&tmpR1, &Q1, &Q1);
      (void)BigIntMultiply(&tmpR1, &R1, &R1);
      if ((exp & mask) != 0)
      {
        // tmpP1 <- P*P1 + Q*R1
        // tmpQ1 <- P*Q1 + Q*S1
        // tmpR1 <- R*P1 + S*R1
        // tmpS1 <- R*Q1 + S*S1
        // P1 <- tmpP1
        // Q1 <- tmpQ1
        // R1 <- tmpR1
        // S1 <- tmpS1
        (void)BigIntMultiply(&P, &P1, &tmpP1);
        (void)BigIntMultiply(&Q, &R1, &tmpQ1);
        (void)BigIntMultiply(&R, &P1, &tmpR1);
        (void)BigIntMultiply(&S, &R1, &tmpS1);
        BigIntAdd(&tmpP1, &tmpQ1, &P1);
        BigIntAdd(&tmpR1, &tmpS1, &R1);
        (void)BigIntMultiply(&P, &Q1, &tmpP1);
        (void)BigIntMultiply(&Q, &S1, &tmpQ1);
        (void)BigIntMultiply(&R, &Q1, &tmpR1);
        (void)BigIntMultiply(&S, &S1, &tmpS1);
        BigIntAdd(&tmpP1, &tmpQ1, &Q1);
        BigIntAdd(&tmpR1, &tmpS1, &S1);
      }
      mask >>= 1;
    }
    addmult(&a, &P1, -3041, &Q1, -52);   // a <- -3041*P1 - 52*Q1
    addmult(&b, &R1, -3041, &S1, -52);   // b <- -3041*R1 - 52*S1
    addmult(&Base1, &a, 27, &b, -928);   // Base1 <- 27*a - 928*b
    addmult(&Base2, &a, -9, &b, -602);   // Base2 <- -9*a - 602*b
    addmult(&Base3, &a, 25, &b, -2937);  // Base3 <- 25*a - 2937*b
    addmult(&Base4, &a, -19, &b, 2746);  // Base4 <- -19*a - 2746*b
    // a <- (value - Base1^3 - Base2^3 - Base3^3 - Base4^3)/(18*83)
    getSumOfCubes();  // tmpP1 = Base1^3 + Base2^3 + Base3^3 + Base4^3
    BigIntSubt(&value, &tmpP1, &a);
    subtractdivide(&a, 0, 18 * 83);      // Divide a by 18*83.
    multint(&tmpP1, &a, 10);             // Base1 <- Base1 + 10*a
    BigIntAdd(&tmpP1, &Base1, &Base1);
    multint(&tmpP1, &a, -19);            // Base2 <- Base2 - 19*a
    BigIntAdd(&tmpP1, &Base2, &Base2);
    multint(&tmpP1, &a, -24);            // Base3 <- Base3 - 24*a
    BigIntAdd(&tmpP1, &Base3, &Base3);
    multint(&tmpP1, &a, 27);             // Base4 <- Base4 + 27*a
    BigIntAdd(&tmpP1, &Base4, &Base4);
  }

  if (converted != 0)
  {
    BigIntNegate(&Base1, &Base1);
    BigIntNegate(&Base2, &Base2);
    BigIntNegate(&Base3, &Base3);
    BigIntNegate(&Base4, &Base4);
  }

      // Sort cubes
  SortBigIntegers(&Base1, &Base2);
  SortBigIntegers(&Base1, &Base3);
  SortBigIntegers(&Base1, &Base4);
  SortBigIntegers(&Base2, &Base3);
  SortBigIntegers(&Base2, &Base4);
  SortBigIntegers(&Base3, &Base4);

  // Validate

  getSumOfCubes();  // tmpP1 = Base1^3 - Base2^3 - Base3^3 - Base4^3
  BigIntSubt(&tmpP1, pArgument, &tmpQ1);
  if (tmpQ1.nbrLimbs != 1 || tmpQ1.limbs[0].x != 0)
  {
    return 1;       // Result does not validate.
  }
  return 0;
}