void HttpUpdateDownloader::on(Complete, HttpConnection*, const string&) throw() { #ifdef _DEBUG debugTrace("on(ModeChange)\n"); #endif if (!fileError && file != INVALID_HANDLE_VALUE) { CloseHandle(file); if (m_currentSize != m_fileSize) { char buffer[2048]; snprintf(buffer, sizeof(buffer), "Size mismatch %s (downloaded %d, expected %d)", Util::getFileName(Text::fromT(targetPath)).c_str(), m_currentSize, m_fileSize); LOG_MESSAGE(buffer); DeleteFile(getTempFile().c_str()); return; } const string currentMD5 = m_digest.digestAsString(); if (Util::stricmp(currentMD5, m_fileMD5) != 0) { char buffer[2048]; snprintf(buffer, sizeof(buffer), "MD5 mismatch %s (downloaded %s, expected %s)", Util::getFileName(Text::fromT(targetPath)).c_str(), currentMD5.c_str(), m_fileMD5.c_str()); LOG_MESSAGE(buffer); DeleteFile(getTempFile().c_str()); return; } LOG_MESSAGE("Successfully downloaded " + Text::fromT(targetPath)); try { File::atomicRename(getTempFile(), targetPath); // файл скачался if (m_listener != NULL) { m_listener->onDownloadComplete(this); } } catch (const Exception& e) { LOG_MESSAGE("Error updating " + Text::fromT(targetPath) + ": " + e.getError()); } } }
static stList *chooseAdjacencyPairing_externalProgram(stList *edges, int64_t nodeNumber, const char *programName) { /* * We create temp files to hold stuff. */ if(nodeNumber <= 1) { assert(stList_length(edges) == 0); return stList_construct(); } char *tempInputFile = getTempFile(), *tempOutputFile = getTempFile(); /* * We write the graph to a temp file. */ FILE *fileHandle = fopen(tempInputFile, "w"); if(strcmp(programName, "blossom5") == 0) { //Must be all connected as //generates perfect matchings. writeCliqueGraph(fileHandle, edges, nodeNumber, 1); } else { writeGraph(fileHandle, edges, nodeNumber); } fclose(fileHandle); /* * We run the external program. */ char *command = stString_print("%s -e %s -w %s >& /dev/null", programName, tempInputFile, tempOutputFile); int64_t i = st_system(command); if(i != 0) { st_errAbort("Something went wrong with the command: %s", command); //For some reason this causes a seg fault //stThrowNew(MATCHING_EXCEPTION, "Something went wrong with the command: %s", command); } free(command); /* * We get back the matching. */ fileHandle = fopen(tempOutputFile, "r"); stList *matching = readMatching(fileHandle, edges); fclose(fileHandle); st_logDebug("The adjacency matching for %" PRIi64 " nodes with %" PRIi64 " initial edges contains %" PRIi64 " edges\n", nodeNumber, stList_length(edges), stList_length(matching)); /* * Get rid of the temp files.. */ st_system("rm -rf %s %s", tempInputFile, tempOutputFile); free(tempInputFile); free(tempOutputFile); return matching; }
void libmaus2::util::PosixExecute::executeOld(::libmaus2::util::ArgInfo const & arginfo, std::string const & command, std::string & out, std::string & err) { std::string stdoutfilename; std::string stderrfilename; int const stdoutfd = getTempFile(arginfo,stdoutfilename); int const stderrfd = getTempFile(arginfo,stderrfilename); pid_t const pid = fork(); if ( pid == -1 ) { int const error = errno; close(stdoutfd); close(stderrfd); libmaus2::aio::FileRemoval::removeFile ( stdoutfilename ); libmaus2::aio::FileRemoval::removeFile ( stderrfilename ); ::libmaus2::exception::LibMausException se; se.getStream() << "Failed to fork(): " << strerror(error); se.finish(); throw se; } /* child */ if ( pid == 0 ) { close(STDOUT_FILENO); close(STDERR_FILENO); int const nullfd = open("/dev/null",O_RDONLY); dup2(nullfd,STDIN_FILENO); dup2(stdoutfd,STDOUT_FILENO); dup2(stderrfd,STDERR_FILENO); int const ret = system ( command.c_str() ); _exit(ret); } else { close(stdoutfd); close(stderrfd); int status = 0; pid_t const wpid = waitpid(pid, &status, 0); assert ( wpid == pid ); out = loadFile(stdoutfilename); err = loadFile(stderrfilename); } }
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info, long total_bytes_needed) { if ((info->temp_file = getTempFile()) == NULL) ERREXITS(cinfo, JERR_TFILE_CREATE, ""); info->read_backing_store = read_backing_store; info->write_backing_store = write_backing_store; info->close_backing_store = close_backing_store; }
void HttpUpdateDownloader::on(Data, HttpConnection*, const uint8_t* buffer, size_t length) throw(){ #ifdef _DEBUG debugTrace("onData: %d bytes\n", length); #endif if (file == INVALID_HANDLE_VALUE) { if (fileError) { // TODO лучше при ошибке просто закрыть сокет. return; } FileUtils::ensureDirectory(targetPath); DWORD flags = FILE_ATTRIBUTE_NOT_CONTENT_INDEXED; if (m_hidden) { flags |= FILE_ATTRIBUTE_HIDDEN; } file = CreateFile(getTempFile().c_str(), GENERIC_READ | GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, flags, NULL); if (file == INVALID_HANDLE_VALUE) { #ifdef _DEBUG DWORD errorCode = GetLastError(); debugTrace("Error %d creating file\n", SystemUtils::describeError(errorCode).c_str()); #endif fileError = true; return; } } DWORD written; if (!WriteFile(file, buffer, length, &written, NULL) || written != length) { #ifdef _DEBUG debugTrace("Error %d writing file\n", GetLastError()); #endif CloseHandle(file); DeleteFile(targetPath.c_str()); fileError = true; return; } m_currentSize += length; m_digest.update(buffer, length); }
uv_err_t UVDJavascriptSpidermonkeyInterpreter::interpret(const UVDInterpreterExpression &exp, const UVDVariableMap &environment, std::string &sRet) { /* Do python hack for now [mcmaster@localhost buffer]$ echo 'myvar=4; other=myvar+20; print other' |python - 24 [mcmaster@localhost uv_udec]$ python -c 'print "test";' test */ static std::string pythonFile; uv_err_t rc = UV_ERR_GENERAL; std::vector<std::string> args; std::string sPythonProgram; int iRet = 0; std::string sErr; UV_ENTER(); if( pythonFile.empty() ) { uv_assert_err(getTempFile(pythonFile)); } //Execut an expression //args.push_back("-c"); args.push_back(pythonFile); /* Collect environment */ //Instruction specific environment for( UVDVariableMap::const_iterator iter = environment.begin(); iter != environment.end(); ++iter ) { std::string key = (*iter).first; std::string value; UVDVarient varient = (*iter).second; uv_assert_err(varientToScriptValue(varient, value)); sPythonProgram += key + "=" + value + "\n"; } /* Utility functions */ //Call results should be printed so that they can be retrieved sPythonProgram += "def CALL(address):\n" "\tprint '" SCRIPT_KEY_CALL "=%d' % address\n" "\n"; //Jump results should be printed so that they can be retrieved sPythonProgram += "def GOTO(address):\n" "\tprint '" SCRIPT_KEY_JUMP "=%d' % address\n" "\n"; /* Main expression */ sPythonProgram += exp.m_sExpression + "\n"; if( UV_FAILED(writeFile(pythonFile, sPythonProgram)) ) { UV_DEBUG(rc); goto error; } //args.push_back(sPythonProgram); /* Run it! */ uv_assert_err(executeToText("python", args, iRet, &sRet, &sErr)); if( iRet ) { UV_DEBUG(rc); goto error; } printf_debug("Raw python result: %s\n", sRet.c_str()); if( !sErr.empty() ) { printf_debug("Python program:\n%s\n\n", sPythonProgram.c_str()); printf_debug("Python error: %s\n", sErr.c_str()); } rc = UV_ERR_OK; error: UV_DEBUG(deleteFile(pythonFile)); return UV_DEBUG(rc); }
int libmaus2::util::PosixExecute::getTempFile(::libmaus2::util::ArgInfo const & arginfo, std::string & filename) { ::std::ostringstream prefixstr; prefixstr << "/tmp/" << getProgBaseName(arginfo) << "_XXXXXX"; return getTempFile(prefixstr.str(),filename); }
int main(int argc, char *argv[]) { /* * Script for adding alignments to cactus tree. */ int64_t startTime; stKVDatabaseConf *kvDatabaseConf; CactusDisk *cactusDisk; int key, k; bool (*filterFn)(stPinchSegment *, stPinchSegment *) = NULL; stSet *outgroupThreads = NULL; /* * Arguments/options */ char * logLevelString = NULL; char * alignmentsFile = NULL; char * constraintsFile = NULL; char * cactusDiskDatabaseString = NULL; char * lastzArguments = ""; int64_t minimumSequenceLengthForBlast = 1; //Parameters for annealing/melting rounds int64_t *annealingRounds = NULL; int64_t annealingRoundsLength = 0; int64_t *meltingRounds = NULL; int64_t meltingRoundsLength = 0; //Parameters for melting float maximumAdjacencyComponentSizeRatio = 10; int64_t blockTrim = 0; int64_t alignmentTrimLength = 0; int64_t *alignmentTrims = NULL; int64_t chainLengthForBigFlower = 1000000; int64_t longChain = 2; int64_t minLengthForChromosome = 1000000; float proportionOfUnalignedBasesForNewChromosome = 0.8; bool breakChainsAtReverseTandems = 1; int64_t maximumMedianSequenceLengthBetweenLinkedEnds = INT64_MAX; bool realign = 0; char *realignArguments = ""; bool removeRecoverableChains = false; bool (*recoverableChainsFilter)(stCactusEdgeEnd *, Flower *) = NULL; int64_t maxRecoverableChainsIterations = 1; int64_t maxRecoverableChainLength = INT64_MAX; //Parameters for removing ancient homologies bool doPhylogeny = false; int64_t phylogenyNumTrees = 1; enum stCaf_RootingMethod phylogenyRootingMethod = BEST_RECON; enum stCaf_ScoringMethod phylogenyScoringMethod = COMBINED_LIKELIHOOD; double breakpointScalingFactor = 1.0; bool phylogenySkipSingleCopyBlocks = 0; int64_t phylogenyMaxBaseDistance = 1000; int64_t phylogenyMaxBlockDistance = 100; bool phylogenyKeepSingleDegreeBlocks = 0; stList *phylogenyTreeBuildingMethods = stList_construct(); enum stCaf_TreeBuildingMethod defaultMethod = GUIDED_NEIGHBOR_JOINING; stList_append(phylogenyTreeBuildingMethods, &defaultMethod); double phylogenyCostPerDupPerBase = 0.2; double phylogenyCostPerLossPerBase = 0.2; const char *debugFileName = NULL; const char *referenceEventHeader = NULL; double phylogenyDoSplitsWithSupportHigherThanThisAllAtOnce = 1.0; int64_t numTreeBuildingThreads = 2; int64_t minimumBlockDegreeToCheckSupport = 10; double minimumBlockHomologySupport = 0.7; double nucleotideScalingFactor = 1.0; HomologyUnitType phylogenyHomologyUnitType = BLOCK; enum stCaf_DistanceCorrectionMethod phylogenyDistanceCorrectionMethod = JUKES_CANTOR; bool sortAlignments = false; /////////////////////////////////////////////////////////////////////////// // (0) Parse the inputs handed by genomeCactus.py / setup stuff. /////////////////////////////////////////////////////////////////////////// while (1) { static struct option long_options[] = { { "logLevel", required_argument, 0, 'a' }, { "alignments", required_argument, 0, 'b' }, { "cactusDisk", required_argument, 0, 'c' }, { "lastzArguments", required_argument, 0, 'd' }, { "help", no_argument, 0, 'h' }, { "annealingRounds", required_argument, 0, 'i' }, { "trim", required_argument, 0, 'k' }, { "trimChange", required_argument, 0, 'l', }, { "minimumTreeCoverage", required_argument, 0, 'm' }, { "blockTrim", required_argument, 0, 'n' }, { "deannealingRounds", required_argument, 0, 'o' }, { "minimumDegree", required_argument, 0, 'p' }, { "minimumIngroupDegree", required_argument, 0, 'q' }, { "minimumOutgroupDegree", required_argument, 0, 'r' }, { "alignmentFilter", required_argument, 0, 't' }, { "minimumSequenceLengthForBlast", required_argument, 0, 'v' }, { "maxAdjacencyComponentSizeRatio", required_argument, 0, 'w' }, { "constraints", required_argument, 0, 'x' }, { "minLengthForChromosome", required_argument, 0, 'y' }, { "proportionOfUnalignedBasesForNewChromosome", required_argument, 0, 'z' }, { "maximumMedianSequenceLengthBetweenLinkedEnds", required_argument, 0, 'A' }, { "realign", no_argument, 0, 'B' }, { "realignArguments", required_argument, 0, 'C' }, { "phylogenyNumTrees", required_argument, 0, 'D' }, { "phylogenyRootingMethod", required_argument, 0, 'E' }, { "phylogenyScoringMethod", required_argument, 0, 'F' }, { "phylogenyBreakpointScalingFactor", required_argument, 0, 'G' }, { "phylogenySkipSingleCopyBlocks", no_argument, 0, 'H' }, { "phylogenyMaxBaseDistance", required_argument, 0, 'I' }, { "phylogenyMaxBlockDistance", required_argument, 0, 'J' }, { "phylogenyDebugFile", required_argument, 0, 'K' }, { "phylogenyKeepSingleDegreeBlocks", no_argument, 0, 'L' }, { "phylogenyTreeBuildingMethod", required_argument, 0, 'M' }, { "phylogenyCostPerDupPerBase", required_argument, 0, 'N' }, { "phylogenyCostPerLossPerBase", required_argument, 0, 'O' }, { "referenceEventHeader", required_argument, 0, 'P' }, { "phylogenyDoSplitsWithSupportHigherThanThisAllAtOnce", required_argument, 0, 'Q' }, { "numTreeBuildingThreads", required_argument, 0, 'R' }, { "phylogeny", no_argument, 0, 'S' }, { "minimumBlockHomologySupport", required_argument, 0, 'T' }, { "phylogenyNucleotideScalingFactor", required_argument, 0, 'U' }, { "minimumBlockDegreeToCheckSupport", required_argument, 0, 'V' }, { "removeRecoverableChains", required_argument, 0, 'W' }, { "minimumNumberOfSpecies", required_argument, 0, 'X' }, { "phylogenyHomologyUnitType", required_argument, 0, 'Y' }, { "phylogenyDistanceCorrectionMethod", required_argument, 0, 'Z' }, { "maxRecoverableChainsIterations", required_argument, 0, '1' }, { "maxRecoverableChainLength", required_argument, 0, '2' }, { 0, 0, 0, 0 } }; int option_index = 0; key = getopt_long(argc, argv, "a:b:c:hi:k:m:n:o:p:q:r:stv:w:x:y:z:A:BC:D:E:", long_options, &option_index); if (key == -1) { break; } switch (key) { case 'a': logLevelString = stString_copy(optarg); st_setLogLevelFromString(logLevelString); break; case 'b': alignmentsFile = stString_copy(optarg); break; case 'c': cactusDiskDatabaseString = stString_copy(optarg); break; case 'd': lastzArguments = stString_copy(optarg); break; case 'h': usage(); return 0; case 'i': annealingRounds = getInts(optarg, &annealingRoundsLength); break; case 'o': meltingRounds = getInts(optarg, &meltingRoundsLength); break; case 'k': alignmentTrims = getInts(optarg, &alignmentTrimLength); break; case 'm': k = sscanf(optarg, "%f", &minimumTreeCoverage); assert(k == 1); break; case 'n': k = sscanf(optarg, "%" PRIi64 "", &blockTrim); assert(k == 1); break; case 'p': k = sscanf(optarg, "%" PRIi64 "", &minimumDegree); assert(k == 1); break; case 'q': k = sscanf(optarg, "%" PRIi64 "", &minimumIngroupDegree); assert(k == 1); break; case 'r': k = sscanf(optarg, "%" PRIi64 "", &minimumOutgroupDegree); assert(k == 1); break; case 't': if (strcmp(optarg, "singleCopyOutgroup") == 0) { sortAlignments = true; filterFn = stCaf_filterByOutgroup; } else if (strcmp(optarg, "relaxedSingleCopyOutgroup") == 0) { sortAlignments = true; filterFn = stCaf_relaxedFilterByOutgroup; } else if (strcmp(optarg, "singleCopy") == 0) { sortAlignments = true; filterFn = stCaf_filterByRepeatSpecies; } else if (strcmp(optarg, "relaxedSingleCopy") == 0) { sortAlignments = true; filterFn = stCaf_relaxedFilterByRepeatSpecies; } else if (strcmp(optarg, "singleCopyChr") == 0) { sortAlignments = true; filterFn = stCaf_singleCopyChr; } else if (strcmp(optarg, "singleCopyIngroup") == 0) { sortAlignments = true; filterFn = stCaf_singleCopyIngroup; } else if (strcmp(optarg, "relaxedSingleCopyIngroup") == 0) { sortAlignments = true; filterFn = stCaf_relaxedSingleCopyIngroup; } else if (strcmp(optarg, "none") == 0) { sortAlignments = false; filterFn = NULL; } else { st_errAbort("Could not recognize alignmentFilter option %s", optarg); } break; case 'v': k = sscanf(optarg, "%" PRIi64 "", &minimumSequenceLengthForBlast); assert(k == 1); break; case 'w': k = sscanf(optarg, "%f", &maximumAdjacencyComponentSizeRatio); assert(k == 1); break; case 'x': constraintsFile = stString_copy(optarg); break; case 'y': k = sscanf(optarg, "%" PRIi64 "", &minLengthForChromosome); assert(k == 1); break; case 'z': k = sscanf(optarg, "%f", &proportionOfUnalignedBasesForNewChromosome); assert(k == 1); break; case 'A': k = sscanf(optarg, "%" PRIi64 "", &maximumMedianSequenceLengthBetweenLinkedEnds); assert(k == 1); break; case 'B': realign = 1; break; case 'C': realignArguments = stString_copy(optarg); break; case 'D': k = sscanf(optarg, "%" PRIi64, &phylogenyNumTrees); assert(k == 1); break; case 'E': if (!strcmp(optarg, "outgroupBranch")) { phylogenyRootingMethod = OUTGROUP_BRANCH; } else if (!strcmp(optarg, "longestBranch")) { phylogenyRootingMethod = LONGEST_BRANCH; } else if (!strcmp(optarg, "bestRecon")) { phylogenyRootingMethod = BEST_RECON; } else { st_errAbort("Invalid tree rooting method: %s", optarg); } break; case 'F': if (!strcmp(optarg, "reconCost")) { phylogenyScoringMethod = RECON_COST; } else if (!strcmp(optarg, "nucLikelihood")) { phylogenyScoringMethod = NUCLEOTIDE_LIKELIHOOD; } else if (!strcmp(optarg, "reconLikelihood")) { phylogenyScoringMethod = RECON_LIKELIHOOD; } else if (!strcmp(optarg, "combinedLikelihood")) { phylogenyScoringMethod = COMBINED_LIKELIHOOD; } else { st_errAbort("Invalid tree scoring method: %s", optarg); } break; case 'G': k = sscanf(optarg, "%lf", &breakpointScalingFactor); assert(k == 1); break; case 'H': phylogenySkipSingleCopyBlocks = true; break; case 'I': k = sscanf(optarg, "%" PRIi64, &phylogenyMaxBaseDistance); assert(k == 1); break; case 'J': k = sscanf(optarg, "%" PRIi64, &phylogenyMaxBlockDistance); assert(k == 1); break; case 'K': debugFileName = stString_copy(optarg); break; case 'L': phylogenyKeepSingleDegreeBlocks = true; break; case 'M': // clear the default setting of the list stList_destruct(phylogenyTreeBuildingMethods); phylogenyTreeBuildingMethods = stList_construct(); stList *methodStrings = stString_splitByString(optarg, ","); for (int64_t i = 0; i < stList_length(methodStrings); i++) { char *methodString = stList_get(methodStrings, i); enum stCaf_TreeBuildingMethod *method = st_malloc(sizeof(enum stCaf_TreeBuildingMethod)); if (strcmp(methodString, "neighborJoining") == 0) { *method = NEIGHBOR_JOINING; } else if (strcmp(methodString, "guidedNeighborJoining") == 0) { *method = GUIDED_NEIGHBOR_JOINING; } else if (strcmp(methodString, "splitDecomposition") == 0) { *method = SPLIT_DECOMPOSITION; } else if (strcmp(methodString, "strictSplitDecomposition") == 0) { *method = STRICT_SPLIT_DECOMPOSITION; } else if (strcmp(methodString, "removeBadChains") == 0) { *method = REMOVE_BAD_CHAINS; } else { st_errAbort("Unknown tree building method: %s", methodString); } stList_append(phylogenyTreeBuildingMethods, method); } stList_destruct(methodStrings); break; case 'N': k = sscanf(optarg, "%lf", &phylogenyCostPerDupPerBase); assert(k == 1); break; case 'O': k = sscanf(optarg, "%lf", &phylogenyCostPerLossPerBase); assert(k == 1); break; case 'P': referenceEventHeader = stString_copy(optarg); break; case 'Q': k = sscanf(optarg, "%lf", &phylogenyDoSplitsWithSupportHigherThanThisAllAtOnce); assert(k == 1); break; case 'R': k = sscanf(optarg, "%" PRIi64, &numTreeBuildingThreads); assert(k == 1); break; case 'S': doPhylogeny = true; break; case 'T': k = sscanf(optarg, "%lf", &minimumBlockHomologySupport); assert(k == 1); assert(minimumBlockHomologySupport <= 1.0); assert(minimumBlockHomologySupport >= 0.0); break; case 'U': k = sscanf(optarg, "%lf", &nucleotideScalingFactor); assert(k == 1); break; case 'V': k = sscanf(optarg, "%" PRIi64, &minimumBlockDegreeToCheckSupport); assert(k == 1); break; case 'W': if (strcmp(optarg, "1") == 0) { removeRecoverableChains = true; recoverableChainsFilter = NULL; } else if (strcmp(optarg, "unequalNumberOfIngroupCopies") == 0) { removeRecoverableChains = true; recoverableChainsFilter = stCaf_chainHasUnequalNumberOfIngroupCopies; } else if (strcmp(optarg, "unequalNumberOfIngroupCopiesOrNoOutgroup") == 0) { removeRecoverableChains = true; recoverableChainsFilter = stCaf_chainHasUnequalNumberOfIngroupCopiesOrNoOutgroup; } else if (strcmp(optarg, "0") == 0) { removeRecoverableChains = false; } else { st_errAbort("Could not parse removeRecoverableChains argument"); } break; case 'X': k = sscanf(optarg, "%" PRIi64, &minimumNumberOfSpecies); if (k != 1) { st_errAbort("Error parsing the minimumNumberOfSpecies argument"); } break; case 'Y': if (strcmp(optarg, "chain") == 0) { phylogenyHomologyUnitType = CHAIN; } else if (strcmp(optarg, "block") == 0) { phylogenyHomologyUnitType = BLOCK; } else { st_errAbort("Could not parse the phylogenyHomologyUnitType argument"); } break; case 'Z': if (strcmp(optarg, "jukesCantor") == 0) { phylogenyDistanceCorrectionMethod = JUKES_CANTOR; } else if (strcmp(optarg, "none") == 0 ) { phylogenyDistanceCorrectionMethod = NONE; } else { st_errAbort("Could not parse the phylogenyDistanceCorrectionMethod argument"); } break; case '1': k = sscanf(optarg, "%" PRIi64, &maxRecoverableChainsIterations); if (k != 1) { st_errAbort("Error parsing the maxRecoverableChainsIterations argument"); } break; case '2': k = sscanf(optarg, "%" PRIi64, &maxRecoverableChainLength); if (k != 1) { st_errAbort("Error parsing the maxRecoverableChainLength argument"); } break; default: usage(); return 1; } } /////////////////////////////////////////////////////////////////////////// // (0) Check the inputs. /////////////////////////////////////////////////////////////////////////// assert(cactusDiskDatabaseString != NULL); assert(minimumTreeCoverage >= 0.0); assert(minimumTreeCoverage <= 1.0); assert(blockTrim >= 0); assert(annealingRoundsLength >= 0); for (int64_t i = 0; i < annealingRoundsLength; i++) { assert(annealingRounds[i] >= 0); } assert(meltingRoundsLength >= 0); for (int64_t i = 1; i < meltingRoundsLength; i++) { assert(meltingRounds[i - 1] < meltingRounds[i]); assert(meltingRounds[i - 1] >= 1); } assert(alignmentTrimLength >= 0); for (int64_t i = 0; i < alignmentTrimLength; i++) { assert(alignmentTrims[i] >= 0); } assert(minimumOutgroupDegree >= 0); assert(minimumIngroupDegree >= 0); ////////////////////////////////////////////// //Set up logging ////////////////////////////////////////////// st_setLogLevelFromString(logLevelString); ////////////////////////////////////////////// //Log (some of) the inputs ////////////////////////////////////////////// st_logInfo("Flower disk name : %s\n", cactusDiskDatabaseString); ////////////////////////////////////////////// //Load the database ////////////////////////////////////////////// kvDatabaseConf = stKVDatabaseConf_constructFromString(cactusDiskDatabaseString); cactusDisk = cactusDisk_construct(kvDatabaseConf, 0); st_logInfo("Set up the flower disk\n"); /////////////////////////////////////////////////////////////////////////// // Sort the constraints /////////////////////////////////////////////////////////////////////////// stPinchIterator *pinchIteratorForConstraints = NULL; if (constraintsFile != NULL) { pinchIteratorForConstraints = stPinchIterator_constructFromFile(constraintsFile); st_logInfo("Created an iterator for the alignment constaints from file: %s\n", constraintsFile); } /////////////////////////////////////////////////////////////////////////// // Do the alignment /////////////////////////////////////////////////////////////////////////// startTime = time(NULL); stList *flowers = flowerWriter_parseFlowersFromStdin(cactusDisk); if (alignmentsFile == NULL) { cactusDisk_preCacheStrings(cactusDisk, flowers); } char *tempFile1 = NULL; for (int64_t i = 0; i < stList_length(flowers); i++) { flower = stList_get(flowers, i); if (!flower_builtBlocks(flower)) { // Do nothing if the flower already has defined blocks st_logDebug("Processing flower: %lli\n", flower_getName(flower)); stCaf_setFlowerForAlignmentFiltering(flower); //Set up the graph and add the initial alignments stPinchThreadSet *threadSet = stCaf_setup(flower); //Build the set of outgroup threads outgroupThreads = stCaf_getOutgroupThreads(flower, threadSet); //Setup the alignments stPinchIterator *pinchIterator; stList *alignmentsList = NULL; if (alignmentsFile != NULL) { assert(i == 0); assert(stList_length(flowers) == 1); if (sortAlignments) { tempFile1 = getTempFile(); stCaf_sortCigarsFileByScoreInDescendingOrder(alignmentsFile, tempFile1); pinchIterator = stPinchIterator_constructFromFile(tempFile1); } else { pinchIterator = stPinchIterator_constructFromFile(alignmentsFile); } } else { if (tempFile1 == NULL) { tempFile1 = getTempFile(); } alignmentsList = stCaf_selfAlignFlower(flower, minimumSequenceLengthForBlast, lastzArguments, realign, realignArguments, tempFile1); if (sortAlignments) { stCaf_sortCigarsByScoreInDescendingOrder(alignmentsList); } st_logDebug("Ran lastz and have %" PRIi64 " alignments\n", stList_length(alignmentsList)); pinchIterator = stPinchIterator_constructFromList(alignmentsList); } for (int64_t annealingRound = 0; annealingRound < annealingRoundsLength; annealingRound++) { int64_t minimumChainLength = annealingRounds[annealingRound]; int64_t alignmentTrim = annealingRound < alignmentTrimLength ? alignmentTrims[annealingRound] : 0; st_logDebug("Starting annealing round with a minimum chain length of %" PRIi64 " and an alignment trim of %" PRIi64 "\n", minimumChainLength, alignmentTrim); stPinchIterator_setTrim(pinchIterator, alignmentTrim); //Add back in the constraints if (pinchIteratorForConstraints != NULL) { stCaf_anneal(threadSet, pinchIteratorForConstraints, filterFn); } //Do the annealing if (annealingRound == 0) { stCaf_anneal(threadSet, pinchIterator, filterFn); } else { stCaf_annealBetweenAdjacencyComponents(threadSet, pinchIterator, filterFn); } // Dump the block degree and length distribution to a file if (debugFileName != NULL) { dumpBlockInfo(threadSet, stString_print("%s-blockStats-preMelting", debugFileName)); } printf("Sequence graph statistics after annealing:\n"); printThreadSetStatistics(threadSet, flower, stdout); // Check for poorly-supported blocks--those that have // been transitively aligned together but with very // few homologies supporting the transitive // alignment. These "megablocks" can snarl up the // graph so that a lot of extra gets thrown away in // the first melting step. stPinchThreadSetBlockIt blockIt = stPinchThreadSet_getBlockIt(threadSet); stPinchBlock *block; while ((block = stPinchThreadSetBlockIt_getNext(&blockIt)) != NULL) { if (stPinchBlock_getDegree(block) > minimumBlockDegreeToCheckSupport) { uint64_t supportingHomologies = stPinchBlock_getNumSupportingHomologies(block); uint64_t possibleSupportingHomologies = numPossibleSupportingHomologies(block, flower); double support = ((double) supportingHomologies) / possibleSupportingHomologies; if (support < minimumBlockHomologySupport) { fprintf(stdout, "Destroyed a megablock with degree %" PRIi64 " and %" PRIi64 " supporting homologies out of a maximum " "of %" PRIi64 " (%lf%%).\n", stPinchBlock_getDegree(block), supportingHomologies, possibleSupportingHomologies, support); stPinchBlock_destruct(block); } } } //Do the melting rounds for (int64_t meltingRound = 0; meltingRound < meltingRoundsLength; meltingRound++) { int64_t minimumChainLengthForMeltingRound = meltingRounds[meltingRound]; st_logDebug("Starting melting round with a minimum chain length of %" PRIi64 " \n", minimumChainLengthForMeltingRound); if (minimumChainLengthForMeltingRound >= minimumChainLength) { break; } stCaf_melt(flower, threadSet, NULL, 0, minimumChainLengthForMeltingRound, 0, INT64_MAX); } st_logDebug("Last melting round of cycle with a minimum chain length of %" PRIi64 " \n", minimumChainLength); stCaf_melt(flower, threadSet, NULL, 0, minimumChainLength, breakChainsAtReverseTandems, maximumMedianSequenceLengthBetweenLinkedEnds); //This does the filtering of blocks that do not have the required species/tree-coverage/degree. stCaf_melt(flower, threadSet, blockFilterFn, blockTrim, 0, 0, INT64_MAX); } if (removeRecoverableChains) { stCaf_meltRecoverableChains(flower, threadSet, breakChainsAtReverseTandems, maximumMedianSequenceLengthBetweenLinkedEnds, recoverableChainsFilter, maxRecoverableChainsIterations, maxRecoverableChainLength); } if (debugFileName != NULL) { dumpBlockInfo(threadSet, stString_print("%s-blockStats-postMelting", debugFileName)); } printf("Sequence graph statistics after melting:\n"); printThreadSetStatistics(threadSet, flower, stdout); // Build a tree for each block, then use each tree to // partition the homologies between the ingroups sequences // into those that occur before the speciation with the // outgroup and those which occur late. if (stSet_size(outgroupThreads) > 0 && doPhylogeny) { st_logDebug("Starting to build trees and partition ingroup homologies\n"); stHash *threadStrings = stCaf_getThreadStrings(flower, threadSet); st_logDebug("Got sets of thread strings and set of threads that are outgroups\n"); stCaf_PhylogenyParameters params; params.distanceCorrectionMethod = phylogenyDistanceCorrectionMethod; params.treeBuildingMethods = phylogenyTreeBuildingMethods; params.rootingMethod = phylogenyRootingMethod; params.scoringMethod = phylogenyScoringMethod; params.breakpointScalingFactor = breakpointScalingFactor; params.nucleotideScalingFactor = nucleotideScalingFactor; params.skipSingleCopyBlocks = phylogenySkipSingleCopyBlocks; params.keepSingleDegreeBlocks = phylogenyKeepSingleDegreeBlocks; params.costPerDupPerBase = phylogenyCostPerDupPerBase; params.costPerLossPerBase = phylogenyCostPerLossPerBase; params.maxBaseDistance = phylogenyMaxBaseDistance; params.maxBlockDistance = phylogenyMaxBlockDistance; params.numTrees = phylogenyNumTrees; params.ignoreUnalignedBases = 1; params.onlyIncludeCompleteFeatureBlocks = 0; params.doSplitsWithSupportHigherThanThisAllAtOnce = phylogenyDoSplitsWithSupportHigherThanThisAllAtOnce; params.numTreeBuildingThreads = numTreeBuildingThreads; assert(params.numTreeBuildingThreads >= 1); stCaf_buildTreesToRemoveAncientHomologies( threadSet, phylogenyHomologyUnitType, threadStrings, outgroupThreads, flower, ¶ms, debugFileName == NULL ? NULL : stString_print("%s-phylogeny", debugFileName), referenceEventHeader); stHash_destruct(threadStrings); st_logDebug("Finished building trees\n"); if (removeRecoverableChains) { // We melt recoverable chains after splitting, as // well as before, to alleviate coverage loss // caused by bad splits. stCaf_meltRecoverableChains(flower, threadSet, breakChainsAtReverseTandems, maximumMedianSequenceLengthBetweenLinkedEnds, recoverableChainsFilter, maxRecoverableChainsIterations, maxRecoverableChainLength); } // Enforce the block constraints on minimum degree, // etc. after splitting. stCaf_melt(flower, threadSet, blockFilterFn, 0, 0, 0, INT64_MAX); } //Sort out case when we allow blocks of degree 1 if (minimumDegree < 2) { st_logDebug("Creating degree 1 blocks\n"); stCaf_makeDegreeOneBlocks(threadSet); stCaf_melt(flower, threadSet, blockFilterFn, blockTrim, 0, 0, INT64_MAX); } else if (maximumAdjacencyComponentSizeRatio < INT64_MAX) { //Deal with giant components st_logDebug("Breaking up components greedily\n"); stCaf_breakupComponentsGreedily(threadSet, maximumAdjacencyComponentSizeRatio); } //Finish up stCaf_finish(flower, threadSet, chainLengthForBigFlower, longChain, minLengthForChromosome, proportionOfUnalignedBasesForNewChromosome); //Flower is then destroyed at this point. st_logInfo("Ran the cactus core script\n"); //Cleanup stPinchThreadSet_destruct(threadSet); stPinchIterator_destruct(pinchIterator); stSet_destruct(outgroupThreads); if (alignmentsList != NULL) { stList_destruct(alignmentsList); } st_logInfo("Cleaned up from main loop\n"); } else { st_logInfo("We've already built blocks / alignments for this flower\n"); } } stList_destruct(flowers); if (tempFile1 != NULL) { st_system("rm %s", tempFile1); } if (constraintsFile != NULL) { stPinchIterator_destruct(pinchIteratorForConstraints); } /////////////////////////////////////////////////////////////////////////// // Write the flower to disk. /////////////////////////////////////////////////////////////////////////// st_logDebug("Writing the flowers to disk\n"); cactusDisk_write(cactusDisk); st_logInfo("Updated the flower on disk and %" PRIi64 " seconds have elapsed\n", time(NULL) - startTime); /////////////////////////////////////////////////////////////////////////// // Clean up. /////////////////////////////////////////////////////////////////////////// cactusDisk_destruct(cactusDisk); }