示例#1
0
int main(int argc, char *argv[]) {
  char **av;
  char *fslfn, *ltafn;
  MRI *mri_src, *mri_tgt;
  int ac, nargs;
  LTA *mylta = 0;
  FILE *fo;
  VOL_GEOM srcG, dstG;
  MATRIX *invTgt, *Dsrc, *V_to_V;

  Progname = argv[0];

  nargs = handle_version_option (argc, argv, "$Id: mri_fslmat_to_lta.c,v 1.3 2011/03/02 00:04:15 nicks Exp $", "$Name:  $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc != 5)
    usage(1);

  printf("Read source volume file %s\n", argv[1]);
  mri_src = MRIread(argv[1]) ;

  if (!mri_src)
    ErrorExit(ERROR_BADPARM, "%s: could not read source volume %s",
              Progname, argv[1]) ;

  printf("Read destination volume file %s\n", argv[2]);
  mri_tgt = MRIread(argv[2]) ;
  if (!mri_tgt)
    ErrorExit(ERROR_BADPARM, "%s: could not read label volume %s",
              Progname, argv[2]) ;

  fslfn = argv[3];
  ltafn = argv[4];

  printf("Read fsl transformation from file %s\n", fslfn);
  mylta = ltaFSLread(fslfn);

  getVolGeom(mri_src, &srcG);
  getVolGeom(mri_tgt, &dstG);

  if (invert_flag) {
    mylta->xforms[0].src = dstG;
    mylta->xforms[0].dst = srcG;
  } else {
    mylta->xforms[0].src = srcG;
    mylta->xforms[0].dst = dstG;
  }

  invTgt = MatrixAlloc(4,4,MATRIX_REAL);
  invTgt->rptr[1][1] = 1.0/dstG.xsize;
  invTgt->rptr[2][2] = 1.0/dstG.ysize;
  invTgt->rptr[3][3] = 1.0/dstG.zsize;
  invTgt->rptr[4][4] = 1.0;

  Dsrc = MatrixAlloc(4,4,MATRIX_REAL);
  Dsrc->rptr[1][1] = srcG.xsize;
  Dsrc->rptr[2][2] = srcG.ysize;
  Dsrc->rptr[3][3] = srcG.zsize;
  Dsrc->rptr[4][4] = 1.0;

  V_to_V = MatrixMultiply(invTgt, mylta->xforms[0].m_L, NULL);
  V_to_V = MatrixMultiply(V_to_V, Dsrc, V_to_V);

  if (invert_flag) {
    mylta->xforms[0].m_L = MatrixInverse(V_to_V, mylta->xforms[0].m_L);
  } else {
    mylta->xforms[0].m_L = MatrixCopy(V_to_V, mylta->xforms[0].m_L);
  }

  if (!mylta) {
    MRIfree(&mri_src);
    MRIfree(&mri_tgt);
    ErrorExit(ERROR_BADFILE, "%s: can't read in transformation",Progname);
  }

  printf("Write transformation to lta file %s\n", ltafn);
  fo = fopen(ltafn,"w");
  if (fo==NULL)
    ErrorExit(ERROR_BADFILE, "%s: can't create file %s",Progname, ltafn);

  LTAprint(fo, mylta);

  fclose(fo);


  MRIfree(&mri_src);
  MRIfree(&mri_tgt);

  LTAfree(&mylta);

  MatrixFree(&invTgt);
  MatrixFree(&Dsrc);
  MatrixFree(&V_to_V);

  return(0);

}  /*  end main()  */
int
main(int argc, char *argv[])
{
  char        **av, *in_vol, *out_vol;
  int         ac, nargs;

  MRI         *mri_in, *mri_out, *mri_tmp ;
  LTA         *lta = 0;
  MATRIX *i_to_r_src = 0; /* src geometry of the input LTA */
  MATRIX *V_to_V = 0; /* Final voxel-to-voxel transform */
  MATRIX *r_to_i_dst = 0; /* dst geometry of the input LTA */
  MATRIX *m_tmp = 0;
  MATRIX *i_to_r_reg = 0; /* i_to_r of the volume after registration */
  MATRIX *r_to_i_out = 0; /* r_to_i of the final output volume */
  VOL_GEOM vgm_in;
  int x, y, z;
  double maxV, minV, value;
  //  MATRIX *i_to_r, *r_to_i;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option (argc, argv, "$Id: mri_transform_to_COR.c,v 1.8 2011/03/02 00:04:55 nicks Exp $", "$Name: stable5 $");
  if (nargs && argc - nargs == 1)
    usage_exit (0);
  argc -= nargs;

  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++)
  {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 3)
    usage_exit(0) ;

  in_vol = argv[1] ;
  out_vol = argv[2] ;

  printf("reading volume from %s...\n", in_vol) ;
  mri_in = MRIread(in_vol) ;
  if (!mri_in)
    ErrorExit(ERROR_NOFILE, "%s: could not read MRI volume %s", Progname,
              in_vol) ;

  /* Convert mri_in to float type */
  /* double would be more accurate */
  if (mri_in->type != MRI_FLOAT)
  {
    printf("Input volume type is %d\n", mri_in->type);
    printf("Change input volume to float type for convenience and accuracy");
    mri_tmp = MRIchangeType(mri_in, MRI_FLOAT, 0, 1.0, 1);
    MRIfree(&mri_in);
    mri_in = mri_tmp; //swap
  }

  /* Get input volume geometry, which is needed to compute i_to_r
   * and r_to_i of input volume. Note that i_to_r and r_to_i assumed
   * a certain prespecified c_r, c_a, c_s
   */
  getVolGeom(mri_in, &vgm_in);

  maxV = -10000.0;
  minV = 10000.0;
  for (z=0; z < mri_in->depth; z++)
    for (y=0; y< mri_in->height; y++)
      for (x=0; x < mri_in->width; x++)
      {
        if (MRIFvox(mri_in, x, y, z) > maxV )
          maxV = MRIFvox(mri_in, x, y,z) ;
        if (MRIFvox(mri_in, x, y, z) < minV )
          minV = MRIFvox(mri_in, x, y,z) ;
      }

  printf("Input volume has max = %g, min =%g\n", maxV, minV);

  printf("Scale input volume by %g \n", scale);

  maxV = -10000.0;
  minV = 10000.0;
  for (z=0; z < mri_in->depth; z++)
    for (y=0; y< mri_in->height; y++)
      for (x=0; x < mri_in->width; x++)
      {
        MRIFvox(mri_in, x, y, z) *= scale;
        if (MRIFvox(mri_in, x, y, z) > maxV )
          maxV = MRIFvox(mri_in, x, y,z) ;
        if (MRIFvox(mri_in, x, y, z) < minV )
          minV = MRIFvox(mri_in, x, y,z) ;
      }

  printf("Input volume after scaling has max = %g, min =%g\n", maxV, minV);

  /* Try to compute the Voxel_to_Voxel transform from the input volume
   * and the registration target/reference volume!
   * If no registration is involved, vox_to_vox is simply identity
   */
  /* Things become more complicated when allowing inverse transform */
  if (transform_flag)
  {
    int transform_type;

    printf("INFO: Applying transformation from file %s...\n",
           transform_fname);
    transform_type =  TransformFileNameType(transform_fname);

    /* Read in LTA transform file name */
    if (transform_type == MNI_TRANSFORM_TYPE ||
        transform_type == TRANSFORM_ARRAY_TYPE ||
        transform_type == REGISTER_DAT ||
        transform_type == FSLREG_TYPE
       )
    {

      printf("Reading transform ...\n");
      lta = LTAreadEx(transform_fname) ;

      if (!lta)
        ErrorExit(ERROR_NOFILE, "%s: could not read transform file %s",
                  Progname, transform_fname) ;

      if (transform_type == FSLREG_TYPE)
      {
        if (lta_src == 0 || lta_dst == 0)
        {
          fprintf(stderr, "ERROR: fslmat does not have information on the src and dst volumes\n");
          fprintf(stderr, "ERROR: you must give options '-src' and '-dst' to specify the src and dst volume infos for the registration\n");
        }


        LTAmodifySrcDstGeom(lta, lta_src, lta_dst); // add src and dst information
        //The following is necessary to interpret FSLMAT correctly!!!
        LTAchangeType(lta, LINEAR_VOX_TO_VOX);
      }
      if (lta->xforms[0].src.valid == 0)
      {
        if (lta_src == 0)
        {
          fprintf(stderr, "The transform does not have the valid src volume info.\n");
          fprintf(stderr, "Either you give src volume info by option -src or\n");
          fprintf(stderr, "make the transform to have the valid src info.\n");
          ErrorExit(ERROR_BAD_PARM, "Bailing out...\n");
        }
        else
        {
          LTAmodifySrcDstGeom(lta, lta_src, NULL); // add src information
        }
      }
      if (lta->xforms[0].dst.valid == 0)
      {
        if (lta_dst == 0)
        {
          fprintf(stderr, "The transform does not have the valid dst volume info.\n");
          fprintf(stderr, "Either you give src volume info by option -dst or\n");
          fprintf(stderr, "make the transform to have the valid dst info.\n");
          fprintf(stderr, "If the dst was average_305, then you can set\n");
          fprintf(stderr, "environmental variable USE_AVERAGE305 true\n");
          fprintf(stderr, "instead.\n");
          ErrorExit(ERROR_BAD_PARM, "Bailing out...\n");
        }
        else
        {
          LTAmodifySrcDstGeom(lta, NULL, lta_dst); // add  dst information
        }
      }


      // The following procedure aims to apply an LTA computed from COR format to a volume in non-COR format, or vice versa, as long as they share the same RAS
      // first change to LINEAR RAS_TO_RAS using old info
      if (lta->type != LINEAR_RAS_TO_RAS)
      {
        LTAchangeType(lta, LINEAR_RAS_TO_RAS);
      }

      // now possiblly reset the src and dst
      if (lta_src != NULL)
      {
        //always trust the user
        LTAmodifySrcDstGeom(lta, lta_src, NULL);
      }
      if (lta_dst != NULL)
      {
        //always trust the user
        LTAmodifySrcDstGeom(lta, NULL, lta_dst);
      }

      if (lta->type == LINEAR_RAS_TO_RAS)
      {
        /* Convert it to VOX_TO_VOX */
        /* VOXELsrc_to_VOXELdst = R2Vdst*R2Rlta*V2Rsrc */
        /* Note whether the input should be identical to src or dst here depends
         * on whether the LTA here is the direct or inverse transform
         */
        i_to_r_src = vg_i_to_r(&lta->xforms[0].src);
        r_to_i_dst = vg_r_to_i(&lta->xforms[0].dst);

        if (!r_to_i_dst || !i_to_r_src)
          ErrorExit(ERROR_BADFILE, "%s: failed to extract volume geometries from input LTA file",Progname);
        m_tmp = MatrixMultiply(lta->xforms[0].m_L, i_to_r_src, NULL);
        V_to_V = MatrixMultiply(r_to_i_dst, m_tmp, NULL);
        MatrixFree(&m_tmp);

        MatrixFree(&i_to_r_src);
        MatrixFree(&r_to_i_dst);
      }
    }
    else
    {
      fprintf(stderr, "unknown transform type in file %s\n",
              transform_fname);
      exit(1);
    }

    if (invert_flag)
    {
      /* Geometry of input volume should match that of the dst of the LTA */
      if (MYvg_isEqual(&lta->xforms[0].dst, &vgm_in) == 0)
      {
        ErrorExit(ERROR_BADFILE, "%s: dst volume of lta doesn't match that of input volume",Progname);
      }

      i_to_r_reg = vg_i_to_r(&lta->xforms[0].src);

      if (!i_to_r_reg)
        ErrorExit(ERROR_BADFILE, "%s: failed to extract i_to_r of registered volume from LTA",Progname);

      m_tmp =  MatrixInverse(V_to_V, NULL);
      if (!m_tmp)
        ErrorExit(ERROR_BADPARM, "%s: transform is singular!", Progname);

      MatrixFree(&V_to_V);
      V_to_V = m_tmp;
    }
    else
    {
      /* Geometry of input volume should match that of the src of the LTA */
      if (MYvg_isEqual(&lta->xforms[0].src, &vgm_in) == 0)
      {
        ErrorExit(ERROR_BADFILE, "%s: src volume of lta doesn't match that of input volume",Progname);
      }

      i_to_r_reg = vg_i_to_r(&lta->xforms[0].dst);

      if (!i_to_r_reg)
        ErrorExit(ERROR_BADFILE, "%s: failed to extract i_to_r of registered volume from LTA",Progname);
    }

  }
  else
  {
    /* No registration transform need be applied */
    V_to_V = MatrixIdentity(4, NULL);
    i_to_r_reg = extract_i_to_r(mri_in);
    if (!i_to_r_reg)
      ErrorExit(ERROR_BADFILE, "%s: failed to extract i_to_r from input volume",Progname);
  }

  /* Now need to find the vox-to-vox transformation between registered volume
   * (or input volume itself if no registration involved) and the output
   * volume, either in COR format or as the out-like volume
   */
  /* Given a volume with a certain i_to_r, we need to compute the necessary
   * vox-to-voxel transform to change its i_to_r to like another volume.
   * The vox-to-vox is equal to R2V(r_to_i)_likevol*i_to_r_current_vol.
   */
  if (out_like_fname)
  {
    mri_tmp = MRIread(out_like_fname) ;
    if (!mri_tmp)
      ErrorExit(ERROR_NOFILE, "%s: could not read template volume from %s",out_like_fname) ;

    /* out_type = mri_tmp->type; */

    /* specify the out-type to float initially so as not to lose accuracy
     * during reslicing, will change type to correct type later.
     */
    mri_out = MRIalloc(mri_tmp->width, mri_tmp->height, mri_tmp->depth, MRI_FLOAT) ;

    MRIcopyHeader(mri_tmp, mri_out) ;
    MRIfree(&mri_tmp);
  }
  else  /* assume output is in COR format */
  {
    mri_out = MRIalloc(256, 256, 256, MRI_FLOAT) ;
    /* out_type = MRI_UCHAR; */

    /* Who says MRIlinearTransformInterp will change the header??
     * I don't think so!
     */
    //E/ set xyzc_ras to coronal ones.. - these'll get zorched
    //by MRIlinearTransformInterp() - copy again later - is there
    //any use in having them here now?  yes, so we can pass mri_out
    //to the ras2vox fns.


    mri_out->imnr0 = 1; /* what's this? */
    mri_out->imnr1 = 256; /* what's this? */
    mri_out->thick = 1.0;
    mri_out->ps = 1.0; /* what's this? */
    mri_out->xsize = mri_out->ysize = mri_out->zsize = 1.0;
    mri_out->xstart = mri_out->ystart = mri_out->zstart = -128.0;
    mri_out->xend = mri_out->yend = mri_out->zend = 128.0;
    mri_out->x_r =-1;
    mri_out->y_r = 0;
    mri_out->z_r = 0;
    mri_out->x_a = 0;
    mri_out->y_a = 0;
    mri_out->z_a = 1;
    mri_out->x_s = 0;
    mri_out->y_s =-1;
    mri_out->z_s = 0;

    /* In this case, the RAS itself is not fully determined, i.e., c_ras.
     * It's quite arbitrary, different values just change the final
     * sitting of the volume inside the RAS system.
     */
    /* NO! The C_RAS has to be set correctly, depending which target
     * volume the previous Vox_to_Vox transformation assumes!
     * When a registration is involved, the target volume is either
     * the src of LTA (direct) or the dst (inverse transform). When
     * just change format, the target volume is the input itself!!
     */
    if (transform_flag)
    {
      if (invert_flag)
      {
        mri_out->c_r = lta->xforms[0].src.c_r;
        mri_out->c_a = lta->xforms[0].src.c_a;
        mri_out->c_s = lta->xforms[0].src.c_s;

      }
      else
      {
        mri_out->c_r = lta->xforms[0].dst.c_r;
        mri_out->c_a = lta->xforms[0].dst.c_a;
        mri_out->c_s = lta->xforms[0].dst.c_s;
      }
    }
    else
    {
      mri_out->c_r = mri_in->c_r;
      mri_out->c_a = mri_in->c_a;
      mri_out->c_s = mri_in->c_s;
    }

    mri_out->ras_good_flag=1; /* What does this flag mean ? */

    /* since output is just transformed input */
    MRIcopyPulseParameters(mri_in, mri_out) ;

  }

  /* Compute the final input-to-output VOX_to_VOX transformation matrix */
  r_to_i_out = extract_r_to_i(mri_out);

  m_tmp = MatrixMultiply(r_to_i_out, i_to_r_reg, NULL);
  V_to_V = MatrixMultiply(m_tmp, V_to_V, V_to_V);
  MatrixFree(&m_tmp);

  printf("InterpMethod = %d\n", InterpMethod);

  /* Modify the MyMRIlinearTr... if I want to implement my cubic-B-spline
   * interpolation method. Otherwise, unnecessary
   */
  /* mri_out = MyMRIlinearTransformInterp(mri_in, mri_out, V_to_V, InterpMethod); */
  if (InterpMethod == SAMPLE_BSPLINE)
    mri_out = MRIlinearTransformInterpBSpline(mri_in, mri_out, V_to_V,
              SplineDegree);
  else
    mri_out = MRIlinearTransformInterp(mri_in, mri_out, V_to_V, InterpMethod);

  maxV = -10000.0;
  minV = 10000.0;
  for (z=0; z < mri_out->depth; z++)
    for (y=0; y< mri_out->height; y++)
      for (x=0; x < mri_out->width; x++)
      {
        if (MRIFvox(mri_out, x, y, z) > maxV )
          maxV = MRIFvox(mri_out, x, y,z) ;
        if (MRIFvox(mri_out, x, y, z) < minV )
          minV = MRIFvox(mri_out, x, y,z) ;
      }

  if (autoscale)
  {
    noscale = 1;

    /* compute histogram of output volume */
    HISTOGRAM *h, *hsmooth ;
    float fmin, fmax, val, peak, smooth_peak;
    int i, nbins, bin;

    fmin = minV;
    fmax = maxV;
    if (fmin < 0) fmin = 0;
    nbins = 256 ;
    h = HISTOalloc(nbins) ;
    hsmooth = HISTOcopy(h, NULL) ;
    HISTOclear(h, h) ;
    h->bin_size = (fmax-fmin)/255.0 ;

    for (i = 0 ; i < nbins ; i++)
      h->bins[i] = (i+1)*h->bin_size ;

    for (z=0; z < mri_out->depth; z++)
      for (y=0; y< mri_out->height; y++)
        for (x=0; x < mri_out->width; x++)
        {
          val = MRIFvox(mri_out, x, y, z);
          if (val <= 0) continue;

          bin = nint((val - fmin)/h->bin_size);
          if (bin >= h->nbins)
            bin = h->nbins-1;
          else if (bin < 0)
            bin = 0;

          h->counts[bin] += 1.0;
        }
    HISTOfillHoles(h) ;
    HISTOsmooth(h, hsmooth, 5)  ;
    peak =
      hsmooth->bins[HISTOfindHighestPeakInRegion(h, 1, h->nbins)] ;
    //   smooth_peak =
    //  hsmooth->bins[HISTOfindHighestPeakInRegion(hsmooth, 1, hsmooth->nbins)] ;

    smooth_peak =
      hsmooth->bins[HISTOfindLastPeak(hsmooth, 5, 0.8)] ;

    /*
      bin = nint((smooth_peak - fmin)/hsmooth->bin_size) ;

      printf("Highest peak has count = %d\n", (int)hsmooth->counts[bin]);

      bin = nint((420 - fmin)/hsmooth->bin_size) ;

      printf("bin at 420 has count = %d\n", (int)hsmooth->counts[bin]);
    */

    scale =  110.0/smooth_peak;
    printf("peak of output volume is %g, smooth-peak is %g, multiply by %g to scale it to 110\n", peak, smooth_peak, scale);
    for (z=0; z < mri_out->depth; z++)
      for (y=0; y< mri_out->height; y++)
        for (x=0; x < mri_out->width; x++)
        {
          val = MRIFvox(mri_out, x, y, z);
          MRIFvox(mri_out, x, y, z) = val*scale;
        }

  }


  printf("Output volume (before type-conversion) has max = %g, min =%g\n", maxV, minV);

  /* Finally change type to desired */
  if (mri_out->type != out_type)
  {
    printf("Change output volume to type %d\n", out_type);
    /* I need to modify the MIRchangeType function to make sure
     * it does roundoff instead of simple truncation!
     */
    /* Note if the last flag is set to 1, then it won't do scaling
       and small float numbers will become zero after convert to
       BYTE
    */
    if (out_type == 0 && noscale == 1)
    {
      //convert data to UCHAR
      mri_tmp = MRIalloc(mri_out->width, mri_out->height, mri_out->depth, out_type) ;
      MRIcopyHeader(mri_out, mri_tmp);
      for (z=0; z < mri_out->depth; z++)
        for (y=0; y< mri_out->height; y++)
          for (x=0; x < mri_out->width; x++)
          {
            value = floor(MRIgetVoxVal(mri_out, x, y, z, 0) + 0.5);
            if (value < 0 ) value = 0;
            if (value > 255) value = 255;
            MRIvox(mri_tmp,x,y,z) = (unsigned char)value;
          }
    }
    else
      mri_tmp = MRIchangeType(mri_out, out_type, thred_low, thred_high, noscale);

    MRIfree(&mri_out);
    mri_out = mri_tmp; //swap
  }

  MRIwrite(mri_out, out_vol) ;

  MRIfree(&mri_in);
  MRIfree(&mri_out);

  if (lta_src)
    MRIfree(&lta_src);
  if (lta_dst)
    MRIfree(&lta_dst);

  MatrixFree(&V_to_V);

  if (!r_to_i_out)
    MatrixFree(&r_to_i_out);

  if (!i_to_r_reg)
    MatrixFree(&i_to_r_reg);

  return(0) ;  /* for ansi */
}
int
main(int argc, char *argv[]) {
  char         *ref_fname, *in_fname, *out_fname, fname[STRLEN], **av ;
  MRI          *mri_ref, *mri_in, *mri_orig, *mri_in_red, *mri_ref_red,
  *mri_in_tmp, *mri_ref_tmp, *mri_ref_orig, *mri_in_orig ;
  int          ac, nargs, i, msec, minutes, seconds ;
  struct timeb start ;
  MATRIX       *m_L ;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option (argc, argv, "$Id: mri_linear_register.c,v 1.13 2011/03/02 00:04:22 nicks Exp $", "$Name: stable5 $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  parms.mri_crop = NULL ;
  parms.l_intensity = 1.0f ;
  parms.niterations = 100 ;
  parms.levels = -1 ;   /* use default */
  parms.dt = 1e-6 ;  /* was 5e-6 */
  parms.tol = INTEGRATION_TOL*5 ;

  parms.dt = 5e-6 ;  /* was 5e-6 */
  parms.tol = 1e-3 ;
  parms.momentum = 0.8 ;
  parms.max_levels = MAX_LEVELS ;
  parms.factor = 1.0 ;
  parms.niterations = 25 ;
  Progname = argv[0] ;


  DiagInit(NULL, NULL, NULL) ;
  ErrorInit(NULL, NULL, NULL) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 4)
    ErrorExit(ERROR_BADPARM,
              "usage: %s <in brain> <template> <output file name>\n",
              Progname) ;

  in_fname = argv[1] ;
  ref_fname = argv[2] ;
  if (xform_mean_fname) {
    int   sno, nsubjects ;
    FILE  *fp ;

    parms.m_xform_mean = MatrixAsciiRead(xform_mean_fname, NULL) ;
    if (!parms.m_xform_mean)
      ErrorExit(Gerror, "%s: could not read parameter means from %s",
                Progname, xform_mean_fname) ;

    fp = fopen(xform_covariance_fname, "r") ;
    if (!fp)
      ErrorExit(ERROR_NOFILE, "%s: could not read covariances from %s",
                Progname, xform_covariance_fname) ;

    fscanf(fp, "nsubjects=%d", &nsubjects) ;
    printf("reading %d transforms...\n", nsubjects) ;

    parms.m_xforms = (MATRIX **)calloc(nsubjects, sizeof(MATRIX *)) ;
    if (!parms.m_xforms)
      ErrorExit(ERROR_NOMEMORY, "%s: could not allocate array of %d xforms",
                Progname, nsubjects) ;
    for (sno = 0 ; sno < nsubjects ; sno++) {
      parms.m_xforms[sno] = MatrixAsciiReadFrom(fp, NULL) ;
      if (!parms.m_xforms[sno])
        ErrorExit(ERROR_NOMEMORY, "%s: could not allocate %dth xform",
                  Progname, sno) ;

    }
    parms.m_xform_covariance = MatrixAsciiReadFrom(fp, NULL) ;
    if (!parms.m_xform_covariance)
      ErrorExit(Gerror, "%s: could not read parameter covariance from %s",
                Progname, xform_covariance_fname) ;
    fclose(fp) ;
    parms.l_priors = l_priors ;
    parms.nxforms = nsubjects ;
  }
  out_fname = argv[3] ;
  FileNameOnly(out_fname, fname) ;
  FileNameRemoveExtension(fname, fname) ;
  strcpy(parms.base_name, fname) ;
  fprintf(stderr, "logging results to %s.log\n", parms.base_name) ;

  TimerStart(&start) ;
  fprintf(stderr, "reading '%s'...\n", ref_fname) ;
  fflush(stderr) ;
  mri_ref = MRIread(ref_fname) ;
  if (!mri_ref)
    ErrorExit(ERROR_NOFILE, "%s: could not open reference volume %s.\n",
              Progname, ref_fname) ;
  if (mri_ref->type != MRI_UCHAR) {
    MRI *mri_tmp ;

    mri_tmp = MRIchangeType(mri_ref, MRI_UCHAR, 0.0, 0.999, FALSE) ;
    MRIfree(&mri_ref) ;
    mri_ref = mri_tmp ;
  }

  if (var_fname)  /* read in a volume of standard deviations */
  {
    MRI *mri_var, *mri_tmp ;

    fprintf(stderr, "reading '%s'...\n", var_fname) ;
    mri_var = MRIread(var_fname) ;
    if (!mri_var)
      ErrorExit(ERROR_NOFILE, "%s: could not open variance volume %s.\n",
                Progname, var_fname) ;
    mri_tmp = MRIconcatenateFrames(mri_ref, mri_var, NULL) ;
    MRIfree(&mri_var) ;
    MRIfree(&mri_ref) ;
    mri_ref = mri_tmp ;
  }
  fprintf(stderr, "reading '%s'...\n", in_fname) ;
  fflush(stderr) ;
  mri_orig = mri_in = MRIread(in_fname) ;
  if (!mri_in)
    ErrorExit(ERROR_NOFILE, "%s: could not open input volume %s.\n",
              Progname, in_fname) ;
  if (mri_in->type != MRI_UCHAR) {
    MRI *mri_tmp ;

    mri_orig = mri_tmp = MRIchangeType(mri_in, MRI_UCHAR, 0.0, 0.999, FALSE) ;
    MRIfree(&mri_in) ;
    mri_in = mri_tmp ;
  }

  /* make sure they are the same size */
  if (mri_in->width  != mri_ref->width ||
      mri_in->height != mri_ref->height  ||
      mri_in->depth  != mri_ref->depth) {
    int  width, height, depth ;
    MRI  *mri_tmp ;

    width = MAX(mri_in->width, mri_ref->width) ;
    height = MAX(mri_in->height, mri_ref->height) ;
    depth = MAX(mri_in->depth, mri_ref->depth) ;
    mri_tmp = MRIalloc(width, height, depth, MRI_UCHAR) ;
    MRIextractInto(mri_in, mri_tmp, 0, 0, 0,
                   mri_in->width, mri_in->height, mri_in->depth, 0, 0, 0) ;
#if 0
    MRIfree(&mri_in) ;
#else
    parms.mri_in = mri_in ;
#endif
    mri_in = mri_orig = mri_tmp ;

    mri_tmp = MRIallocSequence(width, height,depth,MRI_UCHAR,mri_ref->nframes);
    MRIextractInto(mri_ref, mri_tmp, 0, 0, 0,
                   mri_ref->width, mri_ref->height, mri_ref->depth, 0, 0, 0) ;
#if 0
    MRIfree(&mri_ref) ;
#else
    parms.mri_in = mri_in ;
#endif
    mri_ref = mri_tmp ;
  }


  if (!FZERO(tx) || !FZERO(ty) || !FZERO(tz)) {
    MRI *mri_tmp ;

    fprintf(stderr, "translating second volume by (%2.1f, %2.1f, %2.1f)\n",
            tx, ty, tz) ;
    mri_tmp = MRItranslate(mri_in, NULL, tx, ty, tz) ;
    MRIfree(&mri_in) ;
    mri_in = mri_tmp ;
  }

  if (!FZERO(rzrot)) {
    MRI *mri_tmp ;

    fprintf(stderr,
            "rotating second volume by %2.1f degrees around Z axis\n",
            (float)DEGREES(rzrot)) ;
    mri_tmp = MRIrotateZ_I(mri_in, NULL, rzrot) ;
    MRIfree(&mri_in) ;
    mri_in = mri_tmp ;
  }
  if (!FZERO(rxrot)) {
    MRI *mri_tmp ;

    fprintf(stderr,
            "rotating second volume by %2.1f degrees around X axis\n",
            (float)DEGREES(rxrot)) ;
    mri_tmp = MRIrotateX_I(mri_in, NULL, rxrot) ;
    MRIfree(&mri_in) ;
    mri_in = mri_tmp ;
  }
  if (!FZERO(ryrot)) {
    MRI *mri_tmp ;

    fprintf(stderr,
            "rotating second volume by %2.1f degrees around Y axis\n",
            (float)DEGREES(ryrot)) ;
    mri_tmp = MRIrotateY_I(mri_in, NULL, ryrot) ;
    MRIfree(&mri_in) ;
    mri_in = mri_tmp ;
  }

  if (!transform_loaded)   /* wasn't preloaded */
    parms.lta = LTAalloc(1, mri_in) ;

  if (!FZERO(blur_sigma)) {
    MRI *mri_kernel, *mri_tmp ;

    mri_kernel = MRIgaussian1d(blur_sigma, 100) ;
    mri_tmp = MRIconvolveGaussian(mri_in, NULL, mri_kernel) ;
    mri_in = mri_tmp ;
    MRIfree(&mri_kernel) ;
  }
  MRIscaleMeanIntensities(mri_in, mri_ref, mri_in);

  mri_ref_orig = mri_ref ;
  mri_in_orig = mri_in ;
  if (nreductions > 0) {
    mri_in_red = mri_in_tmp = MRIcopy(mri_in, NULL) ;
    mri_ref_red = mri_ref_tmp = MRIcopy(mri_ref, NULL) ;
    for (i = 0 ; i < nreductions ; i++) {
      mri_in_red = MRIreduceByte(mri_in_tmp, NULL) ;
      mri_ref_red = MRIreduceMeanAndStdByte(mri_ref_tmp,NULL);
      MRIfree(&mri_in_tmp);
      MRIfree(&mri_ref_tmp) ;
      mri_in_tmp = mri_in_red ;
      mri_ref_tmp = mri_ref_red ;
    }
    mri_in = mri_in_red ;
    mri_ref = mri_ref_red ;
  }
  /* for diagnostics */
  if (full_res) {
    parms.mri_ref = mri_ref ;
    parms.mri_in = mri_in ;
  } else {
    parms.mri_ref = mri_ref_orig ;
    parms.mri_in = mri_in_orig ;
  }

  m_L = initialize_transform(mri_in, mri_ref, &parms) ;

  if (use_gradient) {
    MRI  *mri_in_mag, *mri_ref_mag, *mri_grad, *mri_mag ;

    printf("computing gradient magnitude of input image...\n") ;
    mri_mag = MRIalloc(mri_in->width, mri_in->height, mri_in->depth,MRI_FLOAT);
    MRIcopyHeader(mri_in, mri_mag) ;
    mri_grad = MRIsobel(mri_in, NULL, mri_mag) ;
    MRIfree(&mri_grad) ;

    /* convert it to ubytes */
    MRIvalScale(mri_mag, mri_mag, 0.0f, 255.0f) ;
    mri_in_mag = MRIclone(mri_in, NULL) ;
    MRIcopy(mri_mag, mri_in_mag) ;
    MRIfree(&mri_mag) ;

    /* now compute gradient of ref image */
    printf("computing gradient magnitude of reference image...\n") ;
    mri_mag = MRIalloc(mri_ref->width, mri_ref->height, mri_ref->depth,MRI_FLOAT);
    MRIcopyHeader(mri_ref, mri_mag) ;
    mri_grad = MRIsobel(mri_ref, NULL, mri_mag) ;
    MRIfree(&mri_grad) ;

    /* convert it to ubytes */
    MRIvalScale(mri_mag, mri_mag, 0.0f, 255.0f) ;
    mri_ref_mag = MRIclone(mri_ref, NULL) ;
    MRIcopy(mri_mag, mri_ref_mag) ;
    MRIfree(&mri_mag) ;

    register_mri(mri_in_mag, mri_ref_mag, &parms, m_L) ;
    MRIfree(&mri_in_mag) ;
    MRIfree(&mri_ref_mag) ;
  }
  register_mri(mri_in, mri_ref, &parms, m_L) ;
  if (check_crop_flag)  /* not working yet! */
  {
    printf("searching for cropped regions in the input image...\n") ;
    parms.mri_crop = find_cropping(mri_orig, mri_ref, &parms) ;
    MRIwrite(parms.mri_crop, "crop.mgh") ;
    register_mri(mri_in, mri_ref, &parms, m_L) ;
  }

  if (voxel_coords) {
    printf("transforming xform to voxel coordinates...\n") ;
    MRIrasXformToVoxelXform(mri_in_orig, mri_ref_orig,
                            parms.lta->xforms[0].m_L,
                            parms.lta->xforms[0].m_L);
    if (Gdiag & DIAG_WRITE) {
      MRI *mri_tmp ;

      mri_tmp = MRIlinearTransform(mri_in_orig, NULL,parms.lta->xforms[0].m_L);
      MRIwriteImageViews(mri_tmp, "morphed", IMAGE_SIZE) ;
      MRIfree(&mri_tmp) ;
    }
  }
  // save src and target info in lta
  getVolGeom(mri_in_orig, &parms.lta->xforms[0].src);
  getVolGeom(mri_ref_orig, &parms.lta->xforms[0].dst);
  fprintf(stderr, "writing output transformation to %s...\n", out_fname) ;
  if (invert_flag) {
    MATRIX *m_tmp ;

    m_tmp = MatrixInverse(parms.lta->xforms[0].m_L, NULL) ;
    MatrixFree(&parms.lta->xforms[0].m_L) ;
    // change src and dst
    getVolGeom(mri_in_orig, &parms.lta->xforms[0].dst);
    getVolGeom(mri_ref_orig, &parms.lta->xforms[0].src);
    parms.lta->xforms[0].m_L = m_tmp ;
  }
  //
  LTAwriteEx(parms.lta, out_fname) ;
  //
  if (mri_ref)
    MRIfree(&mri_ref) ;
  if (mri_in)
    MRIfree(&mri_in) ;
  msec = TimerStop(&start) ;
  seconds = nint((float)msec/1000.0f) ;
  minutes = seconds / 60 ;
  seconds = seconds % 60 ;
  fprintf(stderr, "registration took %d minutes and %d seconds.\n",
          minutes, seconds) ;
  exit(0) ;
  return(0) ;
}