示例#1
0
文件: demo.c 项目: vaiv/OpenANPR
void *detect_in_thread(void *ptr)
{
    float nms = .4;

    layer l = net.layers[net.n-1];
    float *X = det_s.data;
    float *prediction = network_predict(net, X);

    memcpy(predictions[demo_index], prediction, l.outputs*sizeof(float));
    mean_arrays(predictions, FRAMES, l.outputs, avg);
    l.output = avg;

    free_image(det_s);
    if(l.type == DETECTION){
        get_detection_boxes(l, 1, 1, demo_thresh, probs, boxes, 0);
    } else if (l.type == REGION){
        get_region_boxes(l, 1, 1, demo_thresh, probs, boxes, 0, 0, demo_hier_thresh);
    } else {
        error("Last layer must produce detections\n");
    }
    if (nms > 0) do_nms(boxes, probs, l.w*l.h*l.n, l.classes, nms);
    printf("\033[2J");
    printf("\033[1;1H");
    printf("\nFPS:%.1f\n",fps);
    printf("Objects:\n\n");

    images[demo_index] = det;
    det = images[(demo_index + FRAMES/2 + 1)%FRAMES];
    demo_index = (demo_index + 1)%FRAMES;

    draw_detections(det, l.w*l.h*l.n, demo_thresh, boxes, probs, demo_names, demo_alphabet, demo_classes);

    return 0;
}
示例#2
0
文件: demo.c 项目: NomokoAG/darknet
void *detect_in_thread(void *ptr)
{
    running = 1;
    float nms = .4;

    layer l = net.layers[net.n-1];
    float *X = buff_letter[(buff_index+2)%3].data;
    float *prediction = network_predict(net, X);

    memcpy(predictions[demo_index], prediction, l.outputs*sizeof(float));
    mean_arrays(predictions, demo_frame, l.outputs, avg);
    l.output = last_avg2;
    if(demo_delay == 0) l.output = avg;
    if(l.type == DETECTION){
        get_detection_boxes(l, 1, 1, demo_thresh, probs, boxes, 0);
    } else if (l.type == REGION){
        get_region_boxes(l, buff[0].w, buff[0].h, net.w, net.h, demo_thresh, probs, boxes, 0, 0, demo_hier, 1);
    } else {
        error("Last layer must produce detections\n");
    }
    if (nms > 0) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);

    printf("\033[2J");
    printf("\033[1;1H");
    printf("\nFPS:%.1f\n",fps);
    printf("Objects:\n\n");
    image display = buff[(buff_index+2) % 3];
    draw_detections(display, demo_detections, demo_thresh, boxes, probs, demo_names, demo_alphabet, demo_classes);

    demo_index = (demo_index + 1)%demo_frame;
    running = 0;
    return 0;
}
示例#3
0
void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
{
    image **alphabet = load_alphabet();
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    detection_layer l = net.layers[net.n-1];
    set_batch_network(&net, 1);
    srand(2222222);
    clock_t time;
    char buff[256];
    char *input = buff;
    int j;
    float nms=.4;
    box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
    float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
    for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        } else {
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input,0,0);
        image sized = resize_image(im, net.w, net.h);
        float *X = sized.data;
        time=clock();
        network_predict(net, X);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0);
        if (nms) do_nms_sort_v2(boxes, probs, l.side*l.side*l.n, l.classes, nms);
        //draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, alphabet, 20);
        draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, alphabet, 20);
        save_image(im, "predictions");
        show_image(im, "predictions");

        free_image(im);
        free_image(sized);
#ifdef OPENCV
        cvWaitKey(0);
        cvDestroyAllWindows();
#endif
        if (filename) break;
    }
}
示例#4
0
void validate_yolo_recall(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));

    char *base = "results/comp4_det_test_";
    list *plist = get_paths("data/voc.2007.test");
    char **paths = (char **)list_to_array(plist);

    layer l = net.layers[net.n-1];
    int classes = l.classes;
    int side = l.side;

    int j, k;
    FILE **fps = calloc(classes, sizeof(FILE *));
    for(j = 0; j < classes; ++j){
        char buff[1024];
        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
        fps[j] = fopen(buff, "w");
    }
    box *boxes = calloc(side*side*l.n, sizeof(box));
    float **probs = calloc(side*side*l.n, sizeof(float *));
    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));

    int m = plist->size;
    int i=0;

    float thresh = .001;
    float iou_thresh = .5;
    float nms = 0;

    int total = 0;
    int correct = 0;
    int proposals = 0;
    float avg_iou = 0;

    for(i = 0; i < m; ++i){
        char *path = paths[i];
        image orig = load_image_color(path, 0, 0);
        image sized = resize_image(orig, net.w, net.h);
        char *id = basecfg(path);
        network_predict(net, sized.data);
        get_detection_boxes(l, orig.w, orig.h, thresh, probs, boxes, 1);
        if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);

        char labelpath[4096];
		replace_image_to_label(path, labelpath);

        int num_labels = 0;
        box_label *truth = read_boxes(labelpath, &num_labels);
        for(k = 0; k < side*side*l.n; ++k){
            if(probs[k][0] > thresh){
                ++proposals;
            }
        }
        for (j = 0; j < num_labels; ++j) {
            ++total;
            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
            float best_iou = 0;
            for(k = 0; k < side*side*l.n; ++k){
                float iou = box_iou(boxes[k], t);
                if(probs[k][0] > thresh && iou > best_iou){
                    best_iou = iou;
                }
            }
            avg_iou += best_iou;
            if(best_iou > iou_thresh){
                ++correct;
            }
        }

        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
        free(id);
        free_image(orig);
        free_image(sized);
    }
}
示例#5
0
void validate_yolo(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));

    char *base = "results/comp4_det_test_";
    //list *plist = get_paths("data/voc.2007.test");
    list *plist = get_paths("/home/pjreddie/data/voc/2007_test.txt");
    //list *plist = get_paths("data/voc.2012.test");
    char **paths = (char **)list_to_array(plist);

    layer l = net.layers[net.n-1];
    int classes = l.classes;

    int j;
    FILE **fps = calloc(classes, sizeof(FILE *));
    for(j = 0; j < classes; ++j){
        char buff[1024];
        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
        fps[j] = fopen(buff, "w");
    }
    box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
    float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
    for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));

    int m = plist->size;
    int i=0;
    int t;

    float thresh = .001;
    int nms = 1;
    float iou_thresh = .5;

    int nthreads = 8;
    image *val = calloc(nthreads, sizeof(image));
    image *val_resized = calloc(nthreads, sizeof(image));
    image *buf = calloc(nthreads, sizeof(image));
    image *buf_resized = calloc(nthreads, sizeof(image));
    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));

    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.type = IMAGE_DATA;

    for(t = 0; t < nthreads; ++t){
        args.path = paths[i+t];
        args.im = &buf[t];
        args.resized = &buf_resized[t];
        thr[t] = load_data_in_thread(args);
    }
    time_t start = time(0);
    for(i = nthreads; i < m+nthreads; i += nthreads){
        fprintf(stderr, "%d\n", i);
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            pthread_join(thr[t], 0);
            val[t] = buf[t];
            val_resized[t] = buf_resized[t];
        }
        for(t = 0; t < nthreads && i+t < m; ++t){
            args.path = paths[i+t];
            args.im = &buf[t];
            args.resized = &buf_resized[t];
            thr[t] = load_data_in_thread(args);
        }
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            char *path = paths[i+t-nthreads];
            char *id = basecfg(path);
            float *X = val_resized[t].data;
            network_predict(net, X);
            int w = val[t].w;
            int h = val[t].h;
            get_detection_boxes(l, w, h, thresh, probs, boxes, 0);
            if (nms) do_nms_sort_v2(boxes, probs, l.side*l.side*l.n, classes, iou_thresh);
            print_yolo_detections(fps, id, boxes, probs, l.side*l.side*l.n, classes, w, h);
            free(id);
            free_image(val[t]);
            free_image(val_resized[t]);
        }
    }
    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}