/*
 * Measure distance between two range bounds.
 */
static float8
get_distance(TypeCacheEntry *typcache, RangeBound *bound1, RangeBound *bound2)
{
	bool		has_subdiff = OidIsValid(typcache->rng_subdiff_finfo.fn_oid);

	if (!bound1->infinite && !bound2->infinite)
	{
		/*
		 * No bounds are infinite, use subdiff function or return default
		 * value of 1.0 if no subdiff is available.
		 */
		if (has_subdiff)
			return
				DatumGetFloat8(FunctionCall2Coll(&typcache->rng_subdiff_finfo,
												 typcache->rng_collation,
												 bound2->val,
												 bound1->val));
		else
			return 1.0;
	}
	else if (bound1->infinite && bound2->infinite)
	{
		/* Both bounds are infinite */
		if (bound1->lower == bound2->lower)
			return 0.0;
		else
			return get_float8_infinity();
	}
	else
	{
		/* One bound is infinite, another is not */
		return get_float8_infinity();
	}
}
示例#2
0
/*
 * The GiST MinDist method for boxes
 *
 */
Datum
gist_box_mindistance(PG_FUNCTION_ARGS)
{
	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
	BOX		   *query = PG_GETARG_BOX_P(1);
	double     d;

	if (DatumGetBoxP(entry->key) == NULL || query == NULL) {
	  d = get_float8_infinity();
	  PG_RETURN_FLOAT8(d);
	}
        d = box_mindist_internal(DatumGetBoxP(entry->key), query);
	PG_RETURN_FLOAT8(d);
}
示例#3
0
static bool
check_special_value(char *ptr, double *retval, char **endptr)
{
	if (pg_strncasecmp(ptr, "NaN", 3) == 0)
	{
		*retval = get_float8_nan();
		*endptr = ptr + 3;
		return true;
	}
	else if (pg_strncasecmp(ptr, "Infinity", 8) == 0)
	{
		*retval = get_float8_infinity();
		*endptr = ptr + 8;
		return true;
	}
	else if (pg_strncasecmp(ptr, "-Infinity", 9) == 0)
	{
		*retval = -get_float8_infinity();
		*endptr = ptr + 9;
		return true;
	}

	return false;
}
示例#4
0
static float8
gbt_ts_dist(const void *a, const void *b)
{
	const Timestamp *aa = (const Timestamp *) a;
	const Timestamp *bb = (const Timestamp *) b;
	Interval   *i;

	if (TIMESTAMP_NOT_FINITE(*aa) || TIMESTAMP_NOT_FINITE(*bb))
		return get_float8_infinity();

	i = DatumGetIntervalP(DirectFunctionCall2(timestamp_mi,
											  TimestampGetDatumFast(*aa),
											  TimestampGetDatumFast(*bb)));
	return (float8) Abs(INTERVAL_TO_SEC(i));
}
示例#5
0
/*
 * Initialize the traversal value
 *
 * In the beginning, we don't have any restrictions.  We have to
 * initialize the struct to cover the whole 4D space.
 */
static RectBox *
initRectBox()
{
	RectBox	   *rect_box = (RectBox *) palloc(sizeof(RectBox));
	double		infinity = get_float8_infinity();

	rect_box->range_box_x.left.low = -infinity;
	rect_box->range_box_x.left.high = infinity;

	rect_box->range_box_x.right.low = -infinity;
	rect_box->range_box_x.right.high = infinity;

	rect_box->range_box_y.left.low = -infinity;
	rect_box->range_box_y.left.high = infinity;

	rect_box->range_box_y.right.low = -infinity;
	rect_box->range_box_y.right.high = infinity;

	return rect_box;
}
示例#6
0
文件: gistproc.c 项目: kaigai/sepgsql
/*
 * Size of a BOX for penalty-calculation purposes.
 * The result can be +Infinity, but not NaN.
 */
static double
size_box(const BOX *box)
{
	/*
	 * Check for zero-width cases.  Note that we define the size of a zero-
	 * by-infinity box as zero.  It's important to special-case this somehow,
	 * as naively multiplying infinity by zero will produce NaN.
	 *
	 * The less-than cases should not happen, but if they do, say "zero".
	 */
	if (FLOAT8_LE(box->high.x, box->low.x) ||
		FLOAT8_LE(box->high.y, box->low.y))
		return 0.0;

	/*
	 * We treat NaN as larger than +Infinity, so any distance involving a NaN
	 * and a non-NaN is infinite.  Note the previous check eliminated the
	 * possibility that the low fields are NaNs.
	 */
	if (isnan(box->high.x) || isnan(box->high.y))
		return get_float8_infinity();
	return (box->high.x - box->low.x) * (box->high.y - box->low.y);
}
示例#7
0
文件: gistget.c 项目: adam8157/gpdb
/*
 * gistindex_keytest() -- does this index tuple satisfy the scan key(s)?
 *
 * The index tuple might represent either a heap tuple or a lower index page,
 * depending on whether the containing page is a leaf page or not.
 *
 * On success return for a heap tuple, *recheck_p is set to indicate
 * whether recheck is needed.  We recheck if any of the consistent() functions
 * request it.  recheck is not interesting when examining a non-leaf entry,
 * since we must visit the lower index page if there's any doubt.
 *
 * If we are doing an ordered scan, so->distances[] is filled with distance
 * data from the distance() functions before returning success.
 *
 * We must decompress the key in the IndexTuple before passing it to the
 * sk_funcs (which actually are the opclass Consistent or Distance methods).
 *
 * Note that this function is always invoked in a short-lived memory context,
 * so we don't need to worry about cleaning up allocated memory, either here
 * or in the implementation of any Consistent or Distance methods.
 */
static bool
gistindex_keytest(IndexScanDesc scan,
				  IndexTuple tuple,
				  Page page,
				  OffsetNumber offset,
				  bool *recheck_p)
{
	GISTScanOpaque so = (GISTScanOpaque) scan->opaque;
	GISTSTATE  *giststate = so->giststate;
	ScanKey		key = scan->keyData;
	int			keySize = scan->numberOfKeys;
	double	   *distance_p;
	Relation	r = scan->indexRelation;

	*recheck_p = false;

	/*
	 * If it's a leftover invalid tuple from pre-9.1, treat it as a match with
	 * minimum possible distances.  This means we'll always follow it to the
	 * referenced page.
	 *
	 * GPDB: the virtual TIDs created for AO tables use the full range of
	 * offset numbers from 0 to 65535. So a tuple on leaf page that looks like
	 * an invalid tuple, is actually ok.
	 */
	if (!GistPageIsLeaf(page) && GistTupleIsInvalid(tuple))
	{
		int			i;

		for (i = 0; i < scan->numberOfOrderBys; i++)
			so->distances[i] = -get_float8_infinity();
		return true;
	}

	/* Check whether it matches according to the Consistent functions */
	while (keySize > 0)
	{
		Datum		datum;
		bool		isNull;

		datum = index_getattr(tuple,
							  key->sk_attno,
							  giststate->tupdesc,
							  &isNull);

		if (key->sk_flags & SK_ISNULL)
		{
			/*
			 * On non-leaf page we can't conclude that child hasn't NULL
			 * values because of assumption in GiST: union (VAL, NULL) is VAL.
			 * But if on non-leaf page key IS NULL, then all children are
			 * NULL.
			 */
			if (key->sk_flags & SK_SEARCHNULL)
			{
				if (GistPageIsLeaf(page) && !isNull)
					return false;
			}
			else
			{
				Assert(key->sk_flags & SK_SEARCHNOTNULL);
				if (isNull)
					return false;
			}
		}
		else if (isNull)
		{
			return false;
		}
		else
		{
			Datum		test;
			bool		recheck;
			GISTENTRY	de;

			gistdentryinit(giststate, key->sk_attno - 1, &de,
						   datum, r, page, offset,
						   FALSE, isNull);

			/*
			 * Call the Consistent function to evaluate the test.  The
			 * arguments are the index datum (as a GISTENTRY*), the comparison
			 * datum, the comparison operator's strategy number and subtype
			 * from pg_amop, and the recheck flag.
			 *
			 * (Presently there's no need to pass the subtype since it'll
			 * always be zero, but might as well pass it for possible future
			 * use.)
			 *
			 * We initialize the recheck flag to true (the safest assumption)
			 * in case the Consistent function forgets to set it.
			 */
			recheck = true;

			test = FunctionCall5Coll(&key->sk_func,
									 key->sk_collation,
									 PointerGetDatum(&de),
									 key->sk_argument,
									 Int32GetDatum(key->sk_strategy),
									 ObjectIdGetDatum(key->sk_subtype),
									 PointerGetDatum(&recheck));

			if (!DatumGetBool(test))
				return false;
			*recheck_p |= recheck;
		}

		key++;
		keySize--;
	}

	/* OK, it passes --- now let's compute the distances */
	key = scan->orderByData;
	distance_p = so->distances;
	keySize = scan->numberOfOrderBys;
	while (keySize > 0)
	{
		Datum		datum;
		bool		isNull;

		datum = index_getattr(tuple,
							  key->sk_attno,
							  giststate->tupdesc,
							  &isNull);

		if ((key->sk_flags & SK_ISNULL) || isNull)
		{
			/* Assume distance computes as null and sorts to the end */
			*distance_p = get_float8_infinity();
		}
		else
		{
			Datum		dist;
			GISTENTRY	de;

			gistdentryinit(giststate, key->sk_attno - 1, &de,
						   datum, r, page, offset,
						   FALSE, isNull);

			/*
			 * Call the Distance function to evaluate the distance.  The
			 * arguments are the index datum (as a GISTENTRY*), the comparison
			 * datum, and the ordering operator's strategy number and subtype
			 * from pg_amop.
			 *
			 * (Presently there's no need to pass the subtype since it'll
			 * always be zero, but might as well pass it for possible future
			 * use.)
			 *
			 * Note that Distance functions don't get a recheck argument. We
			 * can't tolerate lossy distance calculations on leaf tuples;
			 * there is no opportunity to re-sort the tuples afterwards.
			 */
			dist = FunctionCall4Coll(&key->sk_func,
									 key->sk_collation,
									 PointerGetDatum(&de),
									 key->sk_argument,
									 Int32GetDatum(key->sk_strategy),
									 ObjectIdGetDatum(key->sk_subtype));

			*distance_p = DatumGetFloat8(dist);
		}

		key++;
		distance_p++;
		keySize--;
	}

	return true;
}
示例#8
0
文件: gistget.c 项目: Brar/postgres
/*
 * gistindex_keytest() -- does this index tuple satisfy the scan key(s)?
 *
 * The index tuple might represent either a heap tuple or a lower index page,
 * depending on whether the containing page is a leaf page or not.
 *
 * On success return for a heap tuple, *recheck_p is set to indicate whether
 * the quals need to be rechecked.  We recheck if any of the consistent()
 * functions request it.  recheck is not interesting when examining a non-leaf
 * entry, since we must visit the lower index page if there's any doubt.
 * Similarly, *recheck_distances_p is set to indicate whether the distances
 * need to be rechecked, and it is also ignored for non-leaf entries.
 *
 * If we are doing an ordered scan, so->distances[] is filled with distance
 * data from the distance() functions before returning success.
 *
 * We must decompress the key in the IndexTuple before passing it to the
 * sk_funcs (which actually are the opclass Consistent or Distance methods).
 *
 * Note that this function is always invoked in a short-lived memory context,
 * so we don't need to worry about cleaning up allocated memory, either here
 * or in the implementation of any Consistent or Distance methods.
 */
static bool
gistindex_keytest(IndexScanDesc scan,
				  IndexTuple tuple,
				  Page page,
				  OffsetNumber offset,
				  bool *recheck_p,
				  bool *recheck_distances_p)
{
	GISTScanOpaque so = (GISTScanOpaque) scan->opaque;
	GISTSTATE  *giststate = so->giststate;
	ScanKey		key = scan->keyData;
	int			keySize = scan->numberOfKeys;
	double	   *distance_p;
	Relation	r = scan->indexRelation;

	*recheck_p = false;
	*recheck_distances_p = false;

	/*
	 * If it's a leftover invalid tuple from pre-9.1, treat it as a match with
	 * minimum possible distances.  This means we'll always follow it to the
	 * referenced page.
	 */
	if (GistTupleIsInvalid(tuple))
	{
		int			i;

		if (GistPageIsLeaf(page))	/* shouldn't happen */
			elog(ERROR, "invalid GiST tuple found on leaf page");
		for (i = 0; i < scan->numberOfOrderBys; i++)
			so->distances[i] = -get_float8_infinity();
		return true;
	}

	/* Check whether it matches according to the Consistent functions */
	while (keySize > 0)
	{
		Datum		datum;
		bool		isNull;

		datum = index_getattr(tuple,
							  key->sk_attno,
							  giststate->tupdesc,
							  &isNull);

		if (key->sk_flags & SK_ISNULL)
		{
			/*
			 * On non-leaf page we can't conclude that child hasn't NULL
			 * values because of assumption in GiST: union (VAL, NULL) is VAL.
			 * But if on non-leaf page key IS NULL, then all children are
			 * NULL.
			 */
			if (key->sk_flags & SK_SEARCHNULL)
			{
				if (GistPageIsLeaf(page) && !isNull)
					return false;
			}
			else
			{
				Assert(key->sk_flags & SK_SEARCHNOTNULL);
				if (isNull)
					return false;
			}
		}
		else if (isNull)
		{
			return false;
		}
		else
		{
			Datum		test;
			bool		recheck;
			GISTENTRY	de;

			gistdentryinit(giststate, key->sk_attno - 1, &de,
						   datum, r, page, offset,
						   false, isNull);

			/*
			 * Call the Consistent function to evaluate the test.  The
			 * arguments are the index datum (as a GISTENTRY*), the comparison
			 * datum, the comparison operator's strategy number and subtype
			 * from pg_amop, and the recheck flag.
			 *
			 * (Presently there's no need to pass the subtype since it'll
			 * always be zero, but might as well pass it for possible future
			 * use.)
			 *
			 * We initialize the recheck flag to true (the safest assumption)
			 * in case the Consistent function forgets to set it.
			 */
			recheck = true;

			test = FunctionCall5Coll(&key->sk_func,
									 key->sk_collation,
									 PointerGetDatum(&de),
									 key->sk_argument,
									 Int16GetDatum(key->sk_strategy),
									 ObjectIdGetDatum(key->sk_subtype),
									 PointerGetDatum(&recheck));

			if (!DatumGetBool(test))
				return false;
			*recheck_p |= recheck;
		}

		key++;
		keySize--;
	}

	/* OK, it passes --- now let's compute the distances */
	key = scan->orderByData;
	distance_p = so->distances;
	keySize = scan->numberOfOrderBys;
	while (keySize > 0)
	{
		Datum		datum;
		bool		isNull;

		datum = index_getattr(tuple,
							  key->sk_attno,
							  giststate->tupdesc,
							  &isNull);

		if ((key->sk_flags & SK_ISNULL) || isNull)
		{
			/* Assume distance computes as null and sorts to the end */
			*distance_p = get_float8_infinity();
		}
		else
		{
			Datum		dist;
			bool		recheck;
			GISTENTRY	de;

			gistdentryinit(giststate, key->sk_attno - 1, &de,
						   datum, r, page, offset,
						   false, isNull);

			/*
			 * Call the Distance function to evaluate the distance.  The
			 * arguments are the index datum (as a GISTENTRY*), the comparison
			 * datum, the ordering operator's strategy number and subtype from
			 * pg_amop, and the recheck flag.
			 *
			 * (Presently there's no need to pass the subtype since it'll
			 * always be zero, but might as well pass it for possible future
			 * use.)
			 *
			 * If the function sets the recheck flag, the returned distance is
			 * a lower bound on the true distance and needs to be rechecked.
			 * We initialize the flag to 'false'.  This flag was added in
			 * version 9.5; distance functions written before that won't know
			 * about the flag, but are expected to never be lossy.
			 */
			recheck = false;
			dist = FunctionCall5Coll(&key->sk_func,
									 key->sk_collation,
									 PointerGetDatum(&de),
									 key->sk_argument,
									 Int16GetDatum(key->sk_strategy),
									 ObjectIdGetDatum(key->sk_subtype),
									 PointerGetDatum(&recheck));
			*recheck_distances_p |= recheck;
			*distance_p = DatumGetFloat8(dist);
		}

		key++;
		distance_p++;
		keySize--;
	}

	return true;
}
示例#9
0
static Datum
leftmostvalue_float8(void)
{
	return Float8GetDatum(-get_float8_infinity());
}
示例#10
0
Datum gist_infinite_mindistance(PG_FUNCTION_ARGS)
{
  double d = get_float8_infinity();
  PG_RETURN_FLOAT8(d);  
}