bool ktx_texture::consistency_check() const { if (!check_header()) return false; uint32_t block_dim = 0, bytes_per_block = 0; if ((!m_header.m_glType) || (!m_header.m_glFormat)) { if ((m_header.m_glType) || (m_header.m_glFormat)) return false; if (!ktx_get_ogl_fmt_desc(m_header.m_glInternalFormat, m_header.m_glType, block_dim, bytes_per_block)) return false; if (block_dim == 1) return false; //if ((get_width() % block_dim) || (get_height() % block_dim)) // return false; } else { if (!ktx_get_ogl_fmt_desc(m_header.m_glFormat, m_header.m_glType, block_dim, bytes_per_block)) return false; if (block_dim > 1) return false; } if ((m_block_dim != block_dim) || (m_bytes_per_block != bytes_per_block)) return false; uint32_t total_expected_images = get_total_images(); if (m_image_data.size() != total_expected_images) return false; for (uint32_t mip_level = 0; mip_level < get_num_mips(); mip_level++) { uint32_t mip_width, mip_height, mip_depth; get_mip_dim(mip_level, mip_width, mip_height, mip_depth); const uint32_t mip_row_blocks = (mip_width + m_block_dim - 1) / m_block_dim; const uint32_t mip_col_blocks = (mip_height + m_block_dim - 1) / m_block_dim; if ((!mip_row_blocks) || (!mip_col_blocks)) return false; for (uint32_t array_element = 0; array_element < get_array_size(); array_element++) { for (uint32_t face = 0; face < get_num_faces(); face++) { for (uint32_t zslice = 0; zslice < mip_depth; zslice++) { const uint8_vec &image_data = get_image_data(get_image_index(mip_level, array_element, face, zslice)); uint32_t expected_image_size = mip_row_blocks * mip_col_blocks * m_bytes_per_block; if (image_data.size() != expected_image_size) return false; } } } } return true; }
void RegistrationResult::show(std::ostream &out) const { algebra::VectorD<4> quaternion = R_.get_quaternion(); out << "Name: " << get_name() << " Image index: " << get_image_index() << " Projection index: " << get_projection_index() << " (Phi,Theta,Psi) = ( " << get_phi() << " , " << get_theta() << " , " << get_psi() << " ) | Shift (x,y) " << get_shift() << " CCC = " << get_ccc() << " Quaternion " << quaternion; }
//! Writes a result line to a file void RegistrationResult::write(std::ostream &out) const { algebra::VectorD<4> quaternion = R_.get_quaternion(); char c = '|'; out << get_image_index() << c << get_projection_index() << c << get_phi() << c << get_theta() << c << get_psi() << c << quaternion[0] << c << quaternion[1] << c << quaternion[2] << c << quaternion[3] << c << get_shift()[0] << c << get_shift()[1] << c << get_ccc() << c << std::endl; }
void full_mapping_t::embed() const { unsigned pre_iter = preimage_interval.first, img_iter = image_interval.first; while (pre_iter < preimage_interval.second && img_iter < image_interval.second) { get_image_index(img_iter) = get_preimage_index(pre_iter); pre_iter++; img_iter++; } // for( unsigned pre_iter = preimage_interval.first, img_iter = image_interval.first; // pre_iter < preimage_interval.second, img_iter < image_interval.second; // pre_iter++, img_iter++ ) // { // get_image_index(img_iter) = get_preimage_index(pre_iter); // } }
uint32_t ktx_texture::get_total_images() const { if (!is_valid() || !get_num_mips()) return 0; // bogus: //return get_num_mips() * (get_depth() * get_num_faces() * get_array_size()); // Naive algorithm, could just compute based off the # of mips uint32_t max_index = 0; for (uint32_t mip_level = 0; mip_level < get_num_mips(); mip_level++) { uint32_t total_zslices = math::maximum<uint32_t>(get_depth() >> mip_level, 1U); uint32_t index = get_image_index(mip_level, get_array_size() - 1, get_num_faces() - 1, total_zslices - 1); max_index = math::maximum<uint32_t>(max_index, index); } return max_index + 1; }
bool ktx_texture::write_to_stream(data_stream_serializer &serializer, bool no_keyvalue_data) const { if (!consistency_check()) { VOGL_ASSERT_ALWAYS; return false; } memcpy(m_header.m_identifier, s_ktx_file_id, sizeof(m_header.m_identifier)); m_header.m_endianness = m_opposite_endianness ? KTX_OPPOSITE_ENDIAN : KTX_ENDIAN; if (m_block_dim == 1) { m_header.m_glTypeSize = ktx_get_ogl_type_size(m_header.m_glType); m_header.m_glBaseInternalFormat = m_header.m_glFormat; } else { m_header.m_glBaseInternalFormat = ktx_get_ogl_compressed_base_internal_fmt(m_header.m_glInternalFormat); } m_header.m_bytesOfKeyValueData = 0; if (!no_keyvalue_data) { for (uint32_t i = 0; i < m_key_values.size(); i++) m_header.m_bytesOfKeyValueData += sizeof(uint32_t) + ((m_key_values[i].size() + 3) & ~3); } if (m_opposite_endianness) m_header.endian_swap(); bool success = (serializer.write(&m_header, sizeof(m_header), 1) == 1); if (m_opposite_endianness) m_header.endian_swap(); if (!success) return success; uint32_t total_key_value_bytes = 0; const uint8_t padding[3] = { 0, 0, 0 }; if (!no_keyvalue_data) { for (uint32_t i = 0; i < m_key_values.size(); i++) { uint32_t key_value_size = m_key_values[i].size(); if (m_opposite_endianness) key_value_size = utils::swap32(key_value_size); success = (serializer.write(&key_value_size, sizeof(key_value_size), 1) == 1); total_key_value_bytes += sizeof(key_value_size); if (m_opposite_endianness) key_value_size = utils::swap32(key_value_size); if (!success) return false; if (key_value_size) { if (serializer.write(&m_key_values[i][0], key_value_size, 1) != 1) return false; total_key_value_bytes += key_value_size; uint32_t num_padding = 3 - ((key_value_size + 3) % 4); if ((num_padding) && (serializer.write(padding, num_padding, 1) != 1)) return false; total_key_value_bytes += num_padding; } } (void)total_key_value_bytes; } VOGL_ASSERT(total_key_value_bytes == m_header.m_bytesOfKeyValueData); for (uint32_t mip_level = 0; mip_level < get_num_mips(); mip_level++) { uint32_t mip_width, mip_height, mip_depth; get_mip_dim(mip_level, mip_width, mip_height, mip_depth); const uint32_t mip_row_blocks = (mip_width + m_block_dim - 1) / m_block_dim; const uint32_t mip_col_blocks = (mip_height + m_block_dim - 1) / m_block_dim; if ((!mip_row_blocks) || (!mip_col_blocks)) return false; uint32_t image_size = mip_row_blocks * mip_col_blocks * m_bytes_per_block; if ((m_header.m_numberOfArrayElements) || (get_num_faces() == 1)) image_size *= (get_array_size() * get_num_faces() * mip_depth); if (!image_size) { VOGL_ASSERT_ALWAYS; return false; } if (m_opposite_endianness) image_size = utils::swap32(image_size); success = (serializer.write(&image_size, sizeof(image_size), 1) == 1); if (m_opposite_endianness) image_size = utils::swap32(image_size); if (!success) return false; uint32_t total_mip_size = 0; uint32_t total_image_data_size = 0; if ((!m_header.m_numberOfArrayElements) && (get_num_faces() == 6)) { // plain non-array cubemap for (uint32_t face = 0; face < get_num_faces(); face++) { const uint8_vec &image_data = get_image_data(get_image_index(mip_level, 0, face, 0)); if ((!image_data.size()) || (image_data.size() != image_size)) return false; if (m_opposite_endianness) { uint8_vec tmp_image_data(image_data); utils::endian_swap_mem(&tmp_image_data[0], tmp_image_data.size(), m_header.m_glTypeSize); if (serializer.write(&tmp_image_data[0], tmp_image_data.size(), 1) != 1) return false; } else if (serializer.write(&image_data[0], image_data.size(), 1) != 1) return false; // Not +=, but =, because of the silly image_size plain cubemap exception in the KTX file format total_image_data_size = image_data.size(); uint32_t num_cube_pad_bytes = 3 - ((image_data.size() + 3) % 4); if ((num_cube_pad_bytes) && (serializer.write(padding, num_cube_pad_bytes, 1) != 1)) return false; total_mip_size += image_size + num_cube_pad_bytes; } } else { // 1D, 2D, 3D (normal or array texture), or array cubemap for (uint32_t array_element = 0; array_element < get_array_size(); array_element++) { for (uint32_t face = 0; face < get_num_faces(); face++) { for (uint32_t zslice = 0; zslice < mip_depth; zslice++) { const uint8_vec &image_data = get_image_data(get_image_index(mip_level, array_element, face, zslice)); if (!image_data.size()) return false; if (m_opposite_endianness) { uint8_vec tmp_image_data(image_data); utils::endian_swap_mem(&tmp_image_data[0], tmp_image_data.size(), m_header.m_glTypeSize); if (serializer.write(&tmp_image_data[0], tmp_image_data.size(), 1) != 1) return false; } else if (serializer.write(&image_data[0], image_data.size(), 1) != 1) return false; total_image_data_size += image_data.size(); total_mip_size += image_data.size(); } } } uint32_t num_mip_pad_bytes = 3 - ((total_mip_size + 3) % 4); if ((num_mip_pad_bytes) && (serializer.write(padding, num_mip_pad_bytes, 1) != 1)) return false; total_mip_size += num_mip_pad_bytes; } VOGL_ASSERT((total_mip_size & 3) == 0); VOGL_ASSERT(total_image_data_size == image_size); } return true; }
bool ktx_texture::read_from_stream(data_stream_serializer &serializer) { clear(); // Read header if (serializer.read(&m_header, 1, sizeof(m_header)) != sizeof(ktx_header)) return false; // Check header if (memcmp(s_ktx_file_id, m_header.m_identifier, sizeof(m_header.m_identifier))) return false; if ((m_header.m_endianness != KTX_OPPOSITE_ENDIAN) && (m_header.m_endianness != KTX_ENDIAN)) return false; m_opposite_endianness = (m_header.m_endianness == KTX_OPPOSITE_ENDIAN); if (m_opposite_endianness) { m_header.endian_swap(); if ((m_header.m_glTypeSize != sizeof(uint8_t)) && (m_header.m_glTypeSize != sizeof(uint16_t)) && (m_header.m_glTypeSize != sizeof(uint32_t))) return false; } if (!check_header()) return false; if (!compute_pixel_info()) { #if VOGL_KTX_PVRTEX_WORKAROUNDS // rg [9/10/13] - moved this check into here, instead of in compute_pixel_info(), but need to retest it. if ((!m_header.m_glInternalFormat) && (!m_header.m_glType) && (!m_header.m_glTypeSize) && (!m_header.m_glBaseInternalFormat)) { // PVRTexTool writes bogus headers when outputting ETC1. console::warning("ktx_texture::compute_pixel_info: Header doesn't specify any format, assuming ETC1 and hoping for the best\n"); m_header.m_glBaseInternalFormat = KTX_RGB; m_header.m_glInternalFormat = KTX_ETC1_RGB8_OES; m_header.m_glTypeSize = 1; m_block_dim = 4; m_bytes_per_block = 8; } else #endif return false; } uint8_t pad_bytes[3]; // Read the key value entries uint32_t num_key_value_bytes_remaining = m_header.m_bytesOfKeyValueData; while (num_key_value_bytes_remaining) { if (num_key_value_bytes_remaining < sizeof(uint32_t)) return false; uint32_t key_value_byte_size; if (serializer.read(&key_value_byte_size, 1, sizeof(uint32_t)) != sizeof(uint32_t)) return false; num_key_value_bytes_remaining -= sizeof(uint32_t); if (m_opposite_endianness) key_value_byte_size = utils::swap32(key_value_byte_size); if (key_value_byte_size > num_key_value_bytes_remaining) return false; uint8_vec key_value_data; if (key_value_byte_size) { key_value_data.resize(key_value_byte_size); if (serializer.read(&key_value_data[0], 1, key_value_byte_size) != key_value_byte_size) return false; } m_key_values.push_back(key_value_data); uint32_t padding = 3 - ((key_value_byte_size + 3) % 4); if (padding) { if (serializer.read(pad_bytes, 1, padding) != padding) return false; } num_key_value_bytes_remaining -= key_value_byte_size; if (num_key_value_bytes_remaining < padding) return false; num_key_value_bytes_remaining -= padding; } // Now read the mip levels uint32_t total_faces = get_num_mips() * get_array_size() * get_num_faces() * get_depth(); if ((!total_faces) || (total_faces > 65535)) return false; // See Section 2.8 of KTX file format: No rounding to block sizes should be applied for block compressed textures. // OK, I'm going to break that rule otherwise KTX can only store a subset of textures that DDS can handle for no good reason. #if 0 const uint32_t mip0_row_blocks = m_header.m_pixelWidth / m_block_dim; const uint32_t mip0_col_blocks = VOGL_MAX(1, m_header.m_pixelHeight) / m_block_dim; #else const uint32_t mip0_row_blocks = (m_header.m_pixelWidth + m_block_dim - 1) / m_block_dim; const uint32_t mip0_col_blocks = (VOGL_MAX(1, m_header.m_pixelHeight) + m_block_dim - 1) / m_block_dim; #endif if ((!mip0_row_blocks) || (!mip0_col_blocks)) return false; const uint32_t mip0_depth = VOGL_MAX(1, m_header.m_pixelDepth); VOGL_NOTE_UNUSED(mip0_depth); bool has_valid_image_size_fields = true; bool disable_mip_and_cubemap_padding = false; #if VOGL_KTX_PVRTEX_WORKAROUNDS { // PVRTexTool has a bogus KTX writer that doesn't write any imageSize fields. Nice. size_t expected_bytes_remaining = 0; for (uint32_t mip_level = 0; mip_level < get_num_mips(); mip_level++) { uint32_t mip_width, mip_height, mip_depth; get_mip_dim(mip_level, mip_width, mip_height, mip_depth); const uint32_t mip_row_blocks = (mip_width + m_block_dim - 1) / m_block_dim; const uint32_t mip_col_blocks = (mip_height + m_block_dim - 1) / m_block_dim; if ((!mip_row_blocks) || (!mip_col_blocks)) return false; expected_bytes_remaining += sizeof(uint32_t); if ((!m_header.m_numberOfArrayElements) && (get_num_faces() == 6)) { for (uint32_t face = 0; face < get_num_faces(); face++) { uint32_t slice_size = mip_row_blocks * mip_col_blocks * m_bytes_per_block; expected_bytes_remaining += slice_size; uint32_t num_cube_pad_bytes = 3 - ((slice_size + 3) % 4); expected_bytes_remaining += num_cube_pad_bytes; } } else { uint32_t total_mip_size = 0; for (uint32_t array_element = 0; array_element < get_array_size(); array_element++) { for (uint32_t face = 0; face < get_num_faces(); face++) { for (uint32_t zslice = 0; zslice < mip_depth; zslice++) { uint32_t slice_size = mip_row_blocks * mip_col_blocks * m_bytes_per_block; total_mip_size += slice_size; } } } expected_bytes_remaining += total_mip_size; uint32_t num_mip_pad_bytes = 3 - ((total_mip_size + 3) % 4); expected_bytes_remaining += num_mip_pad_bytes; } } if (serializer.get_stream()->get_remaining() < expected_bytes_remaining) { has_valid_image_size_fields = false; disable_mip_and_cubemap_padding = true; console::warning("ktx_texture::read_from_stream: KTX file size is smaller than expected - trying to read anyway without imageSize fields\n"); } } #endif for (uint32_t mip_level = 0; mip_level < get_num_mips(); mip_level++) { uint32_t mip_width, mip_height, mip_depth; get_mip_dim(mip_level, mip_width, mip_height, mip_depth); const uint32_t mip_row_blocks = (mip_width + m_block_dim - 1) / m_block_dim; const uint32_t mip_col_blocks = (mip_height + m_block_dim - 1) / m_block_dim; if ((!mip_row_blocks) || (!mip_col_blocks)) return false; uint32_t image_size = 0; if (!has_valid_image_size_fields) { if ((!m_header.m_numberOfArrayElements) && (get_num_faces() == 6)) { // The KTX file format has an exception for plain cubemap textures, argh. image_size = mip_row_blocks * mip_col_blocks * m_bytes_per_block; } else { image_size = mip_depth * mip_row_blocks * mip_col_blocks * m_bytes_per_block * get_array_size() * get_num_faces(); } } else { if (serializer.read(&image_size, 1, sizeof(image_size)) != sizeof(image_size)) return false; if (m_opposite_endianness) image_size = utils::swap32(image_size); } if (!image_size) return false; uint32_t total_mip_size = 0; // The KTX file format has an exception for plain cubemap textures, argh. if ((!m_header.m_numberOfArrayElements) && (get_num_faces() == 6)) { // plain non-array cubemap for (uint32_t face = 0; face < get_num_faces(); face++) { VOGL_ASSERT(m_image_data.size() == get_image_index(mip_level, 0, face, 0)); m_image_data.push_back(uint8_vec()); uint8_vec &image_data = m_image_data.back(); image_data.resize(image_size); if (serializer.read(&image_data[0], 1, image_size) != image_size) return false; if (m_opposite_endianness) utils::endian_swap_mem(&image_data[0], image_size, m_header.m_glTypeSize); uint32_t num_cube_pad_bytes = disable_mip_and_cubemap_padding ? 0 : (3 - ((image_size + 3) % 4)); if (serializer.read(pad_bytes, 1, num_cube_pad_bytes) != num_cube_pad_bytes) return false; total_mip_size += image_size + num_cube_pad_bytes; } } else { uint32_t num_image_bytes_remaining = image_size; // 1D, 2D, 3D (normal or array texture), or array cubemap for (uint32_t array_element = 0; array_element < get_array_size(); array_element++) { for (uint32_t face = 0; face < get_num_faces(); face++) { for (uint32_t zslice = 0; zslice < mip_depth; zslice++) { uint32_t slice_size = mip_row_blocks * mip_col_blocks * m_bytes_per_block; if ((!slice_size) || (slice_size > num_image_bytes_remaining)) return false; uint32_t image_index = get_image_index(mip_level, array_element, face, zslice); m_image_data.ensure_element_is_valid(image_index); uint8_vec &image_data = m_image_data[image_index]; image_data.resize(slice_size); if (serializer.read(&image_data[0], 1, slice_size) != slice_size) return false; if (m_opposite_endianness) utils::endian_swap_mem(&image_data[0], slice_size, m_header.m_glTypeSize); num_image_bytes_remaining -= slice_size; total_mip_size += slice_size; } } } if (num_image_bytes_remaining) { VOGL_ASSERT_ALWAYS; return false; } } uint32_t num_mip_pad_bytes = disable_mip_and_cubemap_padding ? 0 : (3 - ((total_mip_size + 3) % 4)); if (serializer.read(pad_bytes, 1, num_mip_pad_bytes) != num_mip_pad_bytes) return false; } return true; }