static int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) { struct inode *inode = dentry->d_inode ; int error ; if (attr->ia_valid & ATTR_SIZE) { /* version 2 items will be caught by the s_maxbytes check ** done for us in vmtruncate */ if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && attr->ia_size > MAX_NON_LFS) return -EFBIG ; /* fill in hole pointers in the expanding truncate case. */ if (attr->ia_size > inode->i_size) { error = generic_cont_expand(inode, attr->ia_size) ; if (inode->u.reiserfs_i.i_prealloc_count > 0) { struct reiserfs_transaction_handle th ; /* we're changing at most 2 bitmaps, inode + super */ journal_begin(&th, inode->i_sb, 4) ; reiserfs_discard_prealloc (&th, inode); journal_end(&th, inode->i_sb, 4) ; } if (error) return error ; } } if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) || ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) && (get_inode_sd_version (inode) == STAT_DATA_V1)) /* stat data of format v3.5 has 16 bit uid and gid */ return -EINVAL; error = inode_change_ok(inode, attr) ; if (!error) inode_setattr(inode, attr) ; return error ; }
/* this first locks inode (neither reads nor sync are permitted), reads tail through page cache, insert direct item. When direct item inserted successfully inode is left locked. Return value is always what we expect from it (number of cut bytes). But when tail remains in the unformatted node, we set mode to SKIP_BALANCING and unlock inode */ int indirect2direct (struct reiserfs_transaction_handle *th, struct inode * p_s_inode, struct page *page, struct path * p_s_path, /* path to the indirect item. */ const struct cpu_key * p_s_item_key, /* Key to look for unformatted node pointer to be cut. */ loff_t n_new_file_size, /* New file size. */ char * p_c_mode) { struct super_block * p_s_sb = p_s_inode->i_sb; struct item_head s_ih; unsigned long n_block_size = p_s_sb->s_blocksize; char * tail; int tail_len, round_tail_len; loff_t pos, pos1; /* position of first byte of the tail */ struct cpu_key key; p_s_sb->u.reiserfs_sb.s_indirect2direct ++; *p_c_mode = M_SKIP_BALANCING; /* store item head path points to. */ copy_item_head (&s_ih, PATH_PITEM_HEAD(p_s_path)); tail_len = (n_new_file_size & (n_block_size - 1)); if (get_inode_sd_version (p_s_inode) == STAT_DATA_V2) round_tail_len = ROUND_UP (tail_len); else round_tail_len = tail_len; pos = le_ih_k_offset (&s_ih) - 1 + (ih_item_len(&s_ih) / UNFM_P_SIZE - 1) * p_s_sb->s_blocksize; pos1 = pos; // we are protected by i_sem. The tail can not disapper, not // append can be done either // we are in truncate or packing tail in file_release tail = (char *)kmap(page) ; /* this can schedule */ if (path_changed (&s_ih, p_s_path)) { /* re-search indirect item */ if ( search_for_position_by_key (p_s_sb, p_s_item_key, p_s_path) == POSITION_NOT_FOUND ) reiserfs_panic(p_s_sb, "PAP-5520: indirect2direct: " "item to be converted %K does not exist", p_s_item_key); copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path)); #ifdef CONFIG_REISERFS_CHECK pos = le_ih_k_offset (&s_ih) - 1 + (ih_item_len(&s_ih) / UNFM_P_SIZE - 1) * p_s_sb->s_blocksize; if (pos != pos1) reiserfs_panic (p_s_sb, "vs-5530: indirect2direct: " "tail position changed while we were reading it"); #endif } /* Set direct item header to insert. */ make_le_item_head (&s_ih, 0, get_inode_item_key_version (p_s_inode), pos1 + 1, TYPE_DIRECT, round_tail_len, 0xffff/*ih_free_space*/); /* we want a pointer to the first byte of the tail in the page. ** the page was locked and this part of the page was up to date when ** indirect2direct was called, so we know the bytes are still valid */ tail = tail + (pos & (PAGE_CACHE_SIZE - 1)) ; PATH_LAST_POSITION(p_s_path)++; key = *p_s_item_key; set_cpu_key_k_type (&key, TYPE_DIRECT); key.key_length = 4; /* Insert tail as new direct item in the tree */ if ( reiserfs_insert_item(th, p_s_path, &key, &s_ih, tail ? tail : NULL) < 0 ) { /* No disk memory. So we can not convert last unformatted node to the direct item. In this case we used to adjust indirect items's ih_free_space. Now ih_free_space is not used, it would be ideal to write zeros to corresponding unformatted node. For now i_size is considered as guard for going out of file size */ kunmap(page) ; return n_block_size - round_tail_len; } kunmap(page) ; /* this will invalidate all the buffers in the page after ** pos1 */ unmap_buffers(page, pos1) ; // note: we have now the same as in above direct2indirect // conversion: there are two keys which have matching first three // key components. They only differ by the fouhth one. /* We have inserted new direct item and must remove last unformatted node. */ p_s_inode->i_blocks += (p_s_sb->s_blocksize / 512); *p_c_mode = M_CUT; /* we store position of first direct item in the in-core inode */ //mark_file_with_tail (p_s_inode, pos1 + 1); p_s_inode->u.reiserfs_i.i_first_direct_byte = pos1 + 1; return n_block_size - round_tail_len; }
/* Allocates blocks for a file to fulfil write request. Maps all unmapped but prepared pages from the list. Updates metadata with newly allocated blocknumbers as needed */ int reiserfs_allocate_blocks_for_region( struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode we work with */ loff_t pos, /* Writing position */ int num_pages, /* number of pages write going to touch */ int write_bytes, /* amount of bytes to write */ struct page **prepared_pages, /* array of prepared pages */ int blocks_to_allocate /* Amount of blocks we need to allocate to fit the data into file */ ) { struct cpu_key key; // cpu key of item that we are going to deal with struct item_head *ih; // pointer to item head that we are going to deal with struct buffer_head *bh; // Buffer head that contains items that we are going to deal with __u32 * item; // pointer to item we are going to deal with INITIALIZE_PATH(path); // path to item, that we are going to deal with. b_blocknr_t *allocated_blocks; // Pointer to a place where allocated blocknumbers would be stored. reiserfs_blocknr_hint_t hint; // hint structure for block allocator. size_t res; // return value of various functions that we call. int curr_block; // current block used to keep track of unmapped blocks. int i; // loop counter int itempos; // position in item unsigned int from = (pos & (PAGE_CACHE_SIZE - 1)); // writing position in // first page unsigned int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; /* last modified byte offset in last page */ __u64 hole_size ; // amount of blocks for a file hole, if it needed to be created. int modifying_this_item = 0; // Flag for items traversal code to keep track // of the fact that we already prepared // current block for journal int will_prealloc = 0; RFALSE(!blocks_to_allocate, "green-9004: tried to allocate zero blocks?"); /* only preallocate if this is a small write */ if (REISERFS_I(inode)->i_prealloc_count || (!(write_bytes & (inode->i_sb->s_blocksize -1)) && blocks_to_allocate < REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize)) will_prealloc = REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize; allocated_blocks = kmalloc((blocks_to_allocate + will_prealloc) * sizeof(b_blocknr_t), GFP_NOFS); /* First we compose a key to point at the writing position, we want to do that outside of any locking region. */ make_cpu_key (&key, inode, pos+1, TYPE_ANY, 3/*key length*/); /* If we came here, it means we absolutely need to open a transaction, since we need to allocate some blocks */ reiserfs_write_lock(inode->i_sb); // Journaling stuff and we need that. journal_begin(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1); // Wish I know if this number enough reiserfs_update_inode_transaction(inode) ; /* Look for the in-tree position of our write, need path for block allocator */ res = search_for_position_by_key(inode->i_sb, &key, &path); if ( res == IO_ERROR ) { res = -EIO; goto error_exit; } /* Allocate blocks */ /* First fill in "hint" structure for block allocator */ hint.th = th; // transaction handle. hint.path = &path; // Path, so that block allocator can determine packing locality or whatever it needs to determine. hint.inode = inode; // Inode is needed by block allocator too. hint.search_start = 0; // We have no hint on where to search free blocks for block allocator. hint.key = key.on_disk_key; // on disk key of file. hint.block = inode->i_blocks>>(inode->i_sb->s_blocksize_bits-9); // Number of disk blocks this file occupies already. hint.formatted_node = 0; // We are allocating blocks for unformatted node. hint.preallocate = will_prealloc; /* Call block allocator to allocate blocks */ res = reiserfs_allocate_blocknrs(&hint, allocated_blocks, blocks_to_allocate, blocks_to_allocate); if ( res != CARRY_ON ) { if ( res == NO_DISK_SPACE ) { /* We flush the transaction in case of no space. This way some blocks might become free */ SB_JOURNAL(inode->i_sb)->j_must_wait = 1; restart_transaction(th, inode, &path); /* We might have scheduled, so search again */ res = search_for_position_by_key(inode->i_sb, &key, &path); if ( res == IO_ERROR ) { res = -EIO; goto error_exit; } /* update changed info for hint structure. */ res = reiserfs_allocate_blocknrs(&hint, allocated_blocks, blocks_to_allocate, blocks_to_allocate); if ( res != CARRY_ON ) { res = -ENOSPC; pathrelse(&path); goto error_exit; } } else { res = -ENOSPC; pathrelse(&path); goto error_exit; } } #ifdef __BIG_ENDIAN // Too bad, I have not found any way to convert a given region from // cpu format to little endian format { int i; for ( i = 0; i < blocks_to_allocate ; i++) allocated_blocks[i]=cpu_to_le32(allocated_blocks[i]); } #endif /* Blocks allocating well might have scheduled and tree might have changed, let's search the tree again */ /* find where in the tree our write should go */ res = search_for_position_by_key(inode->i_sb, &key, &path); if ( res == IO_ERROR ) { res = -EIO; goto error_exit_free_blocks; } bh = get_last_bh( &path ); // Get a bufferhead for last element in path. ih = get_ih( &path ); // Get a pointer to last item head in path. item = get_item( &path ); // Get a pointer to last item in path /* Let's see what we have found */ if ( res != POSITION_FOUND ) { /* position not found, this means that we might need to append file with holes first */ // Since we are writing past the file's end, we need to find out if // there is a hole that needs to be inserted before our writing // position, and how many blocks it is going to cover (we need to // populate pointers to file blocks representing the hole with zeros) { int item_offset = 1; /* * if ih is stat data, its offset is 0 and we don't want to * add 1 to pos in the hole_size calculation */ if (is_statdata_le_ih(ih)) item_offset = 0; hole_size = (pos + item_offset - (le_key_k_offset( get_inode_item_key_version(inode), &(ih->ih_key)) + op_bytes_number(ih, inode->i_sb->s_blocksize))) >> inode->i_sb->s_blocksize_bits; }
int indirect2direct(struct reiserfs_transaction_handle *th, struct inode *inode, struct page *page, struct treepath *path, const struct cpu_key *item_key, loff_t n_new_file_size, char *mode) { struct super_block *sb = inode->i_sb; struct item_head s_ih; unsigned long block_size = sb->s_blocksize; char *tail; int tail_len, round_tail_len; loff_t pos, pos1; struct cpu_key key; BUG_ON(!th->t_trans_id); REISERFS_SB(sb)->s_indirect2direct++; *mode = M_SKIP_BALANCING; copy_item_head(&s_ih, PATH_PITEM_HEAD(path)); tail_len = (n_new_file_size & (block_size - 1)); if (get_inode_sd_version(inode) == STAT_DATA_V2) round_tail_len = ROUND_UP(tail_len); else round_tail_len = tail_len; pos = le_ih_k_offset(&s_ih) - 1 + (ih_item_len(&s_ih) / UNFM_P_SIZE - 1) * sb->s_blocksize; pos1 = pos; tail = (char *)kmap(page); if (path_changed(&s_ih, path)) { if (search_for_position_by_key(sb, item_key, path) == POSITION_NOT_FOUND) reiserfs_panic(sb, "PAP-5520", "item to be converted %K does not exist", item_key); copy_item_head(&s_ih, PATH_PITEM_HEAD(path)); #ifdef CONFIG_REISERFS_CHECK pos = le_ih_k_offset(&s_ih) - 1 + (ih_item_len(&s_ih) / UNFM_P_SIZE - 1) * sb->s_blocksize; if (pos != pos1) reiserfs_panic(sb, "vs-5530", "tail position " "changed while we were reading it"); #endif } make_le_item_head(&s_ih, NULL, get_inode_item_key_version(inode), pos1 + 1, TYPE_DIRECT, round_tail_len, 0xffff ); tail = tail + (pos & (PAGE_CACHE_SIZE - 1)); PATH_LAST_POSITION(path)++; key = *item_key; set_cpu_key_k_type(&key, TYPE_DIRECT); key.key_length = 4; if (reiserfs_insert_item(th, path, &key, &s_ih, inode, tail ? tail : NULL) < 0) { kunmap(page); return block_size - round_tail_len; } kunmap(page); reiserfs_update_sd(th, inode); *mode = M_CUT; REISERFS_I(inode)->i_first_direct_byte = pos1 + 1; return block_size - round_tail_len; }
static int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) { struct inode *inode = dentry->d_inode ; int error ; if (attr->ia_valid & ATTR_SIZE) { /* version 2 items will be caught by the s_maxbytes check ** done for us in vmtruncate */ if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && attr->ia_size > MAX_NON_LFS) return -EFBIG ; /* fill in hole pointers in the expanding truncate case. */ if (attr->ia_size > inode->i_size) { error = generic_cont_expand(inode, attr->ia_size) ; if (inode->u.reiserfs_i.i_prealloc_count > 0) { struct reiserfs_transaction_handle th ; /* we're changing at most 2 bitmaps, inode + super */ journal_begin(&th, inode->i_sb, 4) ; reiserfs_discard_prealloc (&th, inode); journal_end(&th, inode->i_sb, 4) ; } if (error) return error ; } } if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) || ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) && (get_inode_sd_version (inode) == STAT_DATA_V1)) /* stat data of format v3.5 has 16 bit uid and gid */ return -EINVAL; #ifdef CONFIG_REISERFS_IMMUTABLE_HACK if (reiserfs_suid_immutable(inode->i_sb)) { uid_t uid; umode_t mode; uid = (attr->ia_valid & ATTR_UID) ? attr->ia_uid : inode->i_uid; mode = (attr->ia_valid & ATTR_MODE) ? attr->ia_mode : inode->i_mode; if (uid == 0 && (mode & S_ISUID) && !capable(CAP_LINUX_IMMUTABLE)) return -EPERM; } #endif /* COCONFIG_REISERFS_IMMUTABLE_HACK */ error = inode_change_ok(inode, attr) ; #ifdef CONFIG_REISERFS_IMMUTABLE_HACK if (!error && reiserfs_suid_immutable(inode->i_sb)) { uid_t uid; umode_t mode; uid = (attr->ia_valid & ATTR_UID) ? attr->ia_uid : inode->i_uid; mode = (attr->ia_valid & ATTR_MODE) ? attr->ia_mode : inode->i_mode; inode->i_flags &= ~S_IMMUTABLE; if (uid == 0 && (mode & S_ISUID)) { inode->i_flags |= S_IMMUTABLE; #ifdef CONFIG_REISERFS_IMMUTABLE_HACK_DEBUG printk("set IMMUTABLE, inode %p\n", inode); #endif /* CONFIG_REISERFS_IMMUTABLE_HACK_DEBUG */ } } #endif /* COCONFIG_REISERFS_IMMUTABLE_HACK */ if (!error) inode_setattr(inode, attr) ; return error ; }
/* * this first locks inode (neither reads nor sync are permitted), * reads tail through page cache, insert direct item. When direct item * inserted successfully inode is left locked. Return value is always * what we expect from it (number of cut bytes). But when tail remains * in the unformatted node, we set mode to SKIP_BALANCING and unlock * inode */ int indirect2direct(struct reiserfs_transaction_handle *th, struct inode *inode, struct page *page, struct treepath *path, /* path to the indirect item. */ const struct cpu_key *item_key, /* Key to look for * unformatted node * pointer to be cut. */ loff_t n_new_file_size, /* New file size. */ char *mode) { struct super_block *sb = inode->i_sb; struct item_head s_ih; unsigned long block_size = sb->s_blocksize; char *tail; int tail_len, round_tail_len; loff_t pos, pos1; /* position of first byte of the tail */ struct cpu_key key; BUG_ON(!th->t_trans_id); REISERFS_SB(sb)->s_indirect2direct++; *mode = M_SKIP_BALANCING; /* store item head path points to. */ copy_item_head(&s_ih, tp_item_head(path)); tail_len = (n_new_file_size & (block_size - 1)); if (get_inode_sd_version(inode) == STAT_DATA_V2) round_tail_len = ROUND_UP(tail_len); else round_tail_len = tail_len; pos = le_ih_k_offset(&s_ih) - 1 + (ih_item_len(&s_ih) / UNFM_P_SIZE - 1) * sb->s_blocksize; pos1 = pos; /* * we are protected by i_mutex. The tail can not disapper, not * append can be done either * we are in truncate or packing tail in file_release */ tail = (char *)kmap(page); /* this can schedule */ if (path_changed(&s_ih, path)) { /* re-search indirect item */ if (search_for_position_by_key(sb, item_key, path) == POSITION_NOT_FOUND) reiserfs_panic(sb, "PAP-5520", "item to be converted %K does not exist", item_key); copy_item_head(&s_ih, tp_item_head(path)); #ifdef CONFIG_REISERFS_CHECK pos = le_ih_k_offset(&s_ih) - 1 + (ih_item_len(&s_ih) / UNFM_P_SIZE - 1) * sb->s_blocksize; if (pos != pos1) reiserfs_panic(sb, "vs-5530", "tail position " "changed while we were reading it"); #endif } /* Set direct item header to insert. */ make_le_item_head(&s_ih, NULL, get_inode_item_key_version(inode), pos1 + 1, TYPE_DIRECT, round_tail_len, 0xffff /*ih_free_space */ ); /* * we want a pointer to the first byte of the tail in the page. * the page was locked and this part of the page was up to date when * indirect2direct was called, so we know the bytes are still valid */ tail = tail + (pos & (PAGE_SIZE - 1)); PATH_LAST_POSITION(path)++; key = *item_key; set_cpu_key_k_type(&key, TYPE_DIRECT); key.key_length = 4; /* Insert tail as new direct item in the tree */ if (reiserfs_insert_item(th, path, &key, &s_ih, inode, tail ? tail : NULL) < 0) { /* * No disk memory. So we can not convert last unformatted node * to the direct item. In this case we used to adjust * indirect items's ih_free_space. Now ih_free_space is not * used, it would be ideal to write zeros to corresponding * unformatted node. For now i_size is considered as guard for * going out of file size */ kunmap(page); return block_size - round_tail_len; } kunmap(page); /* make sure to get the i_blocks changes from reiserfs_insert_item */ reiserfs_update_sd(th, inode); /* * note: we have now the same as in above direct2indirect * conversion: there are two keys which have matching first three * key components. They only differ by the fourth one. */ /* * We have inserted new direct item and must remove last * unformatted node. */ *mode = M_CUT; /* we store position of first direct item in the in-core inode */ /* mark_file_with_tail (inode, pos1 + 1); */ REISERFS_I(inode)->i_first_direct_byte = pos1 + 1; return block_size - round_tail_len; }