示例#1
0
/* Computes scalar*point and stores the result in r.
 * point can not equal r.
 * Uses a modified algorithm 2P of
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over 
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
 *
 * To protect against side-channel attack the function uses constant time swap,
 * avoiding conditional branches.
 */
static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
	const EC_POINT *point, BN_CTX *ctx)
	{
	BIGNUM *x1, *x2, *z1, *z2;
	int ret = 0, i;
	BN_ULONG mask,word;

	if (r == point)
		{
		ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
		return 0;
		}
	
	/* if result should be point at infinity */
	if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || 
		EC_POINT_is_at_infinity(group, point))
		{
		return EC_POINT_set_to_infinity(group, r);
		}

	/* only support affine coordinates */
	if (!point->Z_is_one) return 0;

	/* Since point_multiply is static we can guarantee that ctx != NULL. */
	BN_CTX_start(ctx);
	x1 = BN_CTX_get(ctx);
	z1 = BN_CTX_get(ctx);
	if (z1 == NULL) goto err;

	x2 = &r->X;
	z2 = &r->Y;

	bn_wexpand(x1, group->field.top);
	bn_wexpand(z1, group->field.top);
	bn_wexpand(x2, group->field.top);
	bn_wexpand(z2, group->field.top);

	if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */
	if (!BN_one(z1)) goto err; /* z1 = 1 */
	if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */
	if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err;
	if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */

	/* find top most bit and go one past it */
	i = scalar->top - 1;
	mask = BN_TBIT;
	word = scalar->d[i];
	while (!(word & mask)) mask >>= 1;
	mask >>= 1;
	/* if top most bit was at word break, go to next word */
	if (!mask) 
		{
		i--;
		mask = BN_TBIT;
		}

	for (; i >= 0; i--)
		{
		word = scalar->d[i];
		while (mask)
			{
			BN_consttime_swap(word & mask, x1, x2, group->field.top);
			BN_consttime_swap(word & mask, z1, z2, group->field.top);
			if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err;
			if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err;
			BN_consttime_swap(word & mask, x1, x2, group->field.top);
			BN_consttime_swap(word & mask, z1, z2, group->field.top);
			mask >>= 1;
			}
		mask = BN_TBIT;
		}

	/* convert out of "projective" coordinates */
	i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
	if (i == 0) goto err;
	else if (i == 1) 
		{
		if (!EC_POINT_set_to_infinity(group, r)) goto err;
		}
	else
		{
		if (!BN_one(&r->Z)) goto err;
		r->Z_is_one = 1;
		}

	/* GF(2^m) field elements should always have BIGNUM::neg = 0 */
	BN_set_negative(&r->X, 0);
	BN_set_negative(&r->Y, 0);

	ret = 1;

 err:
	BN_CTX_end(ctx);
	return ret;
	}
示例#2
0
/* Computes R = nP based on algorithm 2P of Lopex, J. and Dahab, R.  "Fast
 * multiplication on elliptic curves over GF(2^m) without
 * precomputation". Elliptic curve points P and R can be identical. Uses
 * Montgomery projective coordinates. */
mp_err
ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py,
                                        mp_int *rx, mp_int *ry, const ECGroup *group)
{
        mp_err res = MP_OKAY;
        mp_int x1, x2, z1, z2;
        int i, j;
        mp_digit top_bit, mask;

        MP_DIGITS(&x1) = 0;
        MP_DIGITS(&x2) = 0;
        MP_DIGITS(&z1) = 0;
        MP_DIGITS(&z2) = 0;
        MP_CHECKOK(mp_init(&x1, FLAG(n)));
        MP_CHECKOK(mp_init(&x2, FLAG(n)));
        MP_CHECKOK(mp_init(&z1, FLAG(n)));
        MP_CHECKOK(mp_init(&z2, FLAG(n)));

        /* if result should be point at infinity */
        if ((mp_cmp_z(n) == 0) || (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES)) {
                MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
                goto CLEANUP;
        }

        MP_CHECKOK(mp_copy(px, &x1));   /* x1 = px */
        MP_CHECKOK(mp_set_int(&z1, 1)); /* z1 = 1 */
        MP_CHECKOK(group->meth->field_sqr(&x1, &z2, group->meth));      /* z2 =
                                                                                                                                 * x1^2 =
                                                                                                                                 * px^2 */
        MP_CHECKOK(group->meth->field_sqr(&z2, &x2, group->meth));
        MP_CHECKOK(group->meth->field_add(&x2, &group->curveb, &x2, group->meth));      /* x2
                                                                                                                                                                 * =
                                                                                                                                                                 * px^4
                                                                                                                                                                 * +
                                                                                                                                                                 * b
                                                                                                                                                                 */

        /* find top-most bit and go one past it */
        i = MP_USED(n) - 1;
        j = MP_DIGIT_BIT - 1;
        top_bit = 1;
        top_bit <<= MP_DIGIT_BIT - 1;
        mask = top_bit;
        while (!(MP_DIGITS(n)[i] & mask)) {
                mask >>= 1;
                j--;
        }
        mask >>= 1;
        j--;

        /* if top most bit was at word break, go to next word */
        if (!mask) {
                i--;
                j = MP_DIGIT_BIT - 1;
                mask = top_bit;
        }

        for (; i >= 0; i--) {
                for (; j >= 0; j--) {
                        if (MP_DIGITS(n)[i] & mask) {
                                MP_CHECKOK(gf2m_Madd(px, &x1, &z1, &x2, &z2, group, FLAG(n)));
                                MP_CHECKOK(gf2m_Mdouble(&x2, &z2, group, FLAG(n)));
                        } else {
                                MP_CHECKOK(gf2m_Madd(px, &x2, &z2, &x1, &z1, group, FLAG(n)));
                                MP_CHECKOK(gf2m_Mdouble(&x1, &z1, group, FLAG(n)));
                        }
                        mask >>= 1;
                }
                j = MP_DIGIT_BIT - 1;
                mask = top_bit;
        }

        /* convert out of "projective" coordinates */
        i = gf2m_Mxy(px, py, &x1, &z1, &x2, &z2, group);
        if (i == 0) {
                res = MP_BADARG;
                goto CLEANUP;
        } else if (i == 1) {
                MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
        } else {
                MP_CHECKOK(mp_copy(&x2, rx));
                MP_CHECKOK(mp_copy(&z2, ry));
        }

  CLEANUP:
        mp_clear(&x1);
        mp_clear(&x2);
        mp_clear(&z1);
        mp_clear(&z2);
        return res;
}