/* Subroutine */ int clalsa_(integer *icompq, integer *smlsiz, integer *n, integer *nrhs, complex *b, integer *ldb, complex *bx, integer *ldbx, real *u, integer *ldu, real *vt, integer *k, real *difl, real *difr, real *z__, real *poles, integer *givptr, integer *givcol, integer * ldgcol, integer *perm, real *givnum, real *c__, real *s, real *rwork, integer *iwork, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= CLALSA is an itermediate step in solving the least squares problem by computing the SVD of the coefficient matrix in compact form (The singular vectors are computed as products of simple orthorgonal matrices.). If ICOMPQ = 0, CLALSA applies the inverse of the left singular vector matrix of an upper bidiagonal matrix to the right hand side; and if ICOMPQ = 1, CLALSA applies the right singular vector matrix to the right hand side. The singular vector matrices were generated in compact form by CLALSA. Arguments ========= ICOMPQ (input) INTEGER Specifies whether the left or the right singular vector matrix is involved. = 0: Left singular vector matrix = 1: Right singular vector matrix SMLSIZ (input) INTEGER The maximum size of the subproblems at the bottom of the computation tree. N (input) INTEGER The row and column dimensions of the upper bidiagonal matrix. NRHS (input) INTEGER The number of columns of B and BX. NRHS must be at least 1. B (input) COMPLEX array, dimension ( LDB, NRHS ) On input, B contains the right hand sides of the least squares problem in rows 1 through M. On output, B contains the solution X in rows 1 through N. LDB (input) INTEGER The leading dimension of B in the calling subprogram. LDB must be at least max(1,MAX( M, N ) ). BX (output) COMPLEX array, dimension ( LDBX, NRHS ) On exit, the result of applying the left or right singular vector matrix to B. LDBX (input) INTEGER The leading dimension of BX. U (input) REAL array, dimension ( LDU, SMLSIZ ). On entry, U contains the left singular vector matrices of all subproblems at the bottom level. LDU (input) INTEGER, LDU = > N. The leading dimension of arrays U, VT, DIFL, DIFR, POLES, GIVNUM, and Z. VT (input) REAL array, dimension ( LDU, SMLSIZ+1 ). On entry, VT' contains the right singular vector matrices of all subproblems at the bottom level. K (input) INTEGER array, dimension ( N ). DIFL (input) REAL array, dimension ( LDU, NLVL ). where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. DIFR (input) REAL array, dimension ( LDU, 2 * NLVL ). On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record distances between singular values on the I-th level and singular values on the (I -1)-th level, and DIFR(*, 2 * I) record the normalizing factors of the right singular vectors matrices of subproblems on I-th level. Z (input) REAL array, dimension ( LDU, NLVL ). On entry, Z(1, I) contains the components of the deflation- adjusted updating row vector for subproblems on the I-th level. POLES (input) REAL array, dimension ( LDU, 2 * NLVL ). On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old singular values involved in the secular equations on the I-th level. GIVPTR (input) INTEGER array, dimension ( N ). On entry, GIVPTR( I ) records the number of Givens rotations performed on the I-th problem on the computation tree. GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ). On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the locations of Givens rotations performed on the I-th level on the computation tree. LDGCOL (input) INTEGER, LDGCOL = > N. The leading dimension of arrays GIVCOL and PERM. PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ). On entry, PERM(*, I) records permutations done on the I-th level of the computation tree. GIVNUM (input) REAL array, dimension ( LDU, 2 * NLVL ). On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- values of Givens rotations performed on the I-th level on the computation tree. C (input) REAL array, dimension ( N ). On entry, if the I-th subproblem is not square, C( I ) contains the C-value of a Givens rotation related to the right null space of the I-th subproblem. S (input) REAL array, dimension ( N ). On entry, if the I-th subproblem is not square, S( I ) contains the S-value of a Givens rotation related to the right null space of the I-th subproblem. RWORK (workspace) REAL array, dimension at least max ( N, (SMLSZ+1)*NRHS*3 ). IWORK (workspace) INTEGER array. The dimension must be at least 3 * N INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. Further Details =============== Based on contributions by Ming Gu and Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA Osni Marques, LBNL/NERSC, USA ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static real c_b9 = 1.f; static real c_b10 = 0.f; static integer c__2 = 2; /* System generated locals */ integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1, difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, b_dim1, b_offset, bx_dim1, bx_offset, i__1, i__2, i__3, i__4, i__5, i__6; complex q__1; /* Builtin functions */ double r_imag(complex *); integer pow_ii(integer *, integer *); /* Local variables */ static integer jcol, nlvl, sqre, jrow, i__, j, jimag, jreal, inode, ndiml; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static integer ndimr; extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *); static integer i1; extern /* Subroutine */ int clals0_(integer *, integer *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, integer *, integer *, real *, integer *, real *, real *, real *, real *, integer *, real *, real *, real *, integer *); static integer ic, lf, nd, ll, nl, nr; extern /* Subroutine */ int xerbla_(char *, integer *), slasdt_( integer *, integer *, integer *, integer *, integer *, integer *, integer *); static integer im1, nlf, nrf, lvl, ndb1, nlp1, lvl2, nrp1; #define difl_ref(a_1,a_2) difl[(a_2)*difl_dim1 + a_1] #define difr_ref(a_1,a_2) difr[(a_2)*difr_dim1 + a_1] #define perm_ref(a_1,a_2) perm[(a_2)*perm_dim1 + a_1] #define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1 #define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)] #define u_ref(a_1,a_2) u[(a_2)*u_dim1 + a_1] #define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1] #define poles_ref(a_1,a_2) poles[(a_2)*poles_dim1 + a_1] #define bx_subscr(a_1,a_2) (a_2)*bx_dim1 + a_1 #define bx_ref(a_1,a_2) bx[bx_subscr(a_1,a_2)] #define vt_ref(a_1,a_2) vt[(a_2)*vt_dim1 + a_1] #define givcol_ref(a_1,a_2) givcol[(a_2)*givcol_dim1 + a_1] #define givnum_ref(a_1,a_2) givnum[(a_2)*givnum_dim1 + a_1] b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; bx_dim1 = *ldbx; bx_offset = 1 + bx_dim1 * 1; bx -= bx_offset; givnum_dim1 = *ldu; givnum_offset = 1 + givnum_dim1 * 1; givnum -= givnum_offset; poles_dim1 = *ldu; poles_offset = 1 + poles_dim1 * 1; poles -= poles_offset; z_dim1 = *ldu; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; difr_dim1 = *ldu; difr_offset = 1 + difr_dim1 * 1; difr -= difr_offset; difl_dim1 = *ldu; difl_offset = 1 + difl_dim1 * 1; difl -= difl_offset; vt_dim1 = *ldu; vt_offset = 1 + vt_dim1 * 1; vt -= vt_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; --k; --givptr; perm_dim1 = *ldgcol; perm_offset = 1 + perm_dim1 * 1; perm -= perm_offset; givcol_dim1 = *ldgcol; givcol_offset = 1 + givcol_dim1 * 1; givcol -= givcol_offset; --c__; --s; --rwork; --iwork; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*smlsiz < 3) { *info = -2; } else if (*n < *smlsiz) { *info = -3; } else if (*nrhs < 1) { *info = -4; } else if (*ldb < *n) { *info = -6; } else if (*ldbx < *n) { *info = -8; } else if (*ldu < *n) { *info = -10; } else if (*ldgcol < *n) { *info = -19; } if (*info != 0) { i__1 = -(*info); xerbla_("CLALSA", &i__1); return 0; } /* Book-keeping and setting up the computation tree. */ inode = 1; ndiml = inode + *n; ndimr = ndiml + *n; slasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], smlsiz); /* The following code applies back the left singular vector factors. For applying back the right singular vector factors, go to 170. */ if (*icompq == 1) { goto L170; } /* The nodes on the bottom level of the tree were solved by SLASDQ. The corresponding left and right singular vector matrices are in explicit form. First apply back the left singular vector matrices. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { /* IC : center row of each node NL : number of rows of left subproblem NR : number of rows of right subproblem NLF: starting row of the left subproblem NRF: starting row of the right subproblem */ i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nr = iwork[ndimr + i1]; nlf = ic - nl; nrf = ic + 1; /* Since B and BX are complex, the following call to SGEMM is performed in two steps (real and imaginary parts). CALL SGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU, $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX ) */ j = nl * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nl - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++j; i__4 = b_subscr(jrow, jcol); rwork[j] = b[i__4].r; /* L10: */ } /* L20: */ } sgemm_("T", "N", &nl, nrhs, &nl, &c_b9, &u_ref(nlf, 1), ldu, &rwork[( nl * *nrhs << 1) + 1], &nl, &c_b10, &rwork[1], &nl); j = nl * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nl - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++j; rwork[j] = r_imag(&b_ref(jrow, jcol)); /* L30: */ } /* L40: */ } sgemm_("T", "N", &nl, nrhs, &nl, &c_b9, &u_ref(nlf, 1), ldu, &rwork[( nl * *nrhs << 1) + 1], &nl, &c_b10, &rwork[nl * *nrhs + 1], & nl); jreal = 0; jimag = nl * *nrhs; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nl - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++jreal; ++jimag; i__4 = bx_subscr(jrow, jcol); i__5 = jreal; i__6 = jimag; q__1.r = rwork[i__5], q__1.i = rwork[i__6]; bx[i__4].r = q__1.r, bx[i__4].i = q__1.i; /* L50: */ } /* L60: */ } /* Since B and BX are complex, the following call to SGEMM is performed in two steps (real and imaginary parts). CALL SGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU, $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX ) */ j = nr * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nr - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++j; i__4 = b_subscr(jrow, jcol); rwork[j] = b[i__4].r; /* L70: */ } /* L80: */ } sgemm_("T", "N", &nr, nrhs, &nr, &c_b9, &u_ref(nrf, 1), ldu, &rwork[( nr * *nrhs << 1) + 1], &nr, &c_b10, &rwork[1], &nr); j = nr * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nr - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++j; rwork[j] = r_imag(&b_ref(jrow, jcol)); /* L90: */ } /* L100: */ } sgemm_("T", "N", &nr, nrhs, &nr, &c_b9, &u_ref(nrf, 1), ldu, &rwork[( nr * *nrhs << 1) + 1], &nr, &c_b10, &rwork[nr * *nrhs + 1], & nr); jreal = 0; jimag = nr * *nrhs; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nr - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++jreal; ++jimag; i__4 = bx_subscr(jrow, jcol); i__5 = jreal; i__6 = jimag; q__1.r = rwork[i__5], q__1.i = rwork[i__6]; bx[i__4].r = q__1.r, bx[i__4].i = q__1.i; /* L110: */ } /* L120: */ } /* L130: */ } /* Next copy the rows of B that correspond to unchanged rows in the bidiagonal matrix to BX. */ i__1 = nd; for (i__ = 1; i__ <= i__1; ++i__) { ic = iwork[inode + i__ - 1]; ccopy_(nrhs, &b_ref(ic, 1), ldb, &bx_ref(ic, 1), ldbx); /* L140: */ } /* Finally go through the left singular vector matrices of all the other subproblems bottom-up on the tree. */ j = pow_ii(&c__2, &nlvl); sqre = 0; for (lvl = nlvl; lvl >= 1; --lvl) { lvl2 = (lvl << 1) - 1; /* find the first node LF and last node LL on the current level LVL */ if (lvl == 1) { lf = 1; ll = 1; } else { i__1 = lvl - 1; lf = pow_ii(&c__2, &i__1); ll = (lf << 1) - 1; } i__1 = ll; for (i__ = lf; i__ <= i__1; ++i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; --j; clals0_(icompq, &nl, &nr, &sqre, nrhs, &bx_ref(nlf, 1), ldbx, & b_ref(nlf, 1), ldb, &perm_ref(nlf, lvl), &givptr[j], & givcol_ref(nlf, lvl2), ldgcol, &givnum_ref(nlf, lvl2), ldu, &poles_ref(nlf, lvl2), &difl_ref(nlf, lvl), & difr_ref(nlf, lvl2), &z___ref(nlf, lvl), &k[j], &c__[j], & s[j], &rwork[1], info); /* L150: */ } /* L160: */ } goto L330; /* ICOMPQ = 1: applying back the right singular vector factors. */ L170: /* First now go through the right singular vector matrices of all the tree nodes top-down. */ j = 0; i__1 = nlvl; for (lvl = 1; lvl <= i__1; ++lvl) { lvl2 = (lvl << 1) - 1; /* Find the first node LF and last node LL on the current level LVL. */ if (lvl == 1) { lf = 1; ll = 1; } else { i__2 = lvl - 1; lf = pow_ii(&c__2, &i__2); ll = (lf << 1) - 1; } i__2 = lf; for (i__ = ll; i__ >= i__2; --i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; if (i__ == ll) { sqre = 0; } else { sqre = 1; } ++j; clals0_(icompq, &nl, &nr, &sqre, nrhs, &b_ref(nlf, 1), ldb, & bx_ref(nlf, 1), ldbx, &perm_ref(nlf, lvl), &givptr[j], & givcol_ref(nlf, lvl2), ldgcol, &givnum_ref(nlf, lvl2), ldu, &poles_ref(nlf, lvl2), &difl_ref(nlf, lvl), & difr_ref(nlf, lvl2), &z___ref(nlf, lvl), &k[j], &c__[j], & s[j], &rwork[1], info); /* L180: */ } /* L190: */ } /* The nodes on the bottom level of the tree were solved by SLASDQ. The corresponding right singular vector matrices are in explicit form. Apply them back. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nr = iwork[ndimr + i1]; nlp1 = nl + 1; if (i__ == nd) { nrp1 = nr; } else { nrp1 = nr + 1; } nlf = ic - nl; nrf = ic + 1; /* Since B and BX are complex, the following call to SGEMM is performed in two steps (real and imaginary parts). CALL SGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU, $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX ) */ j = nlp1 * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nlp1 - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++j; i__4 = b_subscr(jrow, jcol); rwork[j] = b[i__4].r; /* L200: */ } /* L210: */ } sgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b9, &vt_ref(nlf, 1), ldu, & rwork[(nlp1 * *nrhs << 1) + 1], &nlp1, &c_b10, &rwork[1], & nlp1); j = nlp1 * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nlp1 - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++j; rwork[j] = r_imag(&b_ref(jrow, jcol)); /* L220: */ } /* L230: */ } sgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b9, &vt_ref(nlf, 1), ldu, & rwork[(nlp1 * *nrhs << 1) + 1], &nlp1, &c_b10, &rwork[nlp1 * * nrhs + 1], &nlp1); jreal = 0; jimag = nlp1 * *nrhs; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nlp1 - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++jreal; ++jimag; i__4 = bx_subscr(jrow, jcol); i__5 = jreal; i__6 = jimag; q__1.r = rwork[i__5], q__1.i = rwork[i__6]; bx[i__4].r = q__1.r, bx[i__4].i = q__1.i; /* L240: */ } /* L250: */ } /* Since B and BX are complex, the following call to SGEMM is performed in two steps (real and imaginary parts). CALL SGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU, $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX ) */ j = nrp1 * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nrp1 - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++j; i__4 = b_subscr(jrow, jcol); rwork[j] = b[i__4].r; /* L260: */ } /* L270: */ } sgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b9, &vt_ref(nrf, 1), ldu, & rwork[(nrp1 * *nrhs << 1) + 1], &nrp1, &c_b10, &rwork[1], & nrp1); j = nrp1 * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nrp1 - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++j; rwork[j] = r_imag(&b_ref(jrow, jcol)); /* L280: */ } /* L290: */ } sgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b9, &vt_ref(nrf, 1), ldu, & rwork[(nrp1 * *nrhs << 1) + 1], &nrp1, &c_b10, &rwork[nrp1 * * nrhs + 1], &nrp1); jreal = 0; jimag = nrp1 * *nrhs; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nrp1 - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++jreal; ++jimag; i__4 = bx_subscr(jrow, jcol); i__5 = jreal; i__6 = jimag; q__1.r = rwork[i__5], q__1.i = rwork[i__6]; bx[i__4].r = q__1.r, bx[i__4].i = q__1.i; /* L300: */ } /* L310: */ } /* L320: */ } L330: return 0; /* End of CLALSA */ } /* clalsa_ */
/* Subroutine */ int dlaed7_(integer *icompq, integer *n, integer *qsiz, integer *tlvls, integer *curlvl, integer *curpbm, doublereal *d__, doublereal *q, integer *ldq, integer *indxq, doublereal *rho, integer *cutpnt, doublereal *qstore, integer *qptr, integer *prmptr, integer * perm, integer *givptr, integer *givcol, doublereal *givnum, doublereal *work, integer *iwork, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= DLAED7 computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires all eigenvalues and optionally eigenvectors of a dense symmetric matrix that has been reduced to tridiagonal form. DLAED1 handles the case in which all eigenvalues and eigenvectors of a symmetric tridiagonal matrix are desired. T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) where Z = Q'u, u is a vector of length N with ones in the CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. The eigenvectors of the original matrix are stored in Q, and the eigenvalues are in D. The algorithm consists of three stages: The first stage consists of deflating the size of the problem when there are multiple eigenvalues or if there is a zero in the Z vector. For each such occurence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine DLAED8. The second stage consists of calculating the updated eigenvalues. This is done by finding the roots of the secular equation via the routine DLAED4 (as called by DLAED9). This routine also calculates the eigenvectors of the current problem. The final stage consists of computing the updated eigenvectors directly using the updated eigenvalues. The eigenvectors for the current problem are multiplied with the eigenvectors from the overall problem. Arguments ========= ICOMPQ (input) INTEGER = 0: Compute eigenvalues only. = 1: Compute eigenvectors of original dense symmetric matrix also. On entry, Q contains the orthogonal matrix used to reduce the original matrix to tridiagonal form. N (input) INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. QSIZ (input) INTEGER The dimension of the orthogonal matrix used to reduce the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. TLVLS (input) INTEGER The total number of merging levels in the overall divide and conquer tree. CURLVL (input) INTEGER The current level in the overall merge routine, 0 <= CURLVL <= TLVLS. CURPBM (input) INTEGER The current problem in the current level in the overall merge routine (counting from upper left to lower right). D (input/output) DOUBLE PRECISION array, dimension (N) On entry, the eigenvalues of the rank-1-perturbed matrix. On exit, the eigenvalues of the repaired matrix. Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N) On entry, the eigenvectors of the rank-1-perturbed matrix. On exit, the eigenvectors of the repaired tridiagonal matrix. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= max(1,N). INDXQ (output) INTEGER array, dimension (N) The permutation which will reintegrate the subproblem just solved back into sorted order, i.e., D( INDXQ( I = 1, N ) ) will be in ascending order. RHO (input) DOUBLE PRECISION The subdiagonal element used to create the rank-1 modification. CUTPNT (input) INTEGER Contains the location of the last eigenvalue in the leading sub-matrix. min(1,N) <= CUTPNT <= N. QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1) Stores eigenvectors of submatrices encountered during divide and conquer, packed together. QPTR points to beginning of the submatrices. QPTR (input/output) INTEGER array, dimension (N+2) List of indices pointing to beginning of submatrices stored in QSTORE. The submatrices are numbered starting at the bottom left of the divide and conquer tree, from left to right and bottom to top. PRMPTR (input) INTEGER array, dimension (N lg N) Contains a list of pointers which indicate where in PERM a level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) indicates the size of the permutation and also the size of the full, non-deflated problem. PERM (input) INTEGER array, dimension (N lg N) Contains the permutations (from deflation and sorting) to be applied to each eigenblock. GIVPTR (input) INTEGER array, dimension (N lg N) Contains a list of pointers which indicate where in GIVCOL a level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) indicates the number of Givens rotations. GIVCOL (input) INTEGER array, dimension (2, N lg N) Each pair of numbers indicates a pair of columns to take place in a Givens rotation. GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N) Each number indicates the S value to be used in the corresponding Givens rotation. WORK (workspace) DOUBLE PRECISION array, dimension (3*N+QSIZ*N) IWORK (workspace) INTEGER array, dimension (4*N) INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = 1, an eigenvalue did not converge Further Details =============== Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static integer c__2 = 2; static integer c__1 = 1; static doublereal c_b10 = 1.; static doublereal c_b11 = 0.; static integer c_n1 = -1; /* System generated locals */ integer q_dim1, q_offset, i__1, i__2; /* Builtin functions */ integer pow_ii(integer *, integer *); /* Local variables */ static integer indx, curr, i__, k; extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); static integer indxc, indxp, n1, n2; extern /* Subroutine */ int dlaed8_(integer *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *, integer *, integer *), dlaed9_(integer *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *), dlaeda_(integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *) ; static integer idlmda, is, iw, iz; extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, integer *, integer *, integer *), xerbla_(char *, integer *); static integer coltyp, iq2, ptr, ldq2; #define givcol_ref(a_1,a_2) givcol[(a_2)*2 + a_1] #define givnum_ref(a_1,a_2) givnum[(a_2)*2 + a_1] --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1 * 1; q -= q_offset; --indxq; --qstore; --qptr; --prmptr; --perm; --givptr; givcol -= 3; givnum -= 3; --work; --iwork; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*icompq == 1 && *qsiz < *n) { *info = -4; } else if (*ldq < max(1,*n)) { *info = -9; } else if (min(1,*n) > *cutpnt || *n < *cutpnt) { *info = -12; } if (*info != 0) { i__1 = -(*info); xerbla_("DLAED7", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* The following values are for bookkeeping purposes only. They are integer pointers which indicate the portion of the workspace used by a particular array in DLAED8 and DLAED9. */ if (*icompq == 1) { ldq2 = *qsiz; } else { ldq2 = *n; } iz = 1; idlmda = iz + *n; iw = idlmda + *n; iq2 = iw + *n; is = iq2 + *n * ldq2; indx = 1; indxc = indx + *n; coltyp = indxc + *n; indxp = coltyp + *n; /* Form the z-vector which consists of the last row of Q_1 and the first row of Q_2. */ ptr = pow_ii(&c__2, tlvls) + 1; i__1 = *curlvl - 1; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *tlvls - i__; ptr += pow_ii(&c__2, &i__2); /* L10: */ } curr = ptr + *curpbm; dlaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], & givcol[3], &givnum[3], &qstore[1], &qptr[1], &work[iz], &work[iz + *n], info); /* When solving the final problem, we no longer need the stored data, so we will overwrite the data from this level onto the previously used storage space. */ if (*curlvl == *tlvls) { qptr[curr] = 1; prmptr[curr] = 1; givptr[curr] = 1; } /* Sort and Deflate eigenvalues. */ dlaed8_(icompq, &k, n, qsiz, &d__[1], &q[q_offset], ldq, &indxq[1], rho, cutpnt, &work[iz], &work[idlmda], &work[iq2], &ldq2, &work[iw], & perm[prmptr[curr]], &givptr[curr + 1], &givcol_ref(1, givptr[curr] ), &givnum_ref(1, givptr[curr]), &iwork[indxp], &iwork[indx], info); prmptr[curr + 1] = prmptr[curr] + *n; givptr[curr + 1] += givptr[curr]; /* Solve Secular Equation. */ if (k != 0) { dlaed9_(&k, &c__1, &k, n, &d__[1], &work[is], &k, rho, &work[idlmda], &work[iw], &qstore[qptr[curr]], &k, info); if (*info != 0) { goto L30; } if (*icompq == 1) { dgemm_("N", "N", qsiz, &k, &k, &c_b10, &work[iq2], &ldq2, &qstore[ qptr[curr]], &k, &c_b11, &q[q_offset], ldq); } /* Computing 2nd power */ i__1 = k; qptr[curr + 1] = qptr[curr] + i__1 * i__1; /* Prepare the INDXQ sorting permutation. */ n1 = k; n2 = *n - k; dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]); } else { qptr[curr + 1] = qptr[curr]; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { indxq[i__] = i__; /* L20: */ } } L30: return 0; /* End of DLAED7 */ } /* dlaed7_ */
/* Subroutine */ int dlasda_(integer *icompq, integer *smlsiz, integer *n, integer *sqre, doublereal *d__, doublereal *e, doublereal *u, integer *ldu, doublereal *vt, integer *k, doublereal *difl, doublereal *difr, doublereal *z__, doublereal *poles, integer *givptr, integer *givcol, integer *ldgcol, integer *perm, doublereal *givnum, doublereal *c__, doublereal *s, doublereal *work, integer *iwork, integer *info) { /* System generated locals */ integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1, difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1, i__2; /* Builtin functions */ integer pow_ii(integer *, integer *); /* Local variables */ static doublereal beta; static integer idxq, nlvl, i__, j, m; static doublereal alpha; static integer inode, ndiml, ndimr, idxqi, itemp; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); static integer sqrei, i1; extern /* Subroutine */ int dlasd6_(integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *); static integer ic, nwork1, lf, nd, nwork2, ll, nl, vf, nr, vl; extern /* Subroutine */ int dlasdq_(char *, integer *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *), dlasdt_(integer *, integer *, integer *, integer *, integer *, integer *, integer *), dlaset_( char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *); static integer im1, smlszp, ncc, nlf, nrf, vfi, iwk, vli, lvl, nru, ndb1, nlp1, lvl2, nrp1; #define difl_ref(a_1,a_2) difl[(a_2)*difl_dim1 + a_1] #define difr_ref(a_1,a_2) difr[(a_2)*difr_dim1 + a_1] #define perm_ref(a_1,a_2) perm[(a_2)*perm_dim1 + a_1] #define u_ref(a_1,a_2) u[(a_2)*u_dim1 + a_1] #define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1] #define poles_ref(a_1,a_2) poles[(a_2)*poles_dim1 + a_1] #define vt_ref(a_1,a_2) vt[(a_2)*vt_dim1 + a_1] #define givcol_ref(a_1,a_2) givcol[(a_2)*givcol_dim1 + a_1] #define givnum_ref(a_1,a_2) givnum[(a_2)*givnum_dim1 + a_1] /* -- LAPACK auxiliary routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University October 31, 1999 Purpose ======= Using a divide and conquer approach, DLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal N-by-M matrix B with diagonal D and offdiagonal E, where M = N + SQRE. The algorithm computes the singular values in the SVD B = U * S * VT. The orthogonal matrices U and VT are optionally computed in compact form. A related subroutine, DLASD0, computes the singular values and the singular vectors in explicit form. Arguments ========= ICOMPQ (input) INTEGER Specifies whether singular vectors are to be computed in compact form, as follows = 0: Compute singular values only. = 1: Compute singular vectors of upper bidiagonal matrix in compact form. SMLSIZ (input) INTEGER The maximum size of the subproblems at the bottom of the computation tree. N (input) INTEGER The row dimension of the upper bidiagonal matrix. This is also the dimension of the main diagonal array D. SQRE (input) INTEGER Specifies the column dimension of the bidiagonal matrix. = 0: The bidiagonal matrix has column dimension M = N; = 1: The bidiagonal matrix has column dimension M = N + 1. D (input/output) DOUBLE PRECISION array, dimension ( N ) On entry D contains the main diagonal of the bidiagonal matrix. On exit D, if INFO = 0, contains its singular values. E (input) DOUBLE PRECISION array, dimension ( M-1 ) Contains the subdiagonal entries of the bidiagonal matrix. On exit, E has been destroyed. U (output) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left singular vector matrices of all subproblems at the bottom level. LDU (input) INTEGER, LDU = > N. The leading dimension of arrays U, VT, DIFL, DIFR, POLES, GIVNUM, and Z. VT (output) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right singular vector matrices of all subproblems at the bottom level. K (output) INTEGER array, dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th secular equation on the computation tree. DIFL (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ), where NLVL = floor(log_2 (N/SMLSIZ))). DIFR (output) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and dimension ( N ) if ICOMPQ = 0. If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) record distances between singular values on the I-th level and singular values on the (I -1)-th level, and DIFR(1:N, 2 * I ) contains the normalizing factors for the right singular vector matrix. See DLASD8 for details. Z (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ) if ICOMPQ = 1 and dimension ( N ) if ICOMPQ = 0. The first K elements of Z(1, I) contain the components of the deflation-adjusted updating row vector for subproblems on the I-th level. POLES (output) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and POLES(1, 2*I) contain the new and old singular values involved in the secular equations on the I-th level. GIVPTR (output) INTEGER array, dimension ( N ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records the number of Givens rotations performed on the I-th problem on the computation tree. GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations of Givens rotations performed on the I-th level on the computation tree. LDGCOL (input) INTEGER, LDGCOL = > N. The leading dimension of arrays GIVCOL and PERM. PERM (output) INTEGER array, dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records permutations done on the I-th level of the computation tree. GIVNUM (output) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- values of Givens rotations performed on the I-th level on the computation tree. C (output) DOUBLE PRECISION array, dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 and the I-th subproblem is not square, on exit, C( I ) contains the C-value of a Givens rotation related to the right null space of the I-th subproblem. S (output) DOUBLE PRECISION array, dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 and the I-th subproblem is not square, on exit, S( I ) contains the S-value of a Givens rotation related to the right null space of the I-th subproblem. WORK (workspace) DOUBLE PRECISION array, dimension (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)). IWORK (workspace) INTEGER array. Dimension must be at least (7 * N). INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = 1, an singular value did not converge Further Details =============== Based on contributions by Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA ===================================================================== Test the input parameters. Parameter adjustments */ --d__; --e; givnum_dim1 = *ldu; givnum_offset = 1 + givnum_dim1 * 1; givnum -= givnum_offset; poles_dim1 = *ldu; poles_offset = 1 + poles_dim1 * 1; poles -= poles_offset; z_dim1 = *ldu; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; difr_dim1 = *ldu; difr_offset = 1 + difr_dim1 * 1; difr -= difr_offset; difl_dim1 = *ldu; difl_offset = 1 + difl_dim1 * 1; difl -= difl_offset; vt_dim1 = *ldu; vt_offset = 1 + vt_dim1 * 1; vt -= vt_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; --k; --givptr; perm_dim1 = *ldgcol; perm_offset = 1 + perm_dim1 * 1; perm -= perm_offset; givcol_dim1 = *ldgcol; givcol_offset = 1 + givcol_dim1 * 1; givcol -= givcol_offset; --c__; --s; --work; --iwork; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*smlsiz < 3) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*sqre < 0 || *sqre > 1) { *info = -4; } else if (*ldu < *n + *sqre) { *info = -8; } else if (*ldgcol < *n) { *info = -17; } if (*info != 0) { i__1 = -(*info); xerbla_("DLASDA", &i__1); return 0; } m = *n + *sqre; /* If the input matrix is too small, call DLASDQ to find the SVD. */ if (*n <= *smlsiz) { if (*icompq == 0) { dlasdq_("U", sqre, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[ vt_offset], ldu, &u[u_offset], ldu, &u[u_offset], ldu, & work[1], info); } else { dlasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset] , ldu, &u[u_offset], ldu, &u[u_offset], ldu, &work[1], info); } return 0; } /* Book-keeping and set up the computation tree. */ inode = 1; ndiml = inode + *n; ndimr = ndiml + *n; idxq = ndimr + *n; iwk = idxq + *n; ncc = 0; nru = 0; smlszp = *smlsiz + 1; vf = 1; vl = vf + m; nwork1 = vl + m; nwork2 = nwork1 + smlszp * smlszp; dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], smlsiz); /* for the nodes on bottom level of the tree, solve their subproblems by DLASDQ. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { /* IC : center row of each node NL : number of rows of left subproblem NR : number of rows of right subproblem NLF: starting row of the left subproblem NRF: starting row of the right subproblem */ i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nlp1 = nl + 1; nr = iwork[ndimr + i1]; nlf = ic - nl; nrf = ic + 1; idxqi = idxq + nlf - 2; vfi = vf + nlf - 1; vli = vl + nlf - 1; sqrei = 1; if (*icompq == 0) { dlaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &work[nwork1], &smlszp); dlasdq_("U", &sqrei, &nl, &nlp1, &nru, &ncc, &d__[nlf], &e[nlf], & work[nwork1], &smlszp, &work[nwork2], &nl, &work[nwork2], &nl, &work[nwork2], info); itemp = nwork1 + nl * smlszp; dcopy_(&nlp1, &work[nwork1], &c__1, &work[vfi], &c__1); dcopy_(&nlp1, &work[itemp], &c__1, &work[vli], &c__1); } else { dlaset_("A", &nl, &nl, &c_b11, &c_b12, &u_ref(nlf, 1), ldu); dlaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &vt_ref(nlf, 1), ldu); dlasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], & vt_ref(nlf, 1), ldu, &u_ref(nlf, 1), ldu, &u_ref(nlf, 1), ldu, &work[nwork1], info); dcopy_(&nlp1, &vt_ref(nlf, 1), &c__1, &work[vfi], &c__1); dcopy_(&nlp1, &vt_ref(nlf, nlp1), &c__1, &work[vli], &c__1); } if (*info != 0) { return 0; } i__2 = nl; for (j = 1; j <= i__2; ++j) { iwork[idxqi + j] = j; /* L10: */ } if (i__ == nd && *sqre == 0) { sqrei = 0; } else { sqrei = 1; } idxqi += nlp1; vfi += nlp1; vli += nlp1; nrp1 = nr + sqrei; if (*icompq == 0) { dlaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &work[nwork1], &smlszp); dlasdq_("U", &sqrei, &nr, &nrp1, &nru, &ncc, &d__[nrf], &e[nrf], & work[nwork1], &smlszp, &work[nwork2], &nr, &work[nwork2], &nr, &work[nwork2], info); itemp = nwork1 + (nrp1 - 1) * smlszp; dcopy_(&nrp1, &work[nwork1], &c__1, &work[vfi], &c__1); dcopy_(&nrp1, &work[itemp], &c__1, &work[vli], &c__1); } else { dlaset_("A", &nr, &nr, &c_b11, &c_b12, &u_ref(nrf, 1), ldu); dlaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &vt_ref(nrf, 1), ldu); dlasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], & vt_ref(nrf, 1), ldu, &u_ref(nrf, 1), ldu, &u_ref(nrf, 1), ldu, &work[nwork1], info); dcopy_(&nrp1, &vt_ref(nrf, 1), &c__1, &work[vfi], &c__1); dcopy_(&nrp1, &vt_ref(nrf, nrp1), &c__1, &work[vli], &c__1); } if (*info != 0) { return 0; } i__2 = nr; for (j = 1; j <= i__2; ++j) { iwork[idxqi + j] = j; /* L20: */ } /* L30: */ } /* Now conquer each subproblem bottom-up. */ j = pow_ii(&c__2, &nlvl); for (lvl = nlvl; lvl >= 1; --lvl) { lvl2 = (lvl << 1) - 1; /* Find the first node LF and last node LL on the current level LVL. */ if (lvl == 1) { lf = 1; ll = 1; } else { i__1 = lvl - 1; lf = pow_ii(&c__2, &i__1); ll = (lf << 1) - 1; } i__1 = ll; for (i__ = lf; i__ <= i__1; ++i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; if (i__ == ll) { sqrei = *sqre; } else { sqrei = 1; } vfi = vf + nlf - 1; vli = vl + nlf - 1; idxqi = idxq + nlf - 1; alpha = d__[ic]; beta = e[ic]; if (*icompq == 0) { dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], & work[vli], &alpha, &beta, &iwork[idxqi], &perm[ perm_offset], &givptr[1], &givcol[givcol_offset], ldgcol, &givnum[givnum_offset], ldu, &poles[ poles_offset], &difl[difl_offset], &difr[difr_offset], &z__[z_offset], &k[1], &c__[1], &s[1], &work[nwork1], &iwork[iwk], info); } else { --j; dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], & work[vli], &alpha, &beta, &iwork[idxqi], &perm_ref( nlf, lvl), &givptr[j], &givcol_ref(nlf, lvl2), ldgcol, &givnum_ref(nlf, lvl2), ldu, &poles_ref(nlf, lvl2), & difl_ref(nlf, lvl), &difr_ref(nlf, lvl2), &z___ref( nlf, lvl), &k[j], &c__[j], &s[j], &work[nwork1], & iwork[iwk], info); } if (*info != 0) { return 0; } /* L40: */ } /* L50: */ } return 0; /* End of DLASDA */ } /* dlasda_ */
/* Subroutine */ int zlaed8_(integer *k, integer *n, integer *qsiz, doublecomplex *q, integer *ldq, doublereal *d__, doublereal *rho, integer *cutpnt, doublereal *z__, doublereal *dlamda, doublecomplex * q2, integer *ldq2, doublereal *w, integer *indxp, integer *indx, integer *indxq, integer *perm, integer *givptr, integer *givcol, doublereal *givnum, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab, Courant Institute, NAG Ltd., and Rice University September 30, 1994 Purpose ======= ZLAED8 merges the two sets of eigenvalues together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more eigenvalues are close together or if there is a tiny element in the Z vector. For each such occurrence the order of the related secular equation problem is reduced by one. Arguments ========= K (output) INTEGER Contains the number of non-deflated eigenvalues. This is the order of the related secular equation. N (input) INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. QSIZ (input) INTEGER The dimension of the unitary matrix used to reduce the dense or band matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. Q (input/output) COMPLEX*16 array, dimension (LDQ,N) On entry, Q contains the eigenvectors of the partially solved system which has been previously updated in matrix multiplies with other partially solved eigensystems. On exit, Q contains the trailing (N-K) updated eigenvectors (those which were deflated) in its last N-K columns. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= max( 1, N ). D (input/output) DOUBLE PRECISION array, dimension (N) On entry, D contains the eigenvalues of the two submatrices to be combined. On exit, D contains the trailing (N-K) updated eigenvalues (those which were deflated) sorted into increasing order. RHO (input/output) DOUBLE PRECISION Contains the off diagonal element associated with the rank-1 cut which originally split the two submatrices which are now being recombined. RHO is modified during the computation to the value required by DLAED3. CUTPNT (input) INTEGER Contains the location of the last eigenvalue in the leading sub-matrix. MIN(1,N) <= CUTPNT <= N. Z (input) DOUBLE PRECISION array, dimension (N) On input this vector contains the updating vector (the last row of the first sub-eigenvector matrix and the first row of the second sub-eigenvector matrix). The contents of Z are destroyed during the updating process. DLAMDA (output) DOUBLE PRECISION array, dimension (N) Contains a copy of the first K eigenvalues which will be used by DLAED3 to form the secular equation. Q2 (output) COMPLEX*16 array, dimension (LDQ2,N) If ICOMPQ = 0, Q2 is not referenced. Otherwise, Contains a copy of the first K eigenvectors which will be used by DLAED7 in a matrix multiply (DGEMM) to update the new eigenvectors. LDQ2 (input) INTEGER The leading dimension of the array Q2. LDQ2 >= max( 1, N ). W (output) DOUBLE PRECISION array, dimension (N) This will hold the first k values of the final deflation-altered z-vector and will be passed to DLAED3. INDXP (workspace) INTEGER array, dimension (N) This will contain the permutation used to place deflated values of D at the end of the array. On output INDXP(1:K) points to the nondeflated D-values and INDXP(K+1:N) points to the deflated eigenvalues. INDX (workspace) INTEGER array, dimension (N) This will contain the permutation used to sort the contents of D into ascending order. INDXQ (input) INTEGER array, dimension (N) This contains the permutation which separately sorts the two sub-problems in D into ascending order. Note that elements in the second half of this permutation must first have CUTPNT added to their values in order to be accurate. PERM (output) INTEGER array, dimension (N) Contains the permutations (from deflation and sorting) to be applied to each eigenblock. GIVPTR (output) INTEGER Contains the number of Givens rotations which took place in this subproblem. GIVCOL (output) INTEGER array, dimension (2, N) Each pair of numbers indicates a pair of columns to take place in a Givens rotation. GIVNUM (output) DOUBLE PRECISION array, dimension (2, N) Each number indicates the S value to be used in the corresponding Givens rotation. INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static doublereal c_b3 = -1.; static integer c__1 = 1; /* System generated locals */ integer q_dim1, q_offset, q2_dim1, q2_offset, i__1; doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static integer jlam, imax, jmax; static doublereal c__; static integer i__, j; static doublereal s, t; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); static integer k2, n1, n2; extern /* Subroutine */ int zdrot_(integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), zcopy_( integer *, doublecomplex *, integer *, doublecomplex *, integer *) ; extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *); static integer jp; extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, integer *, integer *, integer *), xerbla_(char *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); static integer n1p1; static doublereal eps, tau, tol; #define q_subscr(a_1,a_2) (a_2)*q_dim1 + a_1 #define q_ref(a_1,a_2) q[q_subscr(a_1,a_2)] #define q2_subscr(a_1,a_2) (a_2)*q2_dim1 + a_1 #define q2_ref(a_1,a_2) q2[q2_subscr(a_1,a_2)] #define givcol_ref(a_1,a_2) givcol[(a_2)*2 + a_1] #define givnum_ref(a_1,a_2) givnum[(a_2)*2 + a_1] q_dim1 = *ldq; q_offset = 1 + q_dim1 * 1; q -= q_offset; --d__; --z__; --dlamda; q2_dim1 = *ldq2; q2_offset = 1 + q2_dim1 * 1; q2 -= q2_offset; --w; --indxp; --indx; --indxq; --perm; givcol -= 3; givnum -= 3; /* Function Body */ *info = 0; if (*n < 0) { *info = -2; } else if (*qsiz < *n) { *info = -3; } else if (*ldq < max(1,*n)) { *info = -5; } else if (*cutpnt < min(1,*n) || *cutpnt > *n) { *info = -8; } else if (*ldq2 < max(1,*n)) { *info = -12; } if (*info != 0) { i__1 = -(*info); xerbla_("ZLAED8", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } n1 = *cutpnt; n2 = *n - n1; n1p1 = n1 + 1; if (*rho < 0.) { dscal_(&n2, &c_b3, &z__[n1p1], &c__1); } /* Normalize z so that norm(z) = 1 */ t = 1. / sqrt(2.); i__1 = *n; for (j = 1; j <= i__1; ++j) { indx[j] = j; /* L10: */ } dscal_(n, &t, &z__[1], &c__1); *rho = (d__1 = *rho * 2., abs(d__1)); /* Sort the eigenvalues into increasing order */ i__1 = *n; for (i__ = *cutpnt + 1; i__ <= i__1; ++i__) { indxq[i__] += *cutpnt; /* L20: */ } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { dlamda[i__] = d__[indxq[i__]]; w[i__] = z__[indxq[i__]]; /* L30: */ } i__ = 1; j = *cutpnt + 1; dlamrg_(&n1, &n2, &dlamda[1], &c__1, &c__1, &indx[1]); i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { d__[i__] = dlamda[indx[i__]]; z__[i__] = w[indx[i__]]; /* L40: */ } /* Calculate the allowable deflation tolerance */ imax = idamax_(n, &z__[1], &c__1); jmax = idamax_(n, &d__[1], &c__1); eps = dlamch_("Epsilon"); tol = eps * 8. * (d__1 = d__[jmax], abs(d__1)); /* If the rank-1 modifier is small enough, no more needs to be done -- except to reorganize Q so that its columns correspond with the elements in D. */ if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) { *k = 0; i__1 = *n; for (j = 1; j <= i__1; ++j) { perm[j] = indxq[indx[j]]; zcopy_(qsiz, &q_ref(1, perm[j]), &c__1, &q2_ref(1, j), &c__1); /* L50: */ } zlacpy_("A", qsiz, n, &q2_ref(1, 1), ldq2, &q_ref(1, 1), ldq); return 0; } /* If there are multiple eigenvalues then the problem deflates. Here the number of equal eigenvalues are found. As each equal eigenvalue is found, an elementary reflector is computed to rotate the corresponding eigensubspace so that the corresponding components of Z are zero in this new basis. */ *k = 0; *givptr = 0; k2 = *n + 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (*rho * (d__1 = z__[j], abs(d__1)) <= tol) { /* Deflate due to small z component. */ --k2; indxp[k2] = j; if (j == *n) { goto L100; } } else { jlam = j; goto L70; } /* L60: */ } L70: ++j; if (j > *n) { goto L90; } if (*rho * (d__1 = z__[j], abs(d__1)) <= tol) { /* Deflate due to small z component. */ --k2; indxp[k2] = j; } else { /* Check if eigenvalues are close enough to allow deflation. */ s = z__[jlam]; c__ = z__[j]; /* Find sqrt(a**2+b**2) without overflow or destructive underflow. */ tau = dlapy2_(&c__, &s); t = d__[j] - d__[jlam]; c__ /= tau; s = -s / tau; if ((d__1 = t * c__ * s, abs(d__1)) <= tol) { /* Deflation is possible. */ z__[j] = tau; z__[jlam] = 0.; /* Record the appropriate Givens rotation */ ++(*givptr); givcol_ref(1, *givptr) = indxq[indx[jlam]]; givcol_ref(2, *givptr) = indxq[indx[j]]; givnum_ref(1, *givptr) = c__; givnum_ref(2, *givptr) = s; zdrot_(qsiz, &q_ref(1, indxq[indx[jlam]]), &c__1, &q_ref(1, indxq[ indx[j]]), &c__1, &c__, &s); t = d__[jlam] * c__ * c__ + d__[j] * s * s; d__[j] = d__[jlam] * s * s + d__[j] * c__ * c__; d__[jlam] = t; --k2; i__ = 1; L80: if (k2 + i__ <= *n) { if (d__[jlam] < d__[indxp[k2 + i__]]) { indxp[k2 + i__ - 1] = indxp[k2 + i__]; indxp[k2 + i__] = jlam; ++i__; goto L80; } else { indxp[k2 + i__ - 1] = jlam; } } else { indxp[k2 + i__ - 1] = jlam; } jlam = j; } else { ++(*k); w[*k] = z__[jlam]; dlamda[*k] = d__[jlam]; indxp[*k] = jlam; jlam = j; } } goto L70; L90: /* Record the last eigenvalue. */ ++(*k); w[*k] = z__[jlam]; dlamda[*k] = d__[jlam]; indxp[*k] = jlam; L100: /* Sort the eigenvalues and corresponding eigenvectors into DLAMDA and Q2 respectively. The eigenvalues/vectors which were not deflated go into the first K slots of DLAMDA and Q2 respectively, while those which were deflated go into the last N - K slots. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { jp = indxp[j]; dlamda[j] = d__[jp]; perm[j] = indxq[indx[jp]]; zcopy_(qsiz, &q_ref(1, perm[j]), &c__1, &q2_ref(1, j), &c__1); /* L110: */ } /* The deflated eigenvalues and their corresponding vectors go back into the last N - K slots of D and Q respectively. */ if (*k < *n) { i__1 = *n - *k; dcopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1); i__1 = *n - *k; zlacpy_("A", qsiz, &i__1, &q2_ref(1, *k + 1), ldq2, &q_ref(1, *k + 1), ldq); } return 0; /* End of ZLAED8 */ } /* zlaed8_ */
/* Subroutine */ int slals0_(integer *icompq, integer *nl, integer *nr, integer *sqre, integer *nrhs, real *b, integer *ldb, real *bx, integer *ldbx, integer *perm, integer *givptr, integer *givcol, integer *ldgcol, real *givnum, integer *ldgnum, real *poles, real * difl, real *difr, real *z__, integer *k, real *c__, real *s, real * work, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University December 1, 1999 Purpose ======= SLALS0 applies back the multiplying factors of either the left or the right singular vector matrix of a diagonal matrix appended by a row to the right hand side matrix B in solving the least squares problem using the divide-and-conquer SVD approach. For the left singular vector matrix, three types of orthogonal matrices are involved: (1L) Givens rotations: the number of such rotations is GIVPTR; the pairs of columns/rows they were applied to are stored in GIVCOL; and the C- and S-values of these rotations are stored in GIVNUM. (2L) Permutation. The (NL+1)-st row of B is to be moved to the first row, and for J=2:N, PERM(J)-th row of B is to be moved to the J-th row. (3L) The left singular vector matrix of the remaining matrix. For the right singular vector matrix, four types of orthogonal matrices are involved: (1R) The right singular vector matrix of the remaining matrix. (2R) If SQRE = 1, one extra Givens rotation to generate the right null space. (3R) The inverse transformation of (2L). (4R) The inverse transformation of (1L). Arguments ========= ICOMPQ (input) INTEGER Specifies whether singular vectors are to be computed in factored form: = 0: Left singular vector matrix. = 1: Right singular vector matrix. NL (input) INTEGER The row dimension of the upper block. NL >= 1. NR (input) INTEGER The row dimension of the lower block. NR >= 1. SQRE (input) INTEGER = 0: the lower block is an NR-by-NR square matrix. = 1: the lower block is an NR-by-(NR+1) rectangular matrix. The bidiagonal matrix has row dimension N = NL + NR + 1, and column dimension M = N + SQRE. NRHS (input) INTEGER The number of columns of B and BX. NRHS must be at least 1. B (input/output) REAL array, dimension ( LDB, NRHS ) On input, B contains the right hand sides of the least squares problem in rows 1 through M. On output, B contains the solution X in rows 1 through N. LDB (input) INTEGER The leading dimension of B. LDB must be at least max(1,MAX( M, N ) ). BX (workspace) REAL array, dimension ( LDBX, NRHS ) LDBX (input) INTEGER The leading dimension of BX. PERM (input) INTEGER array, dimension ( N ) The permutations (from deflation and sorting) applied to the two blocks. GIVPTR (input) INTEGER The number of Givens rotations which took place in this subproblem. GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 ) Each pair of numbers indicates a pair of rows/columns involved in a Givens rotation. LDGCOL (input) INTEGER The leading dimension of GIVCOL, must be at least N. GIVNUM (input) REAL array, dimension ( LDGNUM, 2 ) Each number indicates the C or S value used in the corresponding Givens rotation. LDGNUM (input) INTEGER The leading dimension of arrays DIFR, POLES and GIVNUM, must be at least K. POLES (input) REAL array, dimension ( LDGNUM, 2 ) On entry, POLES(1:K, 1) contains the new singular values obtained from solving the secular equation, and POLES(1:K, 2) is an array containing the poles in the secular equation. DIFL (input) REAL array, dimension ( K ). On entry, DIFL(I) is the distance between I-th updated (undeflated) singular value and the I-th (undeflated) old singular value. DIFR (input) REAL array, dimension ( LDGNUM, 2 ). On entry, DIFR(I, 1) contains the distances between I-th updated (undeflated) singular value and the I+1-th (undeflated) old singular value. And DIFR(I, 2) is the normalizing factor for the I-th right singular vector. Z (input) REAL array, dimension ( K ) Contain the components of the deflation-adjusted updating row vector. K (input) INTEGER Contains the dimension of the non-deflated matrix, This is the order of the related secular equation. 1 <= K <=N. C (input) REAL C contains garbage if SQRE =0 and the C-value of a Givens rotation related to the right null space if SQRE = 1. S (input) REAL S contains garbage if SQRE =0 and the S-value of a Givens rotation related to the right null space if SQRE = 1. WORK (workspace) REAL array, dimension ( K ) INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. Further Details =============== Based on contributions by Ming Gu and Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA Osni Marques, LBNL/NERSC, USA ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static real c_b5 = -1.f; static integer c__1 = 1; static real c_b11 = 1.f; static real c_b13 = 0.f; static integer c__0 = 0; /* System generated locals */ integer givcol_dim1, givcol_offset, b_dim1, b_offset, bx_dim1, bx_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset, i__1, i__2; real r__1; /* Local variables */ static real temp; extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, integer *, real *, real *); extern doublereal snrm2_(integer *, real *, integer *); static integer i__, j, m, n; static real diflj, difrj, dsigj; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), sgemv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *), scopy_( integer *, real *, integer *, real *, integer *); extern doublereal slamc3_(real *, real *); static real dj; extern /* Subroutine */ int xerbla_(char *, integer *); static real dsigjp; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *); static integer nlp1; #define difr_ref(a_1,a_2) difr[(a_2)*difr_dim1 + a_1] #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] #define poles_ref(a_1,a_2) poles[(a_2)*poles_dim1 + a_1] #define bx_ref(a_1,a_2) bx[(a_2)*bx_dim1 + a_1] #define givcol_ref(a_1,a_2) givcol[(a_2)*givcol_dim1 + a_1] #define givnum_ref(a_1,a_2) givnum[(a_2)*givnum_dim1 + a_1] b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; bx_dim1 = *ldbx; bx_offset = 1 + bx_dim1 * 1; bx -= bx_offset; --perm; givcol_dim1 = *ldgcol; givcol_offset = 1 + givcol_dim1 * 1; givcol -= givcol_offset; difr_dim1 = *ldgnum; difr_offset = 1 + difr_dim1 * 1; difr -= difr_offset; poles_dim1 = *ldgnum; poles_offset = 1 + poles_dim1 * 1; poles -= poles_offset; givnum_dim1 = *ldgnum; givnum_offset = 1 + givnum_dim1 * 1; givnum -= givnum_offset; --difl; --z__; --work; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*nl < 1) { *info = -2; } else if (*nr < 1) { *info = -3; } else if (*sqre < 0 || *sqre > 1) { *info = -4; } n = *nl + *nr + 1; if (*nrhs < 1) { *info = -5; } else if (*ldb < n) { *info = -7; } else if (*ldbx < n) { *info = -9; } else if (*givptr < 0) { *info = -11; } else if (*ldgcol < n) { *info = -13; } else if (*ldgnum < n) { *info = -15; } else if (*k < 1) { *info = -20; } if (*info != 0) { i__1 = -(*info); xerbla_("SLALS0", &i__1); return 0; } m = n + *sqre; nlp1 = *nl + 1; if (*icompq == 0) { /* Apply back orthogonal transformations from the left. Step (1L): apply back the Givens rotations performed. */ i__1 = *givptr; for (i__ = 1; i__ <= i__1; ++i__) { srot_(nrhs, &b_ref(givcol_ref(i__, 2), 1), ldb, &b_ref(givcol_ref( i__, 1), 1), ldb, &givnum_ref(i__, 2), &givnum_ref(i__, 1) ); /* L10: */ } /* Step (2L): permute rows of B. */ scopy_(nrhs, &b_ref(nlp1, 1), ldb, &bx_ref(1, 1), ldbx); i__1 = n; for (i__ = 2; i__ <= i__1; ++i__) { scopy_(nrhs, &b_ref(perm[i__], 1), ldb, &bx_ref(i__, 1), ldbx); /* L20: */ } /* Step (3L): apply the inverse of the left singular vector matrix to BX. */ if (*k == 1) { scopy_(nrhs, &bx[bx_offset], ldbx, &b[b_offset], ldb); if (z__[1] < 0.f) { sscal_(nrhs, &c_b5, &b[b_offset], ldb); } } else { i__1 = *k; for (j = 1; j <= i__1; ++j) { diflj = difl[j]; dj = poles_ref(j, 1); dsigj = -poles_ref(j, 2); if (j < *k) { difrj = -difr_ref(j, 1); dsigjp = -poles_ref(j + 1, 2); } if (z__[j] == 0.f || poles_ref(j, 2) == 0.f) { work[j] = 0.f; } else { work[j] = -poles_ref(j, 2) * z__[j] / diflj / (poles_ref( j, 2) + dj); } i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { if (z__[i__] == 0.f || poles_ref(i__, 2) == 0.f) { work[i__] = 0.f; } else { work[i__] = poles_ref(i__, 2) * z__[i__] / (slamc3_(& poles_ref(i__, 2), &dsigj) - diflj) / ( poles_ref(i__, 2) + dj); } /* L30: */ } i__2 = *k; for (i__ = j + 1; i__ <= i__2; ++i__) { if (z__[i__] == 0.f || poles_ref(i__, 2) == 0.f) { work[i__] = 0.f; } else { work[i__] = poles_ref(i__, 2) * z__[i__] / (slamc3_(& poles_ref(i__, 2), &dsigjp) + difrj) / ( poles_ref(i__, 2) + dj); } /* L40: */ } work[1] = -1.f; temp = snrm2_(k, &work[1], &c__1); sgemv_("T", k, nrhs, &c_b11, &bx[bx_offset], ldbx, &work[1], & c__1, &c_b13, &b_ref(j, 1), ldb); slascl_("G", &c__0, &c__0, &temp, &c_b11, &c__1, nrhs, &b_ref( j, 1), ldb, info); /* L50: */ } } /* Move the deflated rows of BX to B also. */ if (*k < max(m,n)) { i__1 = n - *k; slacpy_("A", &i__1, nrhs, &bx_ref(*k + 1, 1), ldbx, &b_ref(*k + 1, 1), ldb); } } else { /* Apply back the right orthogonal transformations. Step (1R): apply back the new right singular vector matrix to B. */ if (*k == 1) { scopy_(nrhs, &b[b_offset], ldb, &bx[bx_offset], ldbx); } else { i__1 = *k; for (j = 1; j <= i__1; ++j) { dsigj = poles_ref(j, 2); if (z__[j] == 0.f) { work[j] = 0.f; } else { work[j] = -z__[j] / difl[j] / (dsigj + poles_ref(j, 1)) / difr_ref(j, 2); } i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { if (z__[j] == 0.f) { work[i__] = 0.f; } else { r__1 = -poles_ref(i__ + 1, 2); work[i__] = z__[j] / (slamc3_(&dsigj, &r__1) - difr_ref(i__, 1)) / (dsigj + poles_ref(i__, 1) ) / difr_ref(i__, 2); } /* L60: */ } i__2 = *k; for (i__ = j + 1; i__ <= i__2; ++i__) { if (z__[j] == 0.f) { work[i__] = 0.f; } else { r__1 = -poles_ref(i__, 2); work[i__] = z__[j] / (slamc3_(&dsigj, &r__1) - difl[ i__]) / (dsigj + poles_ref(i__, 1)) / difr_ref(i__, 2); } /* L70: */ } sgemv_("T", k, nrhs, &c_b11, &b[b_offset], ldb, &work[1], & c__1, &c_b13, &bx_ref(j, 1), ldbx); /* L80: */ } } /* Step (2R): if SQRE = 1, apply back the rotation that is related to the right null space of the subproblem. */ if (*sqre == 1) { scopy_(nrhs, &b_ref(m, 1), ldb, &bx_ref(m, 1), ldbx); srot_(nrhs, &bx_ref(1, 1), ldbx, &bx_ref(m, 1), ldbx, c__, s); } if (*k < max(m,n)) { i__1 = n - *k; slacpy_("A", &i__1, nrhs, &b_ref(*k + 1, 1), ldb, &bx_ref(*k + 1, 1), ldbx); } /* Step (3R): permute rows of B. */ scopy_(nrhs, &bx_ref(1, 1), ldbx, &b_ref(nlp1, 1), ldb); if (*sqre == 1) { scopy_(nrhs, &bx_ref(m, 1), ldbx, &b_ref(m, 1), ldb); } i__1 = n; for (i__ = 2; i__ <= i__1; ++i__) { scopy_(nrhs, &bx_ref(i__, 1), ldbx, &b_ref(perm[i__], 1), ldb); /* L90: */ } /* Step (4R): apply back the Givens rotations performed. */ for (i__ = *givptr; i__ >= 1; --i__) { r__1 = -givnum_ref(i__, 1); srot_(nrhs, &b_ref(givcol_ref(i__, 2), 1), ldb, &b_ref(givcol_ref( i__, 1), 1), ldb, &givnum_ref(i__, 2), &r__1); /* L100: */ } } return 0; /* End of SLALS0 */ } /* slals0_ */
/* Subroutine */ int slaeda_(integer *n, integer *tlvls, integer *curlvl, integer *curpbm, integer *prmptr, integer *perm, integer *givptr, integer *givcol, real *givnum, real *q, integer *qptr, real *z__, real *ztemp, integer *info) { /* System generated locals */ integer i__1, i__2, i__3; /* Builtin functions */ integer pow_ii(integer *, integer *); double sqrt(doublereal); /* Local variables */ static integer curr; extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, integer *, real *, real *); static integer bsiz1, bsiz2, psiz1, psiz2, i__, k, zptr1; extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *), xerbla_(char *, integer *); static integer mid, ptr; #define givcol_ref(a_1,a_2) givcol[(a_2)*2 + a_1] #define givnum_ref(a_1,a_2) givnum[(a_2)*2 + a_1] /* -- LAPACK routine (instrumented to count operations, version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Common block to return operation count and iteration count ITCNT is unchanged, OPS is only incremented Purpose ======= SLAEDA computes the Z vector corresponding to the merge step in the CURLVLth step of the merge process with TLVLS steps for the CURPBMth problem. Arguments ========= N (input) INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. TLVLS (input) INTEGER The total number of merging levels in the overall divide and conquer tree. CURLVL (input) INTEGER The current level in the overall merge routine, 0 <= curlvl <= tlvls. CURPBM (input) INTEGER The current problem in the current level in the overall merge routine (counting from upper left to lower right). PRMPTR (input) INTEGER array, dimension (N lg N) Contains a list of pointers which indicate where in PERM a level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) indicates the size of the permutation and incidentally the size of the full, non-deflated problem. PERM (input) INTEGER array, dimension (N lg N) Contains the permutations (from deflation and sorting) to be applied to each eigenblock. GIVPTR (input) INTEGER array, dimension (N lg N) Contains a list of pointers which indicate where in GIVCOL a level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) indicates the number of Givens rotations. GIVCOL (input) INTEGER array, dimension (2, N lg N) Each pair of numbers indicates a pair of columns to take place in a Givens rotation. GIVNUM (input) REAL array, dimension (2, N lg N) Each number indicates the S value to be used in the corresponding Givens rotation. Q (input) REAL array, dimension (N**2) Contains the square eigenblocks from previous levels, the starting positions for blocks are given by QPTR. QPTR (input) INTEGER array, dimension (N+2) Contains a list of pointers which indicate where in Q an eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates the size of the block. Z (output) REAL array, dimension (N) On output this vector contains the updating vector (the last row of the first sub-eigenvector matrix and the first row of the second sub-eigenvector matrix). ZTEMP (workspace) REAL array, dimension (N) INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. Further Details =============== Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA ===================================================================== Test the input parameters. Parameter adjustments */ --ztemp; --z__; --qptr; --q; givnum -= 3; givcol -= 3; --givptr; --perm; --prmptr; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; } if (*info != 0) { i__1 = -(*info); xerbla_("SLAEDA", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Determine location of first number in second half. */ mid = *n / 2 + 1; /* Gather last/first rows of appropriate eigenblocks into center of Z */ ptr = 1; /* Determine location of lowest level subproblem in the full storage scheme */ i__1 = *curlvl - 1; curr = ptr + *curpbm * pow_ii(&c__2, curlvl) + pow_ii(&c__2, &i__1) - 1; /* Determine size of these matrices. We add HALF to the value of the SQRT in case the machine underestimates one of these square roots. */ latime_1.ops += 8; bsiz1 = (integer) (sqrt((real) (qptr[curr + 1] - qptr[curr])) + .5f); bsiz2 = (integer) (sqrt((real) (qptr[curr + 2] - qptr[curr + 1])) + .5f); i__1 = mid - bsiz1 - 1; for (k = 1; k <= i__1; ++k) { z__[k] = 0.f; /* L10: */ } scopy_(&bsiz1, &q[qptr[curr] + bsiz1 - 1], &bsiz1, &z__[mid - bsiz1], & c__1); scopy_(&bsiz2, &q[qptr[curr + 1]], &bsiz2, &z__[mid], &c__1); i__1 = *n; for (k = mid + bsiz2; k <= i__1; ++k) { z__[k] = 0.f; /* L20: */ } /* Loop thru remaining levels 1 -> CURLVL applying the Givens rotations and permutation and then multiplying the center matrices against the current Z. */ ptr = pow_ii(&c__2, tlvls) + 1; i__1 = *curlvl - 1; for (k = 1; k <= i__1; ++k) { i__2 = *curlvl - k; i__3 = *curlvl - k - 1; curr = ptr + *curpbm * pow_ii(&c__2, &i__2) + pow_ii(&c__2, &i__3) - 1; psiz1 = prmptr[curr + 1] - prmptr[curr]; psiz2 = prmptr[curr + 2] - prmptr[curr + 1]; zptr1 = mid - psiz1; /* Apply Givens at CURR and CURR+1 */ latime_1.ops += (givptr[curr + 2] - givptr[curr]) * 6; i__2 = givptr[curr + 1] - 1; for (i__ = givptr[curr]; i__ <= i__2; ++i__) { srot_(&c__1, &z__[zptr1 + givcol_ref(1, i__) - 1], &c__1, &z__[ zptr1 + givcol_ref(2, i__) - 1], &c__1, &givnum_ref(1, i__), &givnum_ref(2, i__)); /* L30: */ } i__2 = givptr[curr + 2] - 1; for (i__ = givptr[curr + 1]; i__ <= i__2; ++i__) { srot_(&c__1, &z__[mid - 1 + givcol_ref(1, i__)], &c__1, &z__[mid - 1 + givcol_ref(2, i__)], &c__1, &givnum_ref(1, i__), & givnum_ref(2, i__)); /* L40: */ } psiz1 = prmptr[curr + 1] - prmptr[curr]; psiz2 = prmptr[curr + 2] - prmptr[curr + 1]; i__2 = psiz1 - 1; for (i__ = 0; i__ <= i__2; ++i__) { ztemp[i__ + 1] = z__[zptr1 + perm[prmptr[curr] + i__] - 1]; /* L50: */ } i__2 = psiz2 - 1; for (i__ = 0; i__ <= i__2; ++i__) { ztemp[psiz1 + i__ + 1] = z__[mid + perm[prmptr[curr + 1] + i__] - 1]; /* L60: */ } /* Multiply Blocks at CURR and CURR+1 Determine size of these matrices. We add HALF to the value of the SQRT in case the machine underestimates one of these square roots. */ latime_1.ops += 8; bsiz1 = (integer) (sqrt((real) (qptr[curr + 1] - qptr[curr])) + .5f); bsiz2 = (integer) (sqrt((real) (qptr[curr + 2] - qptr[curr + 1])) + .5f); if (bsiz1 > 0) { latime_1.ops += (bsiz1 << 1) * bsiz1; sgemv_("T", &bsiz1, &bsiz1, &c_b24, &q[qptr[curr]], &bsiz1, & ztemp[1], &c__1, &c_b26, &z__[zptr1], &c__1); } i__2 = psiz1 - bsiz1; scopy_(&i__2, &ztemp[bsiz1 + 1], &c__1, &z__[zptr1 + bsiz1], &c__1); if (bsiz2 > 0) { latime_1.ops += (bsiz2 << 1) * bsiz2; sgemv_("T", &bsiz2, &bsiz2, &c_b24, &q[qptr[curr + 1]], &bsiz2, & ztemp[psiz1 + 1], &c__1, &c_b26, &z__[mid], &c__1); } i__2 = psiz2 - bsiz2; scopy_(&i__2, &ztemp[psiz1 + bsiz2 + 1], &c__1, &z__[mid + bsiz2], & c__1); i__2 = *tlvls - k; ptr += pow_ii(&c__2, &i__2); /* L70: */ } return 0; /* End of SLAEDA */ } /* slaeda_ */
/* Subroutine */ int dlalsa_(integer *icompq, integer *smlsiz, integer *n, integer *nrhs, doublereal *b, integer *ldb, doublereal *bx, integer * ldbx, doublereal *u, integer *ldu, doublereal *vt, integer *k, doublereal *difl, doublereal *difr, doublereal *z__, doublereal * poles, integer *givptr, integer *givcol, integer *ldgcol, integer * perm, doublereal *givnum, doublereal *c__, doublereal *s, doublereal * work, integer *iwork, integer *info) { /* System generated locals */ integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, b_dim1, b_offset, bx_dim1, bx_offset, difl_dim1, difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1, i__2; /* Builtin functions */ integer pow_ii(integer *, integer *); /* Local variables */ static integer nlvl, sqre, i__, j; extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); static integer inode, ndiml, ndimr; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); static integer i1; extern /* Subroutine */ int dlals0_(integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *); extern doublereal dopbl3_(char *, integer *, integer *, integer *) ; static integer ic, lf, nd, ll, nl, nr; extern /* Subroutine */ int dlasdt_(integer *, integer *, integer *, integer *, integer *, integer *, integer *), xerbla_(char *, integer *); static integer im1, nlf, nrf, lvl, ndb1, nlp1, lvl2, nrp1; #define difl_ref(a_1,a_2) difl[(a_2)*difl_dim1 + a_1] #define difr_ref(a_1,a_2) difr[(a_2)*difr_dim1 + a_1] #define perm_ref(a_1,a_2) perm[(a_2)*perm_dim1 + a_1] #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] #define u_ref(a_1,a_2) u[(a_2)*u_dim1 + a_1] #define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1] #define poles_ref(a_1,a_2) poles[(a_2)*poles_dim1 + a_1] #define bx_ref(a_1,a_2) bx[(a_2)*bx_dim1 + a_1] #define vt_ref(a_1,a_2) vt[(a_2)*vt_dim1 + a_1] #define givcol_ref(a_1,a_2) givcol[(a_2)*givcol_dim1 + a_1] #define givnum_ref(a_1,a_2) givnum[(a_2)*givnum_dim1 + a_1] /* -- LAPACK routine (instrumented to count ops, version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= DLALSA is an itermediate step in solving the least squares problem by computing the SVD of the coefficient matrix in compact form (The singular vectors are computed as products of simple orthorgonal matrices.). If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector matrix of an upper bidiagonal matrix to the right hand side; and if ICOMPQ = 1, DLALSA applies the right singular vector matrix to the right hand side. The singular vector matrices were generated in compact form by DLALSA. Arguments ========= ICOMPQ (input) INTEGER Specifies whether the left or the right singular vector matrix is involved. = 0: Left singular vector matrix = 1: Right singular vector matrix SMLSIZ (input) INTEGER The maximum size of the subproblems at the bottom of the computation tree. N (input) INTEGER The row and column dimensions of the upper bidiagonal matrix. NRHS (input) INTEGER The number of columns of B and BX. NRHS must be at least 1. B (input) DOUBLE PRECISION array, dimension ( LDB, NRHS ) On input, B contains the right hand sides of the least squares problem in rows 1 through M. On output, B contains the solution X in rows 1 through N. LDB (input) INTEGER The leading dimension of B in the calling subprogram. LDB must be at least max(1,MAX( M, N ) ). BX (output) DOUBLE PRECISION array, dimension ( LDBX, NRHS ) On exit, the result of applying the left or right singular vector matrix to B. LDBX (input) INTEGER The leading dimension of BX. U (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ). On entry, U contains the left singular vector matrices of all subproblems at the bottom level. LDU (input) INTEGER, LDU = > N. The leading dimension of arrays U, VT, DIFL, DIFR, POLES, GIVNUM, and Z. VT (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ). On entry, VT' contains the right singular vector matrices of all subproblems at the bottom level. K (input) INTEGER array, dimension ( N ). DIFL (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ). where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. DIFR (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record distances between singular values on the I-th level and singular values on the (I -1)-th level, and DIFR(*, 2 * I) record the normalizing factors of the right singular vectors matrices of subproblems on I-th level. Z (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ). On entry, Z(1, I) contains the components of the deflation- adjusted updating row vector for subproblems on the I-th level. POLES (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old singular values involved in the secular equations on the I-th level. GIVPTR (input) INTEGER array, dimension ( N ). On entry, GIVPTR( I ) records the number of Givens rotations performed on the I-th problem on the computation tree. GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ). On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the locations of Givens rotations performed on the I-th level on the computation tree. LDGCOL (input) INTEGER, LDGCOL = > N. The leading dimension of arrays GIVCOL and PERM. PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ). On entry, PERM(*, I) records permutations done on the I-th level of the computation tree. GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- values of Givens rotations performed on the I-th level on the computation tree. C (input) DOUBLE PRECISION array, dimension ( N ). On entry, if the I-th subproblem is not square, C( I ) contains the C-value of a Givens rotation related to the right null space of the I-th subproblem. S (input) DOUBLE PRECISION array, dimension ( N ). On entry, if the I-th subproblem is not square, S( I ) contains the S-value of a Givens rotation related to the right null space of the I-th subproblem. WORK (workspace) DOUBLE PRECISION array. The dimension must be at least N. IWORK (workspace) INTEGER array. The dimension must be at least 3 * N INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. ===================================================================== Test the input parameters. Parameter adjustments */ b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; bx_dim1 = *ldbx; bx_offset = 1 + bx_dim1 * 1; bx -= bx_offset; givnum_dim1 = *ldu; givnum_offset = 1 + givnum_dim1 * 1; givnum -= givnum_offset; poles_dim1 = *ldu; poles_offset = 1 + poles_dim1 * 1; poles -= poles_offset; z_dim1 = *ldu; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; difr_dim1 = *ldu; difr_offset = 1 + difr_dim1 * 1; difr -= difr_offset; difl_dim1 = *ldu; difl_offset = 1 + difl_dim1 * 1; difl -= difl_offset; vt_dim1 = *ldu; vt_offset = 1 + vt_dim1 * 1; vt -= vt_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; --k; --givptr; perm_dim1 = *ldgcol; perm_offset = 1 + perm_dim1 * 1; perm -= perm_offset; givcol_dim1 = *ldgcol; givcol_offset = 1 + givcol_dim1 * 1; givcol -= givcol_offset; --c__; --s; --work; --iwork; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*smlsiz < 3) { *info = -2; } else if (*n < *smlsiz) { *info = -3; } else if (*nrhs < 1) { *info = -4; } else if (*ldb < *n) { *info = -6; } else if (*ldbx < *n) { *info = -8; } else if (*ldu < *n) { *info = -10; } else if (*ldgcol < *n) { *info = -19; } if (*info != 0) { i__1 = -(*info); xerbla_("DLALSA", &i__1); return 0; } /* Book-keeping and setting up the computation tree. */ inode = 1; ndiml = inode + *n; ndimr = ndiml + *n; dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], smlsiz); /* The following code applies back the left singular vector factors. For applying back the right singular vector factors, go to 50. */ if (*icompq == 1) { goto L50; } /* The nodes on the bottom level of the tree were solved by DLASDQ. The corresponding left and right singular vector matrices are in explicit form. First apply back the left singular vector matrices. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { /* IC : center row of each node NL : number of rows of left subproblem NR : number of rows of right subproblem NLF: starting row of the left subproblem NRF: starting row of the right subproblem */ i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nr = iwork[ndimr + i1]; nlf = ic - nl; nrf = ic + 1; latime_1.ops += dopbl3_("DGEMM ", &nl, nrhs, &nl); latime_1.ops += dopbl3_("DGEMM ", &nr, nrhs, &nr); dgemm_("T", "N", &nl, nrhs, &nl, &c_b9, &u_ref(nlf, 1), ldu, &b_ref( nlf, 1), ldb, &c_b10, &bx_ref(nlf, 1), ldbx); dgemm_("T", "N", &nr, nrhs, &nr, &c_b9, &u_ref(nrf, 1), ldu, &b_ref( nrf, 1), ldb, &c_b10, &bx_ref(nrf, 1), ldbx); /* L10: */ } /* Next copy the rows of B that correspond to unchanged rows in the bidiagonal matrix to BX. */ i__1 = nd; for (i__ = 1; i__ <= i__1; ++i__) { ic = iwork[inode + i__ - 1]; dcopy_(nrhs, &b_ref(ic, 1), ldb, &bx_ref(ic, 1), ldbx); /* L20: */ } /* Finally go through the left singular vector matrices of all the other subproblems bottom-up on the tree. */ j = pow_ii(&c__2, &nlvl); sqre = 0; for (lvl = nlvl; lvl >= 1; --lvl) { lvl2 = (lvl << 1) - 1; /* find the first node LF and last node LL on the current level LVL */ if (lvl == 1) { lf = 1; ll = 1; } else { i__1 = lvl - 1; lf = pow_ii(&c__2, &i__1); ll = (lf << 1) - 1; } i__1 = ll; for (i__ = lf; i__ <= i__1; ++i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; --j; dlals0_(icompq, &nl, &nr, &sqre, nrhs, &bx_ref(nlf, 1), ldbx, & b_ref(nlf, 1), ldb, &perm_ref(nlf, lvl), &givptr[j], & givcol_ref(nlf, lvl2), ldgcol, &givnum_ref(nlf, lvl2), ldu, &poles_ref(nlf, lvl2), &difl_ref(nlf, lvl), & difr_ref(nlf, lvl2), &z___ref(nlf, lvl), &k[j], &c__[j], & s[j], &work[1], info); /* L30: */ } /* L40: */ } goto L90; /* ICOMPQ = 1: applying back the right singular vector factors. */ L50: /* First now go through the right singular vector matrices of all the tree nodes top-down. */ j = 0; i__1 = nlvl; for (lvl = 1; lvl <= i__1; ++lvl) { lvl2 = (lvl << 1) - 1; /* Find the first node LF and last node LL on the current level LVL. */ if (lvl == 1) { lf = 1; ll = 1; } else { i__2 = lvl - 1; lf = pow_ii(&c__2, &i__2); ll = (lf << 1) - 1; } i__2 = lf; for (i__ = ll; i__ >= i__2; --i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; if (i__ == ll) { sqre = 0; } else { sqre = 1; } ++j; dlals0_(icompq, &nl, &nr, &sqre, nrhs, &b_ref(nlf, 1), ldb, & bx_ref(nlf, 1), ldbx, &perm_ref(nlf, lvl), &givptr[j], & givcol_ref(nlf, lvl2), ldgcol, &givnum_ref(nlf, lvl2), ldu, &poles_ref(nlf, lvl2), &difl_ref(nlf, lvl), & difr_ref(nlf, lvl2), &z___ref(nlf, lvl), &k[j], &c__[j], & s[j], &work[1], info); /* L60: */ } /* L70: */ } /* The nodes on the bottom level of the tree were solved by DLASDQ. The corresponding right singular vector matrices are in explicit form. Apply them back. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nr = iwork[ndimr + i1]; nlp1 = nl + 1; if (i__ == nd) { nrp1 = nr; } else { nrp1 = nr + 1; } nlf = ic - nl; nrf = ic + 1; latime_1.ops += dopbl3_("DGEMM ", &nlp1, nrhs, &nlp1); latime_1.ops += dopbl3_("DGEMM ", &nrp1, nrhs, &nrp1); dgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b9, &vt_ref(nlf, 1), ldu, & b_ref(nlf, 1), ldb, &c_b10, &bx_ref(nlf, 1), ldbx); dgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b9, &vt_ref(nrf, 1), ldu, & b_ref(nrf, 1), ldb, &c_b10, &bx_ref(nrf, 1), ldbx); /* L80: */ } L90: return 0; /* End of DLALSA */ } /* dlalsa_ */