示例#1
0
void lpx_check_int(LPX *lp, LPXKKT *kkt)
{     /* check integer feasibility conditions */
      int ae_ind, re_ind;
      double ae_max, re_max;
      glp_check_kkt(lp, GLP_MIP, GLP_KKT_PE, &ae_max, &ae_ind, &re_max,
         &re_ind);
      kkt->pe_ae_max = ae_max;
      kkt->pe_ae_row = ae_ind;
      kkt->pe_re_max = re_max;
      kkt->pe_re_row = re_ind;
      if (re_max <= 1e-9)
         kkt->pe_quality = 'H';
      else if (re_max <= 1e-6)
         kkt->pe_quality = 'M';
      else if (re_max <= 1e-3)
         kkt->pe_quality = 'L';
      else
         kkt->pe_quality = '?';
      glp_check_kkt(lp, GLP_MIP, GLP_KKT_PB, &ae_max, &ae_ind, &re_max,
         &re_ind);
      kkt->pb_ae_max = ae_max;
      kkt->pb_ae_ind = ae_ind;
      kkt->pb_re_max = re_max;
      kkt->pb_re_ind = re_ind;
      if (re_max <= 1e-9)
         kkt->pb_quality = 'H';
      else if (re_max <= 1e-6)
         kkt->pb_quality = 'M';
      else if (re_max <= 1e-3)
         kkt->pb_quality = 'L';
      else
         kkt->pb_quality = '?';
      return;
}
示例#2
0
void pyglpk_kkt_check(glp_prob *lp, int scaling, pyglpk_kkt_t *kkt)
{
#if GLPK_VERSION(4, 49)
  int m = glp_get_num_rows(lp);

  /* check primal equality constraints */
  glp_check_kkt(lp, GLP_SOL, GLP_KKT_PE,
                &(kkt->pe_ae_max), &(kkt->pe_ae_row),
                &(kkt->pe_re_max), &(kkt->pe_re_row));
  kkt->pe_quality = quality(kkt->pe_re_max);

  /* check primal bound constraints */
  glp_check_kkt(lp, GLP_SOL, GLP_KKT_PB,
                &(kkt->pb_ae_max), &(kkt->pb_ae_ind),
                &(kkt->pb_re_max), &(kkt->pb_re_ind));
  kkt->pb_quality = quality(kkt->pb_re_max);

  /* check dual equality constraints */
  glp_check_kkt(lp, GLP_SOL, GLP_KKT_DE,
                &(kkt->de_ae_max), &(kkt->de_ae_col),
                &(kkt->de_re_max), &(kkt->de_re_col));
  kkt->de_ae_col = kkt->de_ae_col == 0 ? 0 : kkt->de_ae_col - m;
  kkt->de_re_col = kkt->de_re_col == 0 ? 0 : kkt->de_re_col - m;
  kkt->de_quality = quality(kkt->de_re_max);

  /* check dual bound constraints */
  glp_check_kkt(lp, GLP_SOL, GLP_KKT_DB,
                &(kkt->db_ae_max), &(kkt->db_ae_ind),
                &(kkt->db_re_max), &(kkt->db_re_ind));
  kkt->db_quality = quality(kkt->db_re_max);
#else
  lpx_check_kkt(lp, scaling, kkt);
#endif
}
示例#3
0
bool glpk_wrapper::check_unsat_error_kkt(double precision) {
    double ae_max_1;  // largest absolute error
    int ae_ind_1;     // number of row the largest absolute error
    double re_max_1;  // largest relative error
    int re_ind_1;     // number of row with the largest relative error

    double ae_max_2;  // largest absolute error
    int ae_ind_2;     // variable with the largest absolute error
    double re_max_2;  // largest relative error
    int re_ind_2;     // variable with the largest relative error

    int sol;
    if (solver_type == SIMPLEX || solver_type == EXACT) {
        sol = GLP_SOL;
    } else {
        sol = GLP_IPT;
    }

    // check primal equality constraints
    glp_check_kkt(lp, sol, GLP_KKT_PE, &ae_max_1, &ae_ind_1, &re_max_1, &re_ind_1);

    // check primal bound constraints
    glp_check_kkt(lp, sol, GLP_KKT_PB, &ae_max_2, &ae_ind_2, &re_max_2, &re_ind_2);

    return ae_max_1 < precision && ae_max_1 < ae_max_2;
}
示例#4
0
void glpk_wrapper::get_error_bounds(double * errors) {
    int n = domain.size();
    int * nbr_non_zero = new int[n];
    for (int i = 0; i < n; i++) {
        errors[i] = INFINITY;
        nbr_non_zero[i] = 0;
    }

    // get the error on the KKT condition
    int sol;
    if (solver_type == SIMPLEX || solver_type == EXACT) {
        sol = GLP_SOL;
    } else {
        sol = GLP_IPT;
    }

    double ae_max;  // largest absolute error
    int ae_ind;     // number of row (PE), column (DE), or variable (PB, DB) with the largest absolute error
    double re_max;  // largest relative error
    int re_ind;     // number of row (PE), column (DE), or variable (PB, DB) with the largest relative error

    // GLP_KKT_PE — check primal equality constraints
    glp_check_kkt(lp, sol, GLP_KKT_PE, &ae_max, &ae_ind, &re_max, &re_ind);

    // a sparse vector for the coeffs in the row
    int row_size = 1;
    int * row_idx = new int[n + 1];
    double * row_coeff = new double[n + 1];

    // PE
    //  gives the distance between the auxiliary var and A * strucutral variable
    int m = glp_get_num_rows(lp);
    for (int i = 1; i <= m ; ++i) {
        // get the coeffs for that constraint
        row_size = glp_get_mat_row(lp, i, row_idx, row_coeff);
        for (int j = 1; j <= row_size; j++) {
            int v = row_idx[j] - 1;  // GLPK indexing
            nbr_non_zero[v] += 1;
            int c = row_coeff[j];
            // relative error
            errors[v] = std::min(errors[v], get_row_value(i) * re_max / c);
            // absolute error
            errors[v] = std::min(errors[v], ae_max / c);
        }
    }

    // variables that don't matter
    for (int i = 0; i < n; i++) {
        if (nbr_non_zero[i] == 0) {
            errors[i] = 0;
        }
        DREAL_LOG_INFO << "glpk_wrapper::get_error_bounds: error for " << domain.get_name(i) << " is " << errors[i];
    }

    delete[] nbr_non_zero;
    delete[] row_idx;
    delete[] row_coeff;
}
示例#5
0
void pyglpk_int_check(glp_prob *lp, pyglpk_kkt_t *kkt)
{
#if GLPK_VERSION(4, 49)
  /* check primal equality constraints */
  glp_check_kkt(lp, GLP_MIP, GLP_KKT_PE,
                &(kkt->pe_ae_max), &(kkt->pe_ae_row),
                &(kkt->pe_re_max), &(kkt->pe_re_row));
  kkt->pe_quality = quality(kkt->pe_re_max);

  /* check primal bound constraints */
  glp_check_kkt(lp, GLP_MIP, GLP_KKT_PB,
                &(kkt->pb_ae_max), &(kkt->pb_ae_ind),
                &(kkt->pb_re_max), &(kkt->pb_re_ind));
  kkt->pb_quality = quality(kkt->pb_re_max);
#else
  lpx_check_int(lp, kkt);
#endif
}
示例#6
0
int glp_print_mip(glp_prob *P, const char *fname)
{   /* write MIP solution in printable format */
    glp_file *fp;
    GLPROW *row;
    GLPCOL *col;
    int i, j, t, ae_ind, re_ind, ret;
    double ae_max, re_max;
    xprintf("Writing MIP solution to '%s'...\n", fname);
    fp = glp_open(fname, "w");
    if (fp == NULL)
    {   xprintf("Unable to create '%s' - %s\n", fname, get_err_msg());
        ret = 1;
        goto done;
    }
    xfprintf(fp, "%-12s%s\n", "Problem:",
             P->name == NULL ? "" : P->name);
    xfprintf(fp, "%-12s%d\n", "Rows:", P->m);
    xfprintf(fp, "%-12s%d (%d integer, %d binary)\n", "Columns:",
             P->n, glp_get_num_int(P), glp_get_num_bin(P));
    xfprintf(fp, "%-12s%d\n", "Non-zeros:", P->nnz);
    t = glp_mip_status(P);
    xfprintf(fp, "%-12s%s\n", "Status:",
             t == GLP_OPT    ? "INTEGER OPTIMAL" :
             t == GLP_FEAS   ? "INTEGER NON-OPTIMAL" :
             t == GLP_NOFEAS ? "INTEGER EMPTY" :
             t == GLP_UNDEF  ? "INTEGER UNDEFINED" : "???");
    xfprintf(fp, "%-12s%s%s%.10g (%s)\n", "Objective:",
             P->obj == NULL ? "" : P->obj,
             P->obj == NULL ? "" : " = ", P->mip_obj,
             P->dir == GLP_MIN ? "MINimum" :
             P->dir == GLP_MAX ? "MAXimum" : "???");
    xfprintf(fp, "\n");
    xfprintf(fp, "   No.   Row name        Activity     Lower bound  "
             " Upper bound\n");
    xfprintf(fp, "------ ------------    ------------- ------------- "
             "-------------\n");
    for (i = 1; i <= P->m; i++)
    {   row = P->row[i];
        xfprintf(fp, "%6d ", i);
        if (row->name == NULL || strlen(row->name) <= 12)
            xfprintf(fp, "%-12s ", row->name == NULL ? "" : row->name);
        else
            xfprintf(fp, "%s\n%20s", row->name, "");
        xfprintf(fp, "%3s", "");
        xfprintf(fp, "%13.6g ",
                 fabs(row->mipx) <= 1e-9 ? 0.0 : row->mipx);
        if (row->type == GLP_LO || row->type == GLP_DB ||
                row->type == GLP_FX)
            xfprintf(fp, "%13.6g ", row->lb);
        else
            xfprintf(fp, "%13s ", "");
        if (row->type == GLP_UP || row->type == GLP_DB)
            xfprintf(fp, "%13.6g ", row->ub);
        else
            xfprintf(fp, "%13s ", row->type == GLP_FX ? "=" : "");
        xfprintf(fp, "\n");
    }
    xfprintf(fp, "\n");
    xfprintf(fp, "   No. Column name       Activity     Lower bound  "
             " Upper bound\n");
    xfprintf(fp, "------ ------------    ------------- ------------- "
             "-------------\n");
    for (j = 1; j <= P->n; j++)
    {   col = P->col[j];
        xfprintf(fp, "%6d ", j);
        if (col->name == NULL || strlen(col->name) <= 12)
            xfprintf(fp, "%-12s ", col->name == NULL ? "" : col->name);
        else
            xfprintf(fp, "%s\n%20s", col->name, "");
        xfprintf(fp, "%s  ",
                 col->kind == GLP_CV ? " " :
                 col->kind == GLP_IV ? "*" : "?");
        xfprintf(fp, "%13.6g ",
                 fabs(col->mipx) <= 1e-9 ? 0.0 : col->mipx);
        if (col->type == GLP_LO || col->type == GLP_DB ||
                col->type == GLP_FX)
            xfprintf(fp, "%13.6g ", col->lb);
        else
            xfprintf(fp, "%13s ", "");
        if (col->type == GLP_UP || col->type == GLP_DB)
            xfprintf(fp, "%13.6g ", col->ub);
        else
            xfprintf(fp, "%13s ", col->type == GLP_FX ? "=" : "");
        xfprintf(fp, "\n");
    }
    xfprintf(fp, "\n");
    xfprintf(fp, "Integer feasibility conditions:\n");
    xfprintf(fp, "\n");
    glp_check_kkt(P, GLP_MIP, GLP_KKT_PE, &ae_max, &ae_ind, &re_max,
                  &re_ind);
    xfprintf(fp, "KKT.PE: max.abs.err = %.2e on row %d\n",
             ae_max, ae_ind);
    xfprintf(fp, "        max.rel.err = %.2e on row %d\n",
             re_max, re_ind);
    xfprintf(fp, "%8s%s\n", "",
             re_max <= 1e-9 ? "High quality" :
             re_max <= 1e-6 ? "Medium quality" :
             re_max <= 1e-3 ? "Low quality" : "SOLUTION IS WRONG");
    xfprintf(fp, "\n");
    glp_check_kkt(P, GLP_MIP, GLP_KKT_PB, &ae_max, &ae_ind, &re_max,
                  &re_ind);
    xfprintf(fp, "KKT.PB: max.abs.err = %.2e on %s %d\n",
             ae_max, ae_ind <= P->m ? "row" : "column",
             ae_ind <= P->m ? ae_ind : ae_ind - P->m);
    xfprintf(fp, "        max.rel.err = %.2e on %s %d\n",
             re_max, re_ind <= P->m ? "row" : "column",
             re_ind <= P->m ? re_ind : re_ind - P->m);
    xfprintf(fp, "%8s%s\n", "",
             re_max <= 1e-9 ? "High quality" :
             re_max <= 1e-6 ? "Medium quality" :
             re_max <= 1e-3 ? "Low quality" : "SOLUTION IS INFEASIBLE");
    xfprintf(fp, "\n");
    xfprintf(fp, "End of output\n");
#if 0 /* FIXME */
    xfflush(fp);
#endif
    if (glp_ioerr(fp))
    {   xprintf("Write error on '%s' - %s\n", fname, get_err_msg());
        ret = 1;
        goto done;
    }
    ret = 0;
done:
    if (fp != NULL) glp_close(fp);
    return ret;
}
示例#7
0
int glp_print_ipt(glp_prob *P, const char *fname)
{   /* write interior-point solution in printable format */
    glp_file *fp;
    GLPROW *row;
    GLPCOL *col;
    int i, j, t, ae_ind, re_ind, ret;
    double ae_max, re_max;
    xprintf("Writing interior-point solution to '%s'...\n", fname);
    fp = glp_open(fname, "w");
    if (fp == NULL)
    {   xprintf("Unable to create '%s' - %s\n", fname, get_err_msg());
        ret = 1;
        goto done;
    }
    xfprintf(fp, "%-12s%s\n", "Problem:",
             P->name == NULL ? "" : P->name);
    xfprintf(fp, "%-12s%d\n", "Rows:", P->m);
    xfprintf(fp, "%-12s%d\n", "Columns:", P->n);
    xfprintf(fp, "%-12s%d\n", "Non-zeros:", P->nnz);
    t = glp_ipt_status(P);
    xfprintf(fp, "%-12s%s\n", "Status:",
             t == GLP_OPT    ? "OPTIMAL" :
             t == GLP_UNDEF  ? "UNDEFINED" :
             t == GLP_INFEAS ? "INFEASIBLE (INTERMEDIATE)" :
             t == GLP_NOFEAS ? "INFEASIBLE (FINAL)" : "???");
    xfprintf(fp, "%-12s%s%s%.10g (%s)\n", "Objective:",
             P->obj == NULL ? "" : P->obj,
             P->obj == NULL ? "" : " = ", P->ipt_obj,
             P->dir == GLP_MIN ? "MINimum" :
             P->dir == GLP_MAX ? "MAXimum" : "???");
    xfprintf(fp, "\n");
    xfprintf(fp, "   No.   Row name        Activity     Lower bound  "
             " Upper bound    Marginal\n");
    xfprintf(fp, "------ ------------    ------------- ------------- "
             "------------- -------------\n");
    for (i = 1; i <= P->m; i++)
    {   row = P->row[i];
        xfprintf(fp, "%6d ", i);
        if (row->name == NULL || strlen(row->name) <= 12)
            xfprintf(fp, "%-12s ", row->name == NULL ? "" : row->name);
        else
            xfprintf(fp, "%s\n%20s", row->name, "");
        xfprintf(fp, "%3s", "");
        xfprintf(fp, "%13.6g ",
                 fabs(row->pval) <= 1e-9 ? 0.0 : row->pval);
        if (row->type == GLP_LO || row->type == GLP_DB ||
                row->type == GLP_FX)
            xfprintf(fp, "%13.6g ", row->lb);
        else
            xfprintf(fp, "%13s ", "");
        if (row->type == GLP_UP || row->type == GLP_DB)
            xfprintf(fp, "%13.6g ", row->ub);
        else
            xfprintf(fp, "%13s ", row->type == GLP_FX ? "=" : "");
        if (fabs(row->dval) <= 1e-9)
            xfprintf(fp, "%13s", "< eps");
        else
            xfprintf(fp, "%13.6g ", row->dval);
        xfprintf(fp, "\n");
    }
    xfprintf(fp, "\n");
    xfprintf(fp, "   No. Column name       Activity     Lower bound  "
             " Upper bound    Marginal\n");
    xfprintf(fp, "------ ------------    ------------- ------------- "
             "------------- -------------\n");
    for (j = 1; j <= P->n; j++)
    {   col = P->col[j];
        xfprintf(fp, "%6d ", j);
        if (col->name == NULL || strlen(col->name) <= 12)
            xfprintf(fp, "%-12s ", col->name == NULL ? "" : col->name);
        else
            xfprintf(fp, "%s\n%20s", col->name, "");
        xfprintf(fp, "%3s", "");
        xfprintf(fp, "%13.6g ",
                 fabs(col->pval) <= 1e-9 ? 0.0 : col->pval);
        if (col->type == GLP_LO || col->type == GLP_DB ||
                col->type == GLP_FX)
            xfprintf(fp, "%13.6g ", col->lb);
        else
            xfprintf(fp, "%13s ", "");
        if (col->type == GLP_UP || col->type == GLP_DB)
            xfprintf(fp, "%13.6g ", col->ub);
        else
            xfprintf(fp, "%13s ", col->type == GLP_FX ? "=" : "");
        if (fabs(col->dval) <= 1e-9)
            xfprintf(fp, "%13s", "< eps");
        else
            xfprintf(fp, "%13.6g ", col->dval);
        xfprintf(fp, "\n");
    }
    xfprintf(fp, "\n");
    xfprintf(fp, "Karush-Kuhn-Tucker optimality conditions:\n");
    xfprintf(fp, "\n");
    glp_check_kkt(P, GLP_IPT, GLP_KKT_PE, &ae_max, &ae_ind, &re_max,
                  &re_ind);
    xfprintf(fp, "KKT.PE: max.abs.err = %.2e on row %d\n",
             ae_max, ae_ind);
    xfprintf(fp, "        max.rel.err = %.2e on row %d\n",
             re_max, re_ind);
    xfprintf(fp, "%8s%s\n", "",
             re_max <= 1e-9 ? "High quality" :
             re_max <= 1e-6 ? "Medium quality" :
             re_max <= 1e-3 ? "Low quality" : "PRIMAL SOLUTION IS WRONG");
    xfprintf(fp, "\n");
    glp_check_kkt(P, GLP_IPT, GLP_KKT_PB, &ae_max, &ae_ind, &re_max,
                  &re_ind);
    xfprintf(fp, "KKT.PB: max.abs.err = %.2e on %s %d\n",
             ae_max, ae_ind <= P->m ? "row" : "column",
             ae_ind <= P->m ? ae_ind : ae_ind - P->m);
    xfprintf(fp, "        max.rel.err = %.2e on %s %d\n",
             re_max, re_ind <= P->m ? "row" : "column",
             re_ind <= P->m ? re_ind : re_ind - P->m);
    xfprintf(fp, "%8s%s\n", "",
             re_max <= 1e-9 ? "High quality" :
             re_max <= 1e-6 ? "Medium quality" :
             re_max <= 1e-3 ? "Low quality" : "PRIMAL SOLUTION IS INFEASIBL"
             "E");
    xfprintf(fp, "\n");
    glp_check_kkt(P, GLP_IPT, GLP_KKT_DE, &ae_max, &ae_ind, &re_max,
                  &re_ind);
    xfprintf(fp, "KKT.DE: max.abs.err = %.2e on column %d\n",
             ae_max, ae_ind == 0 ? 0 : ae_ind - P->m);
    xfprintf(fp, "        max.rel.err = %.2e on column %d\n",
             re_max, re_ind == 0 ? 0 : re_ind - P->m);
    xfprintf(fp, "%8s%s\n", "",
             re_max <= 1e-9 ? "High quality" :
             re_max <= 1e-6 ? "Medium quality" :
             re_max <= 1e-3 ? "Low quality" : "DUAL SOLUTION IS WRONG");
    xfprintf(fp, "\n");
    glp_check_kkt(P, GLP_IPT, GLP_KKT_DB, &ae_max, &ae_ind, &re_max,
                  &re_ind);
    xfprintf(fp, "KKT.DB: max.abs.err = %.2e on %s %d\n",
             ae_max, ae_ind <= P->m ? "row" : "column",
             ae_ind <= P->m ? ae_ind : ae_ind - P->m);
    xfprintf(fp, "        max.rel.err = %.2e on %s %d\n",
             re_max, re_ind <= P->m ? "row" : "column",
             re_ind <= P->m ? re_ind : re_ind - P->m);
    xfprintf(fp, "%8s%s\n", "",
             re_max <= 1e-9 ? "High quality" :
             re_max <= 1e-6 ? "Medium quality" :
             re_max <= 1e-3 ? "Low quality" : "DUAL SOLUTION IS INFEASIBLE")
    ;
    xfprintf(fp, "\n");
    xfprintf(fp, "End of output\n");
#if 0 /* FIXME */
    xfflush(fp);
#endif
    if (glp_ioerr(fp))
    {   xprintf("Write error on '%s' - %s\n", fname, get_err_msg());
        ret = 1;
        goto done;
    }
    ret = 0;
done:
    if (fp != NULL) glp_close(fp);
    return ret;
}
示例#8
0
void lpx_check_kkt(LPX *lp, int scaled, LPXKKT *kkt)
{     /* check Karush-Kuhn-Tucker conditions */
      int ae_ind, re_ind;
      double ae_max, re_max;
      xassert(scaled == scaled);
      glp_check_kkt(lp, GLP_SOL, GLP_KKT_PE, &ae_max, &ae_ind, &re_max,
         &re_ind);
      kkt->pe_ae_max = ae_max;
      kkt->pe_ae_row = ae_ind;
      kkt->pe_re_max = re_max;
      kkt->pe_re_row = re_ind;
      if (re_max <= 1e-9)
         kkt->pe_quality = 'H';
      else if (re_max <= 1e-6)
         kkt->pe_quality = 'M';
      else if (re_max <= 1e-3)
         kkt->pe_quality = 'L';
      else
         kkt->pe_quality = '?';
      glp_check_kkt(lp, GLP_SOL, GLP_KKT_PB, &ae_max, &ae_ind, &re_max,
         &re_ind);
      kkt->pb_ae_max = ae_max;
      kkt->pb_ae_ind = ae_ind;
      kkt->pb_re_max = re_max;
      kkt->pb_re_ind = re_ind;
      if (re_max <= 1e-9)
         kkt->pb_quality = 'H';
      else if (re_max <= 1e-6)
         kkt->pb_quality = 'M';
      else if (re_max <= 1e-3)
         kkt->pb_quality = 'L';
      else
         kkt->pb_quality = '?';
      glp_check_kkt(lp, GLP_SOL, GLP_KKT_DE, &ae_max, &ae_ind, &re_max,
         &re_ind);
      kkt->de_ae_max = ae_max;
      if (ae_ind == 0)
         kkt->de_ae_col = 0;
      else
         kkt->de_ae_col = ae_ind - lp->m;
      kkt->de_re_max = re_max;
      if (re_ind == 0)
         kkt->de_re_col = 0;
      else
         kkt->de_re_col = ae_ind - lp->m;
      if (re_max <= 1e-9)
         kkt->de_quality = 'H';
      else if (re_max <= 1e-6)
         kkt->de_quality = 'M';
      else if (re_max <= 1e-3)
         kkt->de_quality = 'L';
      else
         kkt->de_quality = '?';
      glp_check_kkt(lp, GLP_SOL, GLP_KKT_DB, &ae_max, &ae_ind, &re_max,
         &re_ind);
      kkt->db_ae_max = ae_max;
      kkt->db_ae_ind = ae_ind;
      kkt->db_re_max = re_max;
      kkt->db_re_ind = re_ind;
      if (re_max <= 1e-9)
         kkt->db_quality = 'H';
      else if (re_max <= 1e-6)
         kkt->db_quality = 'M';
      else if (re_max <= 1e-3)
         kkt->db_quality = 'L';
      else
         kkt->db_quality = '?';
      kkt->cs_ae_max = 0.0, kkt->cs_ae_ind = 0;
      kkt->cs_re_max = 0.0, kkt->cs_re_ind = 0;
      kkt->cs_quality = 'H';
      return;
}