/* Restriction bci = ai - bi + xi = Ti and z += ai*Ei + bi*Li */ void addBasicRestriction(glp_prob * Prob, int plane) { int cardinal, constr[4], i = plane, cardRow; double cValues[4]; char buf[AUXSIZE]; cardinal = glp_add_cols(Prob, 3); sprintf(buf,"a%i",i); glp_set_col_name(Prob, cardinal, buf); glp_set_col_bnds(Prob, cardinal, GLP_LO, 0, 0); glp_set_obj_coef(Prob, cardinal, planes[i].costE); sprintf(buf,"b%i",i); glp_set_col_name(Prob, cardinal+1, buf); glp_set_col_bnds(Prob, cardinal+1, GLP_LO, 0, 0); glp_set_obj_coef(Prob, cardinal+1, planes[i].costL); sprintf(buf,"x%i",i); glp_set_col_name(Prob, cardinal+2, buf); if( planes[i].earliest == planes[i].latest ) glp_set_col_bnds(Prob, cardinal+2, GLP_FX, planes[i].earliest, 0); else glp_set_col_bnds(Prob, cardinal+2, GLP_DB, planes[i].earliest, planes[i].latest); cardRow = glp_add_rows(Prob, 1); sprintf(buf,"bc%i",i); glp_set_row_name(Prob, cardRow, buf); glp_set_row_bnds(Prob, cardRow, GLP_FX, planes[i].ideal, 0); constr[3] = 1 + (constr[2] = 1 + (constr[1] = cardinal)); cValues[3] = cValues[1] = 1; cValues[2] = -1; glp_set_mat_row(Prob, cardRow, 3, constr, cValues); }
void Add_obj() { int i; char num[5]; sig = (float*)malloc(n * sizeof(float)); for(i = 0; i < n; i++) sig[i] = 1.0; stdev = sqrt(1.0 / (2*CODERATE*pow(10,SNR/10))); for(i = 0; i < n; i++) sig[i] += GeneGauss(0,stdev); ///////////////////////////////////////////////////////// // assign the sig to cplex as the r // here just print them /* glpk_data = fopen("//home//why/document//lp//lp.txt","a+"); fprintf(glpk_data,"minimize f : %f*f1",sig[0]); for(int i =1; i < n; i ++) fprintf(glpk_data,"+%f*f%d" , sig[i],i+1); fprintf(glpk_data,";\n"); fclose(glpk_data); */ ///////////////////////////////////////////////////////// glp_add_cols(lp, n); glp_set_obj_dir(lp, GLP_MIN); for(i = 1; i <= n; i ++) { sprintf(num, "%d", i); glp_set_col_name(lp, i, num); glp_set_col_bnds(lp, i, GLP_DB, 0.0, 1.0); glp_set_obj_coef(lp, i, sig[i-1]); } free(sig); }
int c_simplex_sparse(int m, int n, DMAT(c), DMAT(b), DVEC(s)) { glp_prob *lp; lp = glp_create_prob(); glp_set_obj_dir(lp, GLP_MAX); int i,j,k; int tot = cr - n; glp_add_rows(lp, m); glp_add_cols(lp, n); //printf("%d %d\n",m,n); // the first n values for (k=1;k<=n;k++) { glp_set_obj_coef(lp, k, AT(c, k-1, 2)); //printf("%d %f\n",k,AT(c, k-1, 2)); } int * ia = malloc((1+tot)*sizeof(int)); int * ja = malloc((1+tot)*sizeof(int)); double * ar = malloc((1+tot)*sizeof(double)); for (k=1; k<= tot; k++) { ia[k] = rint(AT(c,k-1+n,0)); ja[k] = rint(AT(c,k-1+n,1)); ar[k] = AT(c,k-1+n,2); //printf("%d %d %f\n",ia[k],ja[k],ar[k]); } glp_load_matrix(lp, tot, ia, ja, ar); int t; for (i=1;i<=m;i++) { switch((int)rint(AT(b,i-1,0))) { case 0: { t = GLP_FR; break; } case 1: { t = GLP_LO; break; } case 2: { t = GLP_UP; break; } case 3: { t = GLP_DB; break; } default: { t = GLP_FX; break; } } glp_set_row_bnds(lp, i, t , AT(b,i-1,1), AT(b,i-1,2)); } for (j=1;j<=n;j++) { switch((int)rint(AT(b,m+j-1,0))) { case 0: { t = GLP_FR; break; } case 1: { t = GLP_LO; break; } case 2: { t = GLP_UP; break; } case 3: { t = GLP_DB; break; } default: { t = GLP_FX; break; } } glp_set_col_bnds(lp, j, t , AT(b,m+j-1,1), AT(b,m+j-1,2)); } glp_term_out(0); glp_simplex(lp, NULL); sp[0] = glp_get_status(lp); sp[1] = glp_get_obj_val(lp); for (k=1; k<=n; k++) { sp[k+1] = glp_get_col_prim(lp, k); } glp_delete_prob(lp); free(ia); free(ja); free(ar); return 0; }
/* R is the random contraint data in row major memory layout ridx is an N array of integers soln is an array of length (n+1) soln[n] is t (objective value) active_constr is an N-length 0-1 array */ void solve_lp(int N, int n, double* R, int* ridx, double* soln, int* active_constr) { double tol = 1.0e-14; int size = (N+1)*(n+1) + 1; // We add one because GLPK indexes arrays // starting at 1 instead of 0. glp_prob *lp; int* ia = malloc(size * sizeof(int)); int* ja = malloc(size * sizeof(int)); double* ar = malloc(size * sizeof(double)); int i, j; lp = glp_create_prob(); glp_set_prob_name(lp, "portfolio"); glp_set_obj_dir(lp, GLP_MAX); glp_add_rows(lp, N+1); // Sampled constraints are ">= 0" for (i = 1; i <= N; i++) { glp_set_row_bnds(lp, i, GLP_LO, 0.0, 0.0); } // Sum = 1 constraint glp_set_row_name(lp, N+1, "sum"); glp_set_row_bnds(lp, N+1, GLP_FX, 1.0, 1.0); glp_add_cols(lp, n+1); // Nonnegative variables y for (i = 1; i <= n; i++) { glp_set_col_bnds(lp, i, GLP_LO, 0.0, 0.0); glp_set_obj_coef(lp, i, 0.0); } // Free variable t glp_set_col_name(lp, n+1, "t"); glp_set_col_bnds(lp, n+1, GLP_FR, 0.0, 0.0); glp_set_obj_coef(lp, n+1, 1.0); // for (i = 0; i < N*(n-1); i++) { // printf("%d: %g\n", i, R[i]); // } int idx = 1; // Sampled constraints for (i = 1; i <= N; i++) { // Uncertain assets for (j = 1; j < n; j++) { ia[idx] = i; ja[idx] = j; ar[idx] = R[ ridx[(i-1)] * (n-1) + (j-1) ]; idx += 1; } // Fixed return asset ia[idx] = i; ja[idx] = n; ar[idx] = 1.05; idx += 1; // t ia[idx] = i; ja[idx] = n+1; ar[idx] = -1.0; idx += 1; } // Sum = 1 constraint for (i = 1; i <= n; i++) { ia[idx] = N+1; ja[idx] = i; ar[idx] = 1.0; idx += 1; } // t ia[idx] = N+1; ja[idx] = n+1; ar[idx] = 0.0; idx += 1; // for (i = 1; i < size; i++) { // printf("%d %d %g\n", ia[i], ja[i], ar[i]); // } glp_load_matrix(lp, size-1, ia, ja, ar); // glp_scale_prob(lp, GLP_SF_AUTO); glp_smcp param; glp_init_smcp(¶m); param.meth = GLP_PRIMAL; //glp_std_basis(lp); glp_simplex(lp, ¶m); double z = glp_get_obj_val(lp); // printf("z = %g\n", z); if (soln) { for (i = 0; i < n; i++) { double y = glp_get_col_prim(lp, i+1); soln[i] = y; // printf("y%d = %g\n", i, y); } double t = glp_get_col_prim(lp, n+1); soln[n] = t; // printf("t = %g\n", glp_get_col_prim(lp, n+1)); } for (i = 1; i <= N; i++) { double slack = glp_get_row_prim(lp, i); active_constr[i-1] = fabs(slack) < tol ? 1 : 0; // printf("constr%d %d\n", i, active_constr[i-1]); } glp_delete_prob(lp); // glp_free_env(); free(ia); free(ja); free(ar); }
void lpx_set_obj_coef(glp_prob *lp, int j, double coef) { /* set (change) obj. coefficient or constant term */ glp_set_obj_coef(lp, j, coef); return; }
int max_flow_lp(int nn, int ne, const int beg[/*1+ne*/], const int end[/*1+ne*/], const int cap[/*1+ne*/], int s, int t, int x[/*1+ne*/]) { glp_prob *lp; glp_smcp smcp; int i, k, nz, flow, *rn, *cn; double temp, *aa; /* create LP problem instance */ lp = glp_create_prob(); /* create LP rows; i-th row is the conservation condition of the * flow at i-th node, i = 1, ..., nn */ glp_add_rows(lp, nn); for (i = 1; i <= nn; i++) glp_set_row_bnds(lp, i, GLP_FX, 0.0, 0.0); /* create LP columns; k-th column is the elementary flow thru * k-th edge, k = 1, ..., ne; the last column with the number * ne+1 is the total flow through the network, which goes along * a dummy feedback edge from the sink to the source */ glp_add_cols(lp, ne+1); for (k = 1; k <= ne; k++) { xassert(cap[k] > 0); glp_set_col_bnds(lp, k, GLP_DB, -cap[k], +cap[k]); } glp_set_col_bnds(lp, ne+1, GLP_FR, 0.0, 0.0); /* build the constraint matrix; structurally this matrix is the * incidence matrix of the network, so each its column (including * the last column for the dummy edge) has exactly two non-zero * entries */ rn = xalloc(1+2*(ne+1), sizeof(int)); cn = xalloc(1+2*(ne+1), sizeof(int)); aa = xalloc(1+2*(ne+1), sizeof(double)); nz = 0; for (k = 1; k <= ne; k++) { /* x[k] > 0 means the elementary flow thru k-th edge goes from * node beg[k] to node end[k] */ nz++, rn[nz] = beg[k], cn[nz] = k, aa[nz] = -1.0; nz++, rn[nz] = end[k], cn[nz] = k, aa[nz] = +1.0; } /* total flow thru the network goes from the sink to the source * along the dummy feedback edge */ nz++, rn[nz] = t, cn[nz] = ne+1, aa[nz] = -1.0; nz++, rn[nz] = s, cn[nz] = ne+1, aa[nz] = +1.0; /* check the number of non-zero entries */ xassert(nz == 2*(ne+1)); /* load the constraint matrix into the LP problem object */ glp_load_matrix(lp, nz, rn, cn, aa); xfree(rn); xfree(cn); xfree(aa); /* objective function is the total flow through the network to * be maximized */ glp_set_obj_dir(lp, GLP_MAX); glp_set_obj_coef(lp, ne + 1, 1.0); /* solve LP instance with the (primal) simplex method */ glp_term_out(0); glp_adv_basis(lp, 0); glp_term_out(1); glp_init_smcp(&smcp); smcp.msg_lev = GLP_MSG_ON; smcp.out_dly = 5000; xassert(glp_simplex(lp, &smcp) == 0); xassert(glp_get_status(lp) == GLP_OPT); /* obtain optimal elementary flows thru edges of the network */ /* (note that the constraint matrix is unimodular and the data * are integral, so all elementary flows in basic solution should * also be integral) */ for (k = 1; k <= ne; k++) { temp = glp_get_col_prim(lp, k); x[k] = (int)floor(temp + .5); xassert(fabs(x[k] - temp) <= 1e-6); } /* obtain the maximum flow thru the original network which is the * flow thru the dummy feedback edge */ temp = glp_get_col_prim(lp, ne+1); flow = (int)floor(temp + .5); xassert(fabs(flow - temp) <= 1e-6); /* delete LP problem instance */ glp_delete_prob(lp); /* return to the calling program */ return flow; }
static bool Graph_solve(Graph& graph, size_t loops, PositionList* position_tbl) { glp_prob* lp = glp_create_prob(); glp_set_prob_name(lp, "scaffold"); glp_set_obj_dir(lp, GLP_MIN); size_t rows = 0, cols = 0, vals = 0; for (Graph::const_iterator i = graph.begin(); i != graph.end(); ++i) { ++cols; // var x_i for (Children::const_iterator j = i->second.children.begin(); j != i->second.children.end(); ++j) { rows += 3; cols += 2; // var e_i_j; var E_i_j; vals += 7; } } glp_add_rows(lp, rows); glp_add_cols(lp, cols); std::map< std::pair< size_t, size_t >, size_t > mapping; { size_t row = 1, col = 1; for (Graph::const_iterator i = graph.begin(); i != graph.end(); ++i) { mapping[std::make_pair(i->first, -1)] = col; glp_set_col_bnds(lp, col++, GLP_LO, 0.0, 0.0); // x_i >= 0 for (Children::const_iterator j = i->second.children.begin(); j != i->second.children.end(); ++j) { glp_set_row_bnds(lp, row++, GLP_FX, j->second, j->second); glp_set_row_bnds(lp, row++, GLP_LO, 0.0, 0.0); glp_set_row_bnds(lp, row++, GLP_LO, 0.0, 0.0); mapping[std::make_pair(i->first, j->first)] = col; ++col; // var e_i glp_set_obj_coef(lp, col++, 1.0); } } } LOG4CXX_TRACE(logger, boost::format(" rows = %d, cols = %d, vals = %d") % rows % cols % vals); int* ia = new int[vals + 1]; int* ja = new int[vals + 1]; double* ra = new double[vals + 1]; { size_t l = 1, row = 1, col = 1; for (Graph::const_iterator i = graph.begin(); i != graph.end(); ++i) { for (Children::const_iterator j = i->second.children.begin(); j != i->second.children.end(); ++j) { // x_j - x_i + e_i_j = d_i_j ia[l] = row; ja[l] = mapping[std::make_pair(j->first, -1)]; ra[l] = 1.0; ++l; ia[l] = row; ja[l] = mapping[std::make_pair(i->first, -1)]; ra[l] = -1.0; ++l; ia[l] = row; ja[l] = mapping[std::make_pair(i->first, j->first)] + 0; ra[l] = 1.0; ++l; ++row; // E_i_j + e_i_j >= 0 ia[l] = row; ja[l] = mapping[std::make_pair(i->first, j->first)] + 1; ra[l] = 1.0; ++l; ia[l] = row; ja[l] = mapping[std::make_pair(i->first, j->first)] + 0; ra[l] = 1.0; ++l; ++row; // E_i_j - e_i_j >= 0 ia[l] = row; ja[l] = mapping[std::make_pair(i->first, j->first)] + 1; ra[l] = 1.0; ++l; ia[l] = row; ja[l] = mapping[std::make_pair(i->first, j->first)] + 0; ra[l] = -1.0; ++l; ++row; } } } glp_load_matrix(lp, vals, ia, ja, ra); glp_smcp parm; glp_init_smcp(&parm); parm.it_lim = loops; //parm.pricing = GLP_PT_PSE; //parm.presolve = GLP_ON; parm.msg_lev = GLP_MSG_ERR; glp_simplex(lp, &parm); double z = glp_get_obj_val(lp); LOG4CXX_TRACE(logger, boost::format("z = %f") % z); for (Graph::const_iterator i = graph.begin(); i != graph.end(); ++i) { size_t val = glp_get_col_prim(lp, mapping[std::make_pair(i->first, -1)]); if (position_tbl != NULL) { (*position_tbl)[i->first] = val; } LOG4CXX_TRACE(logger, boost::format("x\t%d\t%d") % i->first % val); } delete[] ra; delete[] ja; delete[] ia; glp_delete_prob(lp); return true; }
int main(int argc,char *argv[]){ int q[] = {atoi(argv[1]),atoi(argv[2]),atoi(argv[3])}; //queue length int n[] = {atoi(argv[4]),atoi(argv[5]),atoi(argv[6])}; //different request number float cmax = atof(argv[7]); //bandwidth limitation glp_prob *mip = glp_create_prob(); glp_set_prob_name(mip, "sample"); glp_set_obj_dir(mip, GLP_MAX); glp_add_rows(mip, 8); glp_set_row_name(mip, 1, "n1"); if (n[0]==0) glp_set_row_bnds(mip, 1, GLP_FX, 0.0, n[0]); else glp_set_row_bnds(mip, 1, GLP_DB, 0.0, n[0]); glp_set_row_name(mip, 2, "n2"); if (n[1]==0) glp_set_row_bnds(mip, 2, GLP_FX, 0.0, n[1]); else glp_set_row_bnds(mip, 2, GLP_DB, 0.0, n[1]); glp_set_row_name(mip, 3, "n3"); if (n[2]==0) glp_set_row_bnds(mip, 3, GLP_FX, 0.0, n[2]); else glp_set_row_bnds(mip, 3, GLP_DB, 0.0, n[2]); glp_set_row_name(mip, 4, "c1"); glp_set_row_bnds(mip, 4, GLP_DB, 0.0, cmax); glp_set_row_name(mip, 5, "c2"); glp_set_row_bnds(mip, 5, GLP_DB, 0.0, cmax); glp_set_row_name(mip, 6, "c3"); glp_set_row_bnds(mip, 6, GLP_DB, 0.0, cmax); glp_set_row_name(mip, 7, "c4"); glp_set_row_bnds(mip, 7, GLP_DB, 0.0, cmax); glp_set_row_name(mip, 8, "c5"); glp_set_row_bnds(mip, 8, GLP_DB, 0.0, cmax); glp_add_cols(mip, 15); glp_set_col_name(mip, 1, "x11"); glp_set_col_bnds(mip, 1, GLP_LO, 0, 0); glp_set_obj_coef(mip, 1, q[0]); //queue length glp_set_col_kind(mip, 1, GLP_IV); glp_set_col_name(mip, 2, "x12"); glp_set_col_bnds(mip, 2, GLP_LO, 0, 0); glp_set_obj_coef(mip, 2, q[1]); glp_set_col_kind(mip, 2, GLP_IV); glp_set_col_name(mip, 3, "x13"); glp_set_col_bnds(mip, 3, GLP_LO, 0, 0); glp_set_obj_coef(mip, 3, q[2]); glp_set_col_kind(mip, 3, GLP_IV); glp_set_col_name(mip, 4, "x21"); glp_set_col_bnds(mip, 4, GLP_LO, 0, 0); glp_set_obj_coef(mip, 4, q[0]); glp_set_col_kind(mip, 4, GLP_IV); glp_set_col_name(mip, 5, "x22"); glp_set_col_bnds(mip, 5, GLP_LO, 0, 0); glp_set_obj_coef(mip, 5, q[1]); glp_set_col_kind(mip, 5, GLP_IV); glp_set_col_name(mip, 6, "x23"); glp_set_col_bnds(mip, 6, GLP_LO, 0, 0); glp_set_obj_coef(mip, 6, q[2]); glp_set_col_kind(mip, 6, GLP_IV); glp_set_col_name(mip, 7, "x31"); glp_set_col_bnds(mip, 7, GLP_LO, 0, 0); glp_set_obj_coef(mip, 7, q[0]); glp_set_col_kind(mip, 7, GLP_IV); glp_set_col_name(mip, 8, "x32"); glp_set_col_bnds(mip, 8, GLP_LO, 0, 0); glp_set_obj_coef(mip, 8, q[1]); glp_set_col_kind(mip, 8, GLP_IV); glp_set_col_name(mip, 9, "x33"); glp_set_col_bnds(mip, 9, GLP_LO, 0, 0); glp_set_obj_coef(mip, 9, q[2]); glp_set_col_kind(mip, 9, GLP_IV); glp_set_col_name(mip, 10, "x41"); glp_set_col_bnds(mip, 10, GLP_LO, 0, 0); glp_set_obj_coef(mip, 10, q[0]); glp_set_col_kind(mip, 10, GLP_IV); glp_set_col_name(mip, 11, "x42"); glp_set_col_bnds(mip, 11, GLP_LO, 0, 0); glp_set_obj_coef(mip, 11, q[1]); glp_set_col_kind(mip, 11, GLP_IV); glp_set_col_name(mip, 12, "x43"); glp_set_col_bnds(mip, 12, GLP_LO, 0, 0); glp_set_obj_coef(mip, 12, q[2]); glp_set_col_kind(mip, 12, GLP_IV); glp_set_col_name(mip, 13, "x51"); glp_set_col_bnds(mip, 13, GLP_LO, 0, 0); glp_set_obj_coef(mip, 13, q[0]); glp_set_col_kind(mip, 13, GLP_IV); glp_set_col_name(mip, 14, "x52"); glp_set_col_bnds(mip, 14, GLP_LO, 0, 0); glp_set_obj_coef(mip, 14, q[1]); glp_set_col_kind(mip, 14, GLP_IV); glp_set_col_name(mip, 15, "x53"); glp_set_col_bnds(mip, 15, GLP_LO, 0, 0); glp_set_obj_coef(mip, 15, q[2]); glp_set_col_kind(mip, 15, GLP_IV); int ia[1+30], ja[1+30]; double ar[1+30]; int i=1,j=1,k=1; for (i=1;i<4;i++) for (j=1;j<6;j++){ ia[k]=i,ja[k]=(j-1)*3+i,ar[k]=1; k++; } ia[16]=4,ja[16]=1,ar[16]=10; ia[17]=4,ja[17]=2,ar[17]=1; ia[18]=4,ja[18]=3,ar[18]=0.1; ia[19]=5,ja[19]=4,ar[19]=10; ia[20]=5,ja[20]=5,ar[20]=1; ia[21]=5,ja[21]=6,ar[21]=0.1; ia[22]=6,ja[22]=7,ar[22]=10; ia[23]=6,ja[23]=8,ar[23]=1; ia[24]=6,ja[24]=9,ar[24]=0.1; ia[25]=7,ja[25]=10,ar[25]=10; ia[26]=7,ja[26]=11,ar[26]=1; ia[27]=7,ja[27]=12,ar[27]=0.1; ia[28]=8,ja[28]=13,ar[28]=10; ia[29]=8,ja[29]=14,ar[29]=1; ia[30]=8,ja[30]=15,ar[30]=0.1; /* for (i=1;i<31;i++){ printf("%d,%d,%f\n",ia[i],ja[i],ar[i]); } */ glp_load_matrix(mip, 30, ia, ja, ar); glp_iocp parm; glp_init_iocp(&parm); parm.presolve = GLP_ON; int err = glp_intopt(mip, &parm); //glp_simplex(mip, NULL); // double t = glp_mip_obj_val(mip); int result[15]={0}; for (i=0;i<15;i++){ result[i] = glp_mip_col_val(mip, i+1); } printf("\n"); //display the result for (i=0;i<14;i++){ printf("%d,",result[i]); } printf("%d\n",result[14]); glp_delete_prob(mip); return 0; }
void glp_mincost_lp(glp_prob *lp, glp_graph *G, int names, int v_rhs, int a_low, int a_cap, int a_cost) { glp_vertex *v; glp_arc *a; int i, j, type, ind[1+2]; double rhs, low, cap, cost, val[1+2]; if (!(names == GLP_ON || names == GLP_OFF)) xerror("glp_mincost_lp: names = %d; invalid parameter\n", names); if (v_rhs >= 0 && v_rhs > G->v_size - (int)sizeof(double)) xerror("glp_mincost_lp: v_rhs = %d; invalid offset\n", v_rhs); if (a_low >= 0 && a_low > G->a_size - (int)sizeof(double)) xerror("glp_mincost_lp: a_low = %d; invalid offset\n", a_low); if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double)) xerror("glp_mincost_lp: a_cap = %d; invalid offset\n", a_cap); if (a_cost >= 0 && a_cost > G->a_size - (int)sizeof(double)) xerror("glp_mincost_lp: a_cost = %d; invalid offset\n", a_cost) ; glp_erase_prob(lp); if (names) glp_set_prob_name(lp, G->name); if (G->nv > 0) glp_add_rows(lp, G->nv); for (i = 1; i <= G->nv; i++) { v = G->v[i]; if (names) glp_set_row_name(lp, i, v->name); if (v_rhs >= 0) memcpy(&rhs, (char *)v->data + v_rhs, sizeof(double)); else rhs = 0.0; glp_set_row_bnds(lp, i, GLP_FX, rhs, rhs); } if (G->na > 0) glp_add_cols(lp, G->na); for (i = 1, j = 0; i <= G->nv; i++) { v = G->v[i]; for (a = v->out; a != NULL; a = a->t_next) { j++; if (names) { char name[50+1]; sprintf(name, "x[%d,%d]", a->tail->i, a->head->i); xassert(strlen(name) < sizeof(name)); glp_set_col_name(lp, j, name); } if (a->tail->i != a->head->i) { ind[1] = a->tail->i, val[1] = +1.0; ind[2] = a->head->i, val[2] = -1.0; glp_set_mat_col(lp, j, 2, ind, val); } if (a_low >= 0) memcpy(&low, (char *)a->data + a_low, sizeof(double)); else low = 0.0; if (a_cap >= 0) memcpy(&cap, (char *)a->data + a_cap, sizeof(double)); else cap = 1.0; if (cap == DBL_MAX) type = GLP_LO; else if (low != cap) type = GLP_DB; else type = GLP_FX; glp_set_col_bnds(lp, j, type, low, cap); if (a_cost >= 0) memcpy(&cost, (char *)a->data + a_cost, sizeof(double)); else cost = 0.0; glp_set_obj_coef(lp, j, cost); } } xassert(j == G->na); return; }
int main(int argc, char** argv) { /*==================================================*/ /* Variables */ data d; int* M; /* GLPK */ int *ia, *ja; double *ar; double z; double *x; int notZeroCount; /* Misc */ int i, pos; /* Check up */ if(argc != 2) { printf("ERROR : no data file !\n"); exit(1); } /* Initialization */ filereader(argv[1], &d); if(d.nbjour < 1) { printf("Obvious...\n"); return 0; } M = (int*) malloc ((d.nbjour +1)* sizeof(int)); M[d.nbjour] = d.d[d.nbjour]; for (i = d.nbjour-1; i >=0; --i) { M[i] = d.d[i] + M[i+1]; } /* Problem creation*/ glp_prob *prob; prob = glp_create_prob(); glp_set_prob_name(prob, "ULS"); glp_set_obj_dir(prob, GLP_MIN); glp_smcp parm; glp_init_smcp(&parm); parm.msg_lev = GLP_MSG_OFF; glp_iocp parmip; glp_init_iocp(&parmip); parmip.msg_lev = GLP_MSG_OFF; /* Number of constraints : 2 * nbjour +2 */ glp_add_rows(prob, 2*d.nbjour +2); for (i = 1; i <= d.nbjour; ++i) { glp_set_row_bnds(prob, i, GLP_FX, d.d[i], d.d[i]); } for (i = d.nbjour+1; i <= 2*d.nbjour; ++i) { glp_set_row_bnds(prob, i, GLP_LO, 0, 0); } glp_set_row_bnds(prob, 2*d.nbjour+1, GLP_FX, 0.0, 0.0); glp_set_row_bnds(prob, 2*d.nbjour+2, GLP_FX, 0.0, 0.0); /* Number of variables : 3*(nbjour +1)*/ glp_add_cols(prob, 3*(d.nbjour+1)); for (i = 0; i < d.nbjour +1; ++i) { glp_set_col_bnds(prob, i*3 +1, GLP_LO, 0.0, 0.0); glp_set_col_bnds(prob, i*3 +2, GLP_LO, 0.0, 0.0); glp_set_col_bnds(prob, i*3 +3, GLP_DB, 0.0, 1.0); } for (i = 1; i <= 3*(d.nbjour+1); ++i) { glp_set_col_kind(prob, i, GLP_CV); } /* Coefficients of the economic function */ glp_set_obj_coef(prob, 1, 0); glp_set_obj_coef(prob, 2, 0); glp_set_obj_coef(prob, 3, 0); for (i = 1; i <=d.nbjour; ++i) { glp_set_obj_coef(prob, 3*i+1, d.p[i]); glp_set_obj_coef(prob, 3*i+2, d.h[i]); glp_set_obj_coef(prob, 3*i+3, d.f[i]); } /* Matrix */ notZeroCount = 5 * d.nbjour + 2; ia = (int *) malloc ((1+notZeroCount) * sizeof(int)); ja = (int *) malloc ((1+notZeroCount) * sizeof(int)); ar = (double *) malloc ((1+notZeroCount) * sizeof(double)); pos = 1; for (i = 1; i <= d.nbjour; ++i) { ia[pos] = i; ia[pos+1] = i; ia[pos+2] = i; ja[pos] = i*3-1; ja[pos+1] = i*3+1; ja[pos+2] = i*3+2; ar[pos] = 1.0; ar[pos+1] = 1.0; ar[pos+2] = -1.0; pos += 3; } for (i = 1; i <= d.nbjour; ++i) { ia[pos] = i + d.nbjour; ia[pos+1] = i + d.nbjour; ja[pos] = i*3+1; ja[pos+1] = i*3+3; ar[pos] = -1.0; ar[pos+1] = M[i]; pos += 2; } ia[pos] = 2*d.nbjour +1; ia[pos+1] = 2 * d.nbjour+2; ja[pos] = 3*(d.nbjour+1)-1; ja[pos+1] = 2; ar[pos] = 1.0; ar[pos+1] = 1.0; pos += 2; glp_load_matrix(prob, notZeroCount, ia, ja , ar); /* Writing in a file */ glp_write_lp(prob, NULL, "ULS.lp"); /* Branch and bound */ node* res = branchAndBound(prob); displayNode(res); }
void npp_build_prob(NPP *npp, glp_prob *prob) { /* build resultant (preprocessed) problem */ NPPROW *row; NPPCOL *col; NPPAIJ *aij; int i, j, type, len, *ind; double dir, *val; glp_erase_prob(prob); glp_set_prob_name(prob, npp->name); glp_set_obj_name(prob, npp->obj); glp_set_obj_dir(prob, npp->orig_dir); if (npp->orig_dir == GLP_MIN) dir = +1.0; else if (npp->orig_dir == GLP_MAX) dir = -1.0; else xassert(npp != npp); glp_set_obj_coef(prob, 0, dir * npp->c0); /* build rows */ for (row = npp->r_head; row != NULL; row = row->next) { row->temp = i = glp_add_rows(prob, 1); glp_set_row_name(prob, i, row->name); if (row->lb == -DBL_MAX && row->ub == +DBL_MAX) type = GLP_FR; else if (row->ub == +DBL_MAX) type = GLP_LO; else if (row->lb == -DBL_MAX) type = GLP_UP; else if (row->lb != row->ub) type = GLP_DB; else type = GLP_FX; glp_set_row_bnds(prob, i, type, row->lb, row->ub); } /* build columns and the constraint matrix */ ind = xcalloc(1+prob->m, sizeof(int)); val = xcalloc(1+prob->m, sizeof(double)); for (col = npp->c_head; col != NULL; col = col->next) { j = glp_add_cols(prob, 1); glp_set_col_name(prob, j, col->name); #if 0 glp_set_col_kind(prob, j, col->kind); #else glp_set_col_kind(prob, j, col->is_int ? GLP_IV : GLP_CV); #endif if (col->lb == -DBL_MAX && col->ub == +DBL_MAX) type = GLP_FR; else if (col->ub == +DBL_MAX) type = GLP_LO; else if (col->lb == -DBL_MAX) type = GLP_UP; else if (col->lb != col->ub) type = GLP_DB; else type = GLP_FX; glp_set_col_bnds(prob, j, type, col->lb, col->ub); glp_set_obj_coef(prob, j, dir * col->coef); len = 0; for (aij = col->ptr; aij != NULL; aij = aij->c_next) { len++; ind[len] = aij->row->temp; val[len] = aij->val; } glp_set_mat_col(prob, j, len, ind, val); } xfree(ind); xfree(val); /* resultant problem has been built */ npp->m = prob->m; npp->n = prob->n; npp->nnz = prob->nnz; npp->row_ref = xcalloc(1+npp->m, sizeof(int)); npp->col_ref = xcalloc(1+npp->n, sizeof(int)); for (row = npp->r_head, i = 0; row != NULL; row = row->next) npp->row_ref[++i] = row->i; for (col = npp->c_head, j = 0; col != NULL; col = col->next) npp->col_ref[++j] = col->j; /* transformed problem segment is no longer needed */ dmp_delete_pool(npp->pool), npp->pool = NULL; npp->name = npp->obj = NULL; npp->c0 = 0.0; npp->r_head = npp->r_tail = NULL; npp->c_head = npp->c_tail = NULL; return; }
void c_glp_set_obj_coef(glp_prob *lp, int j, double coef){ glp_set_obj_coef(lp, j, coef); }
int glpk (int sense, int n, int m, double *c, int nz, int *rn, int *cn, double *a, double *b, char *ctype, int *freeLB, double *lb, int *freeUB, double *ub, int *vartype, int isMIP, int lpsolver, int save_pb, char *save_filename, char *filetype, double *xmin, double *fmin, double *status, double *lambda, double *redcosts, double *time, double *mem) { int typx = 0; int method; clock_t t_start = clock(); //Redirect standard output if (glpIntParam[0] > 1) glp_term_hook (glpk_print_hook, NULL); else glp_term_hook (NULL, NULL); //-- Create an empty LP/MILP object LPX *lp = lpx_create_prob (); //-- Set the sense of optimization if (sense == 1) glp_set_obj_dir (lp, GLP_MIN); else glp_set_obj_dir (lp, GLP_MAX); //-- Define the number of unknowns and their domains. glp_add_cols (lp, n); for (int i = 0; i < n; i++) { //-- Define type of the structural variables if (! freeLB[i] && ! freeUB[i]) { if ( lb[i] == ub[i] ) glp_set_col_bnds (lp, i+1, GLP_FX, lb[i], ub[i]); else glp_set_col_bnds (lp, i+1, GLP_DB, lb[i], ub[i]); } else { if (! freeLB[i] && freeUB[i]) glp_set_col_bnds (lp, i+1, GLP_LO, lb[i], ub[i]); else { if (freeLB[i] && ! freeUB[i]) glp_set_col_bnds (lp, i+1, GLP_UP, lb[i], ub[i]); else glp_set_col_bnds (lp, i+1, GLP_FR, lb[i], ub[i]); } } // -- Set the objective coefficient of the corresponding // -- structural variable. No constant term is assumed. glp_set_obj_coef(lp,i+1,c[i]); if (isMIP) glp_set_col_kind (lp, i+1, vartype[i]); } glp_add_rows (lp, m); for (int i = 0; i < m; i++) { /* If the i-th row has no lower bound (types F,U), the corrispondent parameter will be ignored. If the i-th row has no upper bound (types F,L), the corrispondent parameter will be ignored. If the i-th row is of S type, the i-th LB is used, but the i-th UB is ignored. */ switch (ctype[i]) { case 'F': typx = GLP_FR; break; // upper bound case 'U': typx = GLP_UP; break; // lower bound case 'L': typx = GLP_LO; break; // fixed constraint case 'S': typx = GLP_FX; break; // double-bounded variable case 'D': typx = GLP_DB; break; } if ( typx == GLP_DB && -b[i] < b[i]) { glp_set_row_bnds (lp, i+1, typx, -b[i], b[i]); } else if(typx == GLP_DB && -b[i] == b[i]) { glp_set_row_bnds (lp, i+1, GLP_FX, b[i], b[i]); } else { // this should be glp_set_row_bnds (lp, i+1, typx, -b[i], b[i]); glp_set_row_bnds (lp, i+1, typx, b[i], b[i]); } } // Load constraint matrix A glp_load_matrix (lp, nz, rn, cn, a); // Save problem if (save_pb) { if (!strcmp(filetype,"cplex")){ if (glp_write_lp (lp, NULL, save_filename) != 0) { mexErrMsgTxt("glpk: unable to write the problem"); longjmp (mark, -1); } }else{ if (!strcmp(filetype,"fixedmps")){ if (glp_write_mps (lp, GLP_MPS_DECK, NULL, save_filename) != 0) { mexErrMsgTxt("glpk: unable to write the problem"); longjmp (mark, -1); } }else{ if (!strcmp(filetype,"freemps")){ if (glp_write_mps (lp, GLP_MPS_FILE, NULL, save_filename) != 0) { mexErrMsgTxt("glpk: unable to write the problem"); longjmp (mark, -1); } }else{// plain text if (lpx_print_prob (lp, save_filename) != 0) { mexErrMsgTxt("glpk: unable to write the problem"); longjmp (mark, -1); } } } } } //-- scale the problem data (if required) if (! glpIntParam[16] || lpsolver != 1) { switch ( glpIntParam[1] ) { case ( 0 ): glp_scale_prob( lp, GLP_SF_SKIP ); break; case ( 1 ): glp_scale_prob( lp, GLP_SF_GM ); break; case ( 2 ): glp_scale_prob( lp, GLP_SF_EQ ); break; case ( 3 ): glp_scale_prob( lp, GLP_SF_AUTO ); break; case ( 4 ): glp_scale_prob( lp, GLP_SF_2N ); break; default : mexErrMsgTxt("glpk: unrecognized scaling option"); longjmp (mark, -1); } } else { /* do nothing? or unscale? glp_unscale_prob( lp ); */ } //-- build advanced initial basis (if required) if (lpsolver == 1 && ! glpIntParam[16]) glp_adv_basis (lp, 0); glp_smcp sParam; glp_init_smcp(&sParam); //-- set control parameters for simplex/exact method if (lpsolver == 1 || lpsolver == 3){ //remap of control parameters for simplex method sParam.msg_lev=glpIntParam[0]; // message level // simplex method: primal/dual switch ( glpIntParam[2] ) { case 0: sParam.meth=GLP_PRIMAL; break; case 1: sParam.meth=GLP_DUAL; break; case 2: sParam.meth=GLP_DUALP; break; default: mexErrMsgTxt("glpk: unrecognized primal/dual method"); longjmp (mark, -1); } // pricing technique if (glpIntParam[3]==0) sParam.pricing=GLP_PT_STD; else sParam.pricing=GLP_PT_PSE; // ratio test if (glpIntParam[20]==0) sParam.r_test = GLP_RT_STD; else sParam.r_test=GLP_RT_HAR; //tollerances sParam.tol_bnd=glpRealParam[1]; // primal feasible tollerance sParam.tol_dj=glpRealParam[2]; // dual feasible tollerance sParam.tol_piv=glpRealParam[3]; // pivot tollerance sParam.obj_ll=glpRealParam[4]; // lower limit sParam.obj_ul=glpRealParam[5]; // upper limit // iteration limit if (glpIntParam[5]==-1) sParam.it_lim=INT_MAX; else sParam.it_lim=glpIntParam[5]; // time limit if (glpRealParam[6]==-1) sParam.tm_lim=INT_MAX; else sParam.tm_lim=(int) glpRealParam[6]; sParam.out_frq=glpIntParam[7]; // output frequency sParam.out_dly=(int) glpRealParam[7]; // output delay // presolver if (glpIntParam[16]) sParam.presolve=GLP_ON; else sParam.presolve=GLP_OFF; }else{ for(int i = 0; i < NIntP; i++) { // skip assinging ratio test or if ( i == 18 || i == 20) continue; lpx_set_int_parm (lp, IParam[i], glpIntParam[i]); } for (int i = 0; i < NRealP; i++) { lpx_set_real_parm (lp, RParam[i], glpRealParam[i]); } } //set MIP params if MIP.... glp_iocp iParam; glp_init_iocp(&iParam); if ( isMIP ){ method = 'I'; switch (glpIntParam[0]) { //message level case 0: iParam.msg_lev = GLP_MSG_OFF; break; case 1: iParam.msg_lev = GLP_MSG_ERR; break; case 2: iParam.msg_lev = GLP_MSG_ON; break; case 3: iParam.msg_lev = GLP_MSG_ALL; break; default: mexErrMsgTxt("glpk: msg_lev bad param"); } switch (glpIntParam[14]) { //branching param case 0: iParam.br_tech = GLP_BR_FFV; break; case 1: iParam.br_tech = GLP_BR_LFV; break; case 2: iParam.br_tech = GLP_BR_MFV; break; case 3: iParam.br_tech = GLP_BR_DTH; break; default: mexErrMsgTxt("glpk: branch bad param"); } switch (glpIntParam[15]) { //backtracking heuristic case 0: iParam.bt_tech = GLP_BT_DFS; break; case 1: iParam.bt_tech = GLP_BT_BFS; break; case 2: iParam.bt_tech = GLP_BT_BLB; break; case 3: iParam.bt_tech = GLP_BT_BPH; break; default: mexErrMsgTxt("glpk: backtrack bad param"); } if ( glpRealParam[8] > 0.0 && glpRealParam[8] < 1.0 ) iParam.tol_int = glpRealParam[8]; // absolute tolorence else mexErrMsgTxt("glpk: tolint must be between 0 and 1"); iParam.tol_obj = glpRealParam[9]; // relative tolarence iParam.mip_gap = glpRealParam[10]; // realative gap tolerance // set time limit for mip if ( glpRealParam[6] < 0.0 || glpRealParam[6] > 1e6 ) iParam.tm_lim = INT_MAX; else iParam.tm_lim = (int)(1000.0 * glpRealParam[6] ); // Choose Cutsets for mip // shut all cuts off, then start over.... iParam.gmi_cuts = GLP_OFF; iParam.mir_cuts = GLP_OFF; iParam.cov_cuts = GLP_OFF; iParam.clq_cuts = GLP_OFF; switch( glpIntParam[17] ) { case 0: break; case 1: iParam.gmi_cuts = GLP_ON; break; case 2: iParam.mir_cuts = GLP_ON; break; case 3: iParam.cov_cuts = GLP_ON; break; case 4: iParam.clq_cuts = GLP_ON; break; case 5: iParam.clq_cuts = GLP_ON; iParam.gmi_cuts = GLP_ON; iParam.mir_cuts = GLP_ON; iParam.cov_cuts = GLP_ON; iParam.clq_cuts = GLP_ON; break; default: mexErrMsgTxt("glpk: cutset bad param"); } switch( glpIntParam[18] ) { // pre-processing for mip case 0: iParam.pp_tech = GLP_PP_NONE; break; case 1: iParam.pp_tech = GLP_PP_ROOT; break; case 2: iParam.pp_tech = GLP_PP_ALL; break; default: mexErrMsgTxt("glpk: pprocess bad param"); } if (glpIntParam[16]) iParam.presolve=GLP_ON; else iParam.presolve=GLP_OFF; if (glpIntParam[19]) iParam.binarize = GLP_ON; else iParam.binarize = GLP_OFF; } else { /* Choose simplex method ('S') or interior point method ('T') or Exact method ('E') to solve the problem */ switch (lpsolver) { case 1: method = 'S'; break; case 2: method = 'T'; break; case 3: method = 'E'; break; default: mexErrMsgTxt("glpk: lpsolver != lpsolver"); longjmp (mark, -1); } } // now run the problem... int errnum = 0; switch (method) { case 'I': errnum = glp_intopt( lp, &iParam ); errnum += 200; //this is to avoid ambiguity in the return codes. break; case 'S': errnum = glp_simplex(lp, &sParam); errnum += 100; //this is to avoid ambiguity in the return codes. break; case 'T': errnum = glp_interior(lp, NULL ); errnum += 300; //this is to avoid ambiguity in the return codes. break; case 'E': errnum = glp_exact(lp, &sParam); errnum += 100; //this is to avoid ambiguity in the return codes. break; default: /*xassert (method != method); */ mexErrMsgTxt("glpk: method != method"); longjmp (mark, -1); } if (errnum==100 || errnum==200 || errnum==300 || errnum==106 || errnum==107 || errnum==108 || errnum==109 || errnum==209 || errnum==214 || errnum==308) { // Get status and object value if (isMIP) { *status = glp_mip_status (lp); *fmin = glp_mip_obj_val (lp); } else { if (lpsolver == 1 || lpsolver == 3) { *status = glp_get_status (lp); *fmin = glp_get_obj_val (lp); } else { *status = glp_ipt_status (lp); *fmin = glp_ipt_obj_val (lp); } } // Get optimal solution (if exists) if (isMIP) { for (int i = 0; i < n; i++) xmin[i] = glp_mip_col_val (lp, i+1); } else { /* Primal values */ for (int i = 0; i < n; i++) { if (lpsolver == 1 || lpsolver == 3) xmin[i] = glp_get_col_prim (lp, i+1); else xmin[i] = glp_ipt_col_prim (lp, i+1); } /* Dual values */ for (int i = 0; i < m; i++) { if (lpsolver == 1 || lpsolver == 3) lambda[i] = glp_get_row_dual (lp, i+1); else lambda[i] = glp_ipt_row_dual (lp, i+1); } /* Reduced costs */ for (int i = 0; i < glp_get_num_cols (lp); i++) { if (lpsolver == 1 || lpsolver == 3) redcosts[i] = glp_get_col_dual (lp, i+1); else redcosts[i] = glp_ipt_col_dual (lp, i+1); } } *time = (clock () - t_start) / CLOCKS_PER_SEC; size_t tpeak; glp_mem_usage(NULL, NULL, NULL, &tpeak); *mem=((double) tpeak) / (1024); lpx_delete_prob(lp); return 0; } else { // printf("errnum is %d\n", errnum); } lpx_delete_prob(lp); /* this shouldn't be nessiary with glp_deleted_prob, but try it if we have weird behavior again... */ glp_free_env(); *status = errnum; return errnum; }
static PyObject *integer(PyObject *self, PyObject *args, PyObject *kwrds) { matrix *c, *h, *b=NULL, *x=NULL; PyObject *G, *A=NULL, *IntSet=NULL, *BinSet = NULL; PyObject *t=NULL; pyiocp *iocpParm = NULL;; glp_iocp *options = NULL; glp_prob *lp; int m, n, p, i, j, k, nnz, nnzmax, *rn=NULL, *cn=NULL; double *a=NULL, val; char *kwlist[] = {"c", "G", "h", "A", "b", "I", "B","iocp", NULL}; if (!PyArg_ParseTupleAndKeywords(args, kwrds, "OOO|OOOOO!", kwlist, &c, &G, &h, &A, &b, &IntSet, &BinSet,iocp_t,&iocpParm)) return NULL; if(!iocpParm) { iocpParm = (pyiocp*)malloc(sizeof(*iocpParm)); glp_init_iocp(&(iocpParm->obj)); } if(iocpParm) { Py_INCREF(iocpParm); options = &iocpParm->obj; options->presolve = 1; } if ((Matrix_Check(G) && MAT_ID(G) != DOUBLE) || (SpMatrix_Check(G) && SP_ID(G) != DOUBLE) || (!Matrix_Check(G) && !SpMatrix_Check(G))){ PyErr_SetString(PyExc_TypeError, "G must be a 'd' matrix"); return NULL; } if ((m = Matrix_Check(G) ? MAT_NROWS(G) : SP_NROWS(G)) <= 0) err_p_int("m"); if ((n = Matrix_Check(G) ? MAT_NCOLS(G) : SP_NCOLS(G)) <= 0) err_p_int("n"); if (!Matrix_Check(h) || h->id != DOUBLE) err_dbl_mtrx("h"); if (h->nrows != m || h->ncols != 1){ PyErr_SetString(PyExc_ValueError, "incompatible dimensions"); return NULL; } if (A){ if ((Matrix_Check(A) && MAT_ID(A) != DOUBLE) || (SpMatrix_Check(A) && SP_ID(A) != DOUBLE) || (!Matrix_Check(A) && !SpMatrix_Check(A))){ PyErr_SetString(PyExc_ValueError, "A must be a dense " "'d' matrix or a general sparse matrix"); return NULL; } if ((p = Matrix_Check(A) ? MAT_NROWS(A) : SP_NROWS(A)) < 0) err_p_int("p"); if ((Matrix_Check(A) ? MAT_NCOLS(A) : SP_NCOLS(A)) != n){ PyErr_SetString(PyExc_ValueError, "incompatible " "dimensions"); return NULL; } } else p = 0; if (b && (!Matrix_Check(b) || b->id != DOUBLE)) err_dbl_mtrx("b"); if ((b && (b->nrows != p || b->ncols != 1)) || (!b && p !=0 )){ PyErr_SetString(PyExc_ValueError, "incompatible dimensions"); return NULL; } if ((IntSet) && (!PyAnySet_Check(IntSet))) PY_ERR_TYPE("invalid integer index set"); if ((BinSet) && (!PyAnySet_Check(BinSet))) PY_ERR_TYPE("invalid binary index set"); lp = glp_create_prob(); glp_add_rows(lp, m+p); glp_add_cols(lp, n); for (i=0; i<n; i++){ glp_set_obj_coef(lp, i+1, MAT_BUFD(c)[i]); glp_set_col_bnds(lp, i+1, GLP_FR, 0.0, 0.0); } for (i=0; i<m; i++) glp_set_row_bnds(lp, i+1, GLP_UP, 0.0, MAT_BUFD(h)[i]); for (i=0; i<p; i++) glp_set_row_bnds(lp, i+m+1, GLP_FX, MAT_BUFD(b)[i], MAT_BUFD(b)[i]); nnzmax = (SpMatrix_Check(G) ? SP_NNZ(G) : m*n ) + ((A && SpMatrix_Check(A)) ? SP_NNZ(A) : p*n); a = (double *) calloc(nnzmax+1, sizeof(double)); rn = (int *) calloc(nnzmax+1, sizeof(int)); cn = (int *) calloc(nnzmax+1, sizeof(int)); if (!a || !rn || !cn){ free(a); free(rn); free(cn); glp_delete_prob(lp); return PyErr_NoMemory(); } nnz = 0; if (SpMatrix_Check(G)) { for (j=0; j<n; j++) for (k=SP_COL(G)[j]; k<SP_COL(G)[j+1]; k++) if ((val = SP_VALD(G)[k]) != 0.0){ a[1+nnz] = val; rn[1+nnz] = SP_ROW(G)[k]+1; cn[1+nnz] = j+1; nnz++; } } else for (j=0; j<n; j++) for (i=0; i<m; i++) if ((val = MAT_BUFD(G)[i+j*m]) != 0.0){ a[1+nnz] = val; rn[1+nnz] = i+1; cn[1+nnz] = j+1; nnz++; } if (A && SpMatrix_Check(A)){ for (j=0; j<n; j++) for (k=SP_COL(A)[j]; k<SP_COL(A)[j+1]; k++) if ((val = SP_VALD(A)[k]) != 0.0){ a[1+nnz] = val; rn[1+nnz] = m+SP_ROW(A)[k]+1; cn[1+nnz] = j+1; nnz++; } } else for (j=0; j<n; j++) for (i=0; i<p; i++) if ((val = MAT_BUFD(A)[i+j*p]) != 0.0){ a[1+nnz] = val; rn[1+nnz] = m+i+1; cn[1+nnz] = j+1; nnz++; } glp_load_matrix(lp, nnz, rn, cn, a); free(rn); free(cn); free(a); if (!(t = PyTuple_New(2))) { glp_delete_prob(lp); return PyErr_NoMemory(); } if (IntSet) { PyObject *iter = PySequence_Fast(IntSet, "Critical error: not sequence"); for (i=0; i<PySet_GET_SIZE(IntSet); i++) { PyObject *tmp = PySequence_Fast_GET_ITEM(iter, i); #if PY_MAJOR_VERSION >= 3 if (!PyLong_Check(tmp)) { #else if (!PyInt_Check(tmp)) { #endif glp_delete_prob(lp); Py_DECREF(iter); PY_ERR_TYPE("non-integer element in I"); } #if PY_MAJOR_VERSION >= 3 int k = PyLong_AS_LONG(tmp); #else int k = PyInt_AS_LONG(tmp); #endif if ((k < 0) || (k >= n)) { glp_delete_prob(lp); Py_DECREF(iter); PY_ERR(PyExc_IndexError, "index element out of range in I"); } glp_set_col_kind(lp, k+1, GLP_IV); } Py_DECREF(iter); } if (BinSet) { PyObject *iter = PySequence_Fast(BinSet, "Critical error: not sequence"); for (i=0; i<PySet_GET_SIZE(BinSet); i++) { PyObject *tmp = PySequence_Fast_GET_ITEM(iter, i); #if PY_MAJOR_VERSION >= 3 if (!PyLong_Check(tmp)) { #else if (!PyInt_Check(tmp)) { #endif glp_delete_prob(lp); Py_DECREF(iter); PY_ERR_TYPE("non-binary element in I"); } #if PY_MAJOR_VERSION >= 3 int k = PyLong_AS_LONG(tmp); #else int k = PyInt_AS_LONG(tmp); #endif if ((k < 0) || (k >= n)) { glp_delete_prob(lp); Py_DECREF(iter); PY_ERR(PyExc_IndexError, "index element out of range in B"); } glp_set_col_kind(lp, k+1, GLP_BV); } Py_DECREF(iter); } switch (glp_intopt(lp,options)){ case 0: x = (matrix *) Matrix_New(n,1,DOUBLE); if (!x) { Py_XDECREF(iocpParm); Py_XDECREF(t); glp_delete_prob(lp); return PyErr_NoMemory(); } set_output_string(t,"optimal"); set_output_string(t,"optimal"); for (i=0; i<n; i++) MAT_BUFD(x)[i] = glp_mip_col_val(lp, i+1); PyTuple_SET_ITEM(t, 1, (PyObject *) x); Py_XDECREF(iocpParm); glp_delete_prob(lp); return (PyObject *) t; case GLP_ETMLIM: x = (matrix *) Matrix_New(n,1,DOUBLE); if (!x) { Py_XDECREF(t); Py_XDECREF(iocpParm); glp_delete_prob(lp); return PyErr_NoMemory(); } set_output_string(t,"time limit exceeded"); for (i=0; i<n; i++) MAT_BUFD(x)[i] = glp_mip_col_val(lp, i+1); PyTuple_SET_ITEM(t, 1, (PyObject *) x); Py_XDECREF(iocpParm); glp_delete_prob(lp); return (PyObject *) t; case GLP_EBOUND: set_output_string(t,"incorrect bounds"); break; case GLP_EFAIL: set_output_string(t,"invalid MIP formulation"); break; case GLP_ENOPFS: set_output_string(t,"primal infeasible"); break; case GLP_ENODFS: set_output_string(t,"dual infeasible"); break; case GLP_EMIPGAP: set_output_string(t,"Relative mip gap tolerance reached"); break; /*case LPX_E_ITLIM: set_output_string(t,"maxiters exceeded"); break;*/ /*case LPX_E_SING: set_output_string(t,"singular or ill-conditioned basis"); break;*/ default: set_output_string(t,"unknown"); } Py_XDECREF(iocpParm); glp_delete_prob(lp); PyTuple_SET_ITEM(t, 1, Py_BuildValue("")); return (PyObject *) t; } static PyMethodDef glpk_functions[] = { {"lp", (PyCFunction) simplex, METH_VARARGS|METH_KEYWORDS, doc_simplex}, {"ilp", (PyCFunction) integer, METH_VARARGS|METH_KEYWORDS, doc_integer}, {NULL} /* Sentinel */ }; #if PY_MAJOR_VERSION >= 3 static PyModuleDef glpk_module_def = { PyModuleDef_HEAD_INIT, "glpk", glpk__doc__, -1, glpk_functions, NULL, NULL, NULL, NULL }; void addglpkConstants (void) { PyModule_AddIntMacro(glpk_module, GLP_ON); PyModule_AddIntMacro(glpk_module,GLP_OFF); /* reason codes: */ PyModule_AddIntMacro(glpk_module,GLP_IROWGEN); PyModule_AddIntMacro(glpk_module,GLP_IBINGO); PyModule_AddIntMacro(glpk_module,GLP_IHEUR); PyModule_AddIntMacro(glpk_module,GLP_ICUTGEN); PyModule_AddIntMacro(glpk_module,GLP_IBRANCH); PyModule_AddIntMacro(glpk_module,GLP_ISELECT); PyModule_AddIntMacro(glpk_module,GLP_IPREPRO); /* branch selection indicator: */ PyModule_AddIntMacro(glpk_module,GLP_NO_BRNCH); PyModule_AddIntMacro(glpk_module,GLP_DN_BRNCH); PyModule_AddIntMacro(glpk_module,GLP_UP_BRNCH); /* return codes: */ PyModule_AddIntMacro(glpk_module,GLP_EBADB); PyModule_AddIntMacro(glpk_module,GLP_ESING); PyModule_AddIntMacro(glpk_module,GLP_ECOND); PyModule_AddIntMacro(glpk_module,GLP_EBOUND); PyModule_AddIntMacro(glpk_module,GLP_EFAIL); PyModule_AddIntMacro(glpk_module,GLP_EOBJLL); PyModule_AddIntMacro(glpk_module,GLP_EOBJUL); PyModule_AddIntMacro(glpk_module,GLP_EITLIM); PyModule_AddIntMacro(glpk_module,GLP_ETMLIM); PyModule_AddIntMacro(glpk_module,GLP_ENOPFS); PyModule_AddIntMacro(glpk_module,GLP_ENODFS); PyModule_AddIntMacro(glpk_module,GLP_EROOT); PyModule_AddIntMacro(glpk_module,GLP_ESTOP); PyModule_AddIntMacro(glpk_module,GLP_EMIPGAP); PyModule_AddIntMacro(glpk_module,GLP_ENOFEAS); PyModule_AddIntMacro(glpk_module,GLP_ENOCVG); PyModule_AddIntMacro(glpk_module,GLP_EINSTAB); PyModule_AddIntMacro(glpk_module,GLP_EDATA); PyModule_AddIntMacro(glpk_module,GLP_ERANGE); /* condition indicator: */ PyModule_AddIntMacro(glpk_module,GLP_KKT_PE); PyModule_AddIntMacro(glpk_module,GLP_KKT_PB); PyModule_AddIntMacro(glpk_module,GLP_KKT_DE); PyModule_AddIntMacro(glpk_module,GLP_KKT_DB); PyModule_AddIntMacro(glpk_module,GLP_KKT_CS); /* MPS file format: */ PyModule_AddIntMacro(glpk_module,GLP_MPS_DECK); PyModule_AddIntMacro(glpk_module,GLP_MPS_FILE); /* simplex method control parameters */ /* message level: */ PyModule_AddIntMacro(glpk_module,GLP_MSG_OFF); PyModule_AddIntMacro(glpk_module,GLP_MSG_ERR); PyModule_AddIntMacro(glpk_module,GLP_MSG_ON); PyModule_AddIntMacro(glpk_module,GLP_MSG_ALL); PyModule_AddIntMacro(glpk_module,GLP_MSG_DBG); /* simplex method option: */ PyModule_AddIntMacro(glpk_module,GLP_PRIMAL); PyModule_AddIntMacro(glpk_module,GLP_DUALP); PyModule_AddIntMacro(glpk_module,GLP_DUAL); /* pricing technique: */ PyModule_AddIntMacro(glpk_module,GLP_PT_STD); PyModule_AddIntMacro(glpk_module,GLP_PT_PSE); /* ratio test technique: */ PyModule_AddIntMacro(glpk_module,GLP_RT_STD); PyModule_AddIntMacro(glpk_module,GLP_RT_HAR); /* interior-point solver control parameters */ /* ordering algorithm: */ PyModule_AddIntMacro(glpk_module,GLP_ORD_NONE); PyModule_AddIntMacro(glpk_module,GLP_ORD_QMD); PyModule_AddIntMacro(glpk_module,GLP_ORD_AMD); PyModule_AddIntMacro(glpk_module,GLP_ORD_SYMAMD); } PyMODINIT_FUNC PyInit_glpk(void) { if (!(glpk_module = PyModule_Create(&glpk_module_def))) return NULL; if (PyType_Ready(&iocp_t) < 0 || (PyType_Ready(&smcp_t) < 0)) return NULL; /* Adding macros */ addglpkConstants(); /* Adding option lists as objects */ Py_INCREF(&smcp_t); PyModule_AddObject(glpk_module,"smcp",(PyObject*)&smcp_t); Py_INCREF(&iocp_t); PyModule_AddObject(glpk_module,"iocp",(PyObject*)&iocp_t); if (import_cvxopt() < 0) return NULL; return glpk_module; } #else PyMODINIT_FUNC initglpk(void) { glpk_module = Py_InitModule3("cvxopt.glpk", glpk_functions, glpk__doc__); if (PyType_Ready(&iocp_t) < 0 || (PyType_Ready(&smcp_t) < 0)) return NULL; addglpkConstants(); Py_INCREF(&smcp_t); PyModule_AddObject(glpk_module,"smcp",(PyObject*)&smcp_t); Py_INCREF(&iocp_t); PyModule_AddObject(glpk_module,"iocp",(PyObject*)&iocp_t); if (import_cvxopt() < 0) return; }
static PyObject *simplex(PyObject *self, PyObject *args, PyObject *kwrds) { matrix *c, *h, *b=NULL, *x=NULL, *z=NULL, *y=NULL; PyObject *G, *A=NULL, *t=NULL; glp_prob *lp; glp_smcp *options = NULL; pysmcp *smcpParm = NULL; int m, n, p, i, j, k, nnz, nnzmax, *rn=NULL, *cn=NULL; double *a=NULL, val; char *kwlist[] = {"c", "G", "h", "A", "b","options", NULL}; if (!PyArg_ParseTupleAndKeywords(args, kwrds, "OOO|OOO!", kwlist, &c, &G, &h, &A, &b,&smcp_t,&smcpParm)) return NULL; if ((Matrix_Check(G) && MAT_ID(G) != DOUBLE) || (SpMatrix_Check(G) && SP_ID(G) != DOUBLE) || (!Matrix_Check(G) && !SpMatrix_Check(G))){ PyErr_SetString(PyExc_TypeError, "G must be a 'd' matrix"); return NULL; } if ((m = Matrix_Check(G) ? MAT_NROWS(G) : SP_NROWS(G)) <= 0) err_p_int("m"); if ((n = Matrix_Check(G) ? MAT_NCOLS(G) : SP_NCOLS(G)) <= 0) err_p_int("n"); if (!Matrix_Check(h) || h->id != DOUBLE) err_dbl_mtrx("h"); if (h->nrows != m || h->ncols != 1){ PyErr_SetString(PyExc_ValueError, "incompatible dimensions"); return NULL; } if (A){ if ((Matrix_Check(A) && MAT_ID(A) != DOUBLE) || (SpMatrix_Check(A) && SP_ID(A) != DOUBLE) || (!Matrix_Check(A) && !SpMatrix_Check(A))){ PyErr_SetString(PyExc_ValueError, "A must be a dense " "'d' matrix or a general sparse matrix"); return NULL; } if ((p = Matrix_Check(A) ? MAT_NROWS(A) : SP_NROWS(A)) < 0) err_p_int("p"); if ((Matrix_Check(A) ? MAT_NCOLS(A) : SP_NCOLS(A)) != n){ PyErr_SetString(PyExc_ValueError, "incompatible " "dimensions"); return NULL; } } else p = 0; if (b && (!Matrix_Check(b) || b->id != DOUBLE)) err_dbl_mtrx("b"); if ((b && (b->nrows != p || b->ncols != 1)) || (!b && p !=0 )){ PyErr_SetString(PyExc_ValueError, "incompatible dimensions"); return NULL; } if(!smcpParm) { smcpParm = (pysmcp*)malloc(sizeof(*smcpParm)); glp_init_smcp(&(smcpParm->obj)); } if(smcpParm) { Py_INCREF(smcpParm); options = &smcpParm->obj; options->presolve = 1; } lp = glp_create_prob(); glp_add_rows(lp, m+p); glp_add_cols(lp, n); for (i=0; i<n; i++){ glp_set_obj_coef(lp, i+1, MAT_BUFD(c)[i]); glp_set_col_bnds(lp, i+1, GLP_FR, 0.0, 0.0); } for (i=0; i<m; i++) glp_set_row_bnds(lp, i+1, GLP_UP, 0.0, MAT_BUFD(h)[i]); for (i=0; i<p; i++) glp_set_row_bnds(lp, i+m+1, GLP_FX, MAT_BUFD(b)[i], MAT_BUFD(b)[i]); nnzmax = (SpMatrix_Check(G) ? SP_NNZ(G) : m*n ) + ((A && SpMatrix_Check(A)) ? SP_NNZ(A) : p*n); a = (double *) calloc(nnzmax+1, sizeof(double)); rn = (int *) calloc(nnzmax+1, sizeof(int)); cn = (int *) calloc(nnzmax+1, sizeof(int)); if (!a || !rn || !cn){ free(a); free(rn); free(cn); glp_delete_prob(lp); return PyErr_NoMemory(); } nnz = 0; if (SpMatrix_Check(G)) { for (j=0; j<n; j++) for (k=SP_COL(G)[j]; k<SP_COL(G)[j+1]; k++) if ((val = SP_VALD(G)[k]) != 0.0){ a[1+nnz] = val; rn[1+nnz] = SP_ROW(G)[k]+1; cn[1+nnz] = j+1; nnz++; } } else for (j=0; j<n; j++) for (i=0; i<m; i++) if ((val = MAT_BUFD(G)[i+j*m]) != 0.0){ a[1+nnz] = val; rn[1+nnz] = i+1; cn[1+nnz] = j+1; nnz++; } if (A && SpMatrix_Check(A)){ for (j=0; j<n; j++) for (k=SP_COL(A)[j]; k<SP_COL(A)[j+1]; k++) if ((val = SP_VALD(A)[k]) != 0.0){ a[1+nnz] = val; rn[1+nnz] = m+SP_ROW(A)[k]+1; cn[1+nnz] = j+1; nnz++; } } else for (j=0; j<n; j++) for (i=0; i<p; i++) if ((val = MAT_BUFD(A)[i+j*p]) != 0.0){ a[1+nnz] = val; rn[1+nnz] = m+i+1; cn[1+nnz] = j+1; nnz++; } glp_load_matrix(lp, nnz, rn, cn, a); free(rn); free(cn); free(a); if (!(t = PyTuple_New(A ? 4 : 3))){ glp_delete_prob(lp); return PyErr_NoMemory(); } switch (glp_simplex(lp,options)){ case 0: x = (matrix *) Matrix_New(n,1,DOUBLE); z = (matrix *) Matrix_New(m,1,DOUBLE); if (A) y = (matrix *) Matrix_New(p,1,DOUBLE); if (!x || !z || (A && !y)){ Py_XDECREF(x); Py_XDECREF(z); Py_XDECREF(y); Py_XDECREF(t); Py_XDECREF(smcpParm); glp_delete_prob(lp); return PyErr_NoMemory(); } set_output_string(t,"optimal"); for (i=0; i<n; i++) MAT_BUFD(x)[i] = glp_get_col_prim(lp, i+1); PyTuple_SET_ITEM(t, 1, (PyObject *) x); for (i=0; i<m; i++) MAT_BUFD(z)[i] = -glp_get_row_dual(lp, i+1); PyTuple_SET_ITEM(t, 2, (PyObject *) z); if (A){ for (i=0; i<p; i++) MAT_BUFD(y)[i] = -glp_get_row_dual(lp, m+i+1); PyTuple_SET_ITEM(t, 3, (PyObject *) y); } Py_XDECREF(smcpParm); glp_delete_prob(lp); return (PyObject *) t; case GLP_EBADB: set_output_string(t,"incorrect initial basis"); break; case GLP_ESING: set_output_string(t,"singular initial basis matrix"); break; case GLP_ECOND: set_output_string(t,"ill-conditioned initial basis matrix"); break; case GLP_EBOUND: set_output_string(t,"incorrect bounds"); break; case GLP_EFAIL: set_output_string(t,"solver failure"); break; case GLP_EOBJLL: set_output_string(t,"objective function reached lower limit"); break; case GLP_EOBJUL: set_output_string(t,"objective function reached upper limit"); break; case GLP_EITLIM: set_output_string(t,"iteration limit exceeded"); break; case GLP_ETMLIM: set_output_string(t,"time limit exceeded"); break; case GLP_ENOPFS: set_output_string(t,"primal infeasible"); break; case GLP_ENODFS: set_output_string(t,"dual infeasible"); break; default: set_output_string(t,"unknown"); break; } Py_XDECREF(smcpParm); glp_delete_prob(lp); PyTuple_SET_ITEM(t, 1, Py_BuildValue("")); PyTuple_SET_ITEM(t, 2, Py_BuildValue("")); if (A) PyTuple_SET_ITEM(t, 3, Py_BuildValue("")); return (PyObject *) t; }
void inline fence_insertert::mip_set_var(ilpt& ilp, unsigned& i) { #ifdef HAVE_GLPK glp_add_cols(ilp.lp, unique*fence_options); //unsigned i=1; for(; i<=unique*fence_options; i+=fence_options) { const bool has_cost = 1; //(po_plus.find(i)==po_plus.end()); /* has_cost == 0 => invisible variable */ assert(has_cost); // not useful for this problem /* computes the sum of the frequencies of the cycles in which this event appears, if requested */ float freq_sum = 0; if(with_freq) { assert(instrumenter.set_of_cycles.size()==freq_table.size()); freq_sum += epsilon; for(std::set<event_grapht::critical_cyclet>::const_iterator C_j=instrumenter.set_of_cycles.begin(); C_j!=instrumenter.set_of_cycles.end(); ++C_j) { /* filters */ if(filter_cycles(C_j->id)) continue; /* if(C_j->find( col_to_var(i) )!=C_j->end()) */ std::list<unsigned>::const_iterator it; for(it = C_j->begin(); it!=C_j->end() && col_to_var(i)!=*it; ++it); if(it!=C_j->end()) freq_sum += freq_table[C_j->id]; } } else freq_sum = 1; if(model==Power || model==Unknown) { /* dp variable for e */ const std::string name_dp="dp_"+i2string(i); glp_set_col_name(ilp.lp, i, name_dp.c_str()); glp_set_col_bnds(ilp.lp, i, GLP_LO, 0.0, 0.0); glp_set_obj_coef(ilp.lp, i, (has_cost?fence_cost(Dp):0)*freq_sum); glp_set_col_kind(ilp.lp, i, GLP_BV); /* fence variable for e */ const std::string name_f="f_"+i2string(i); glp_set_col_name(ilp.lp, i+1, name_f.c_str()); glp_set_col_bnds(ilp.lp, i+1, GLP_LO, 0.0, 0.0); glp_set_obj_coef(ilp.lp, i+1, (has_cost?fence_cost(Fence):0)*freq_sum); glp_set_col_kind(ilp.lp, i+1, GLP_BV); // Note: uncomment for br and cf fences #if 0 /* br variable for e */ const std::string name_br="br_"+i2string(i); glp_set_col_name(ilp.lp, i+2, name_br.c_str()); glp_set_col_bnds(ilp.lp, i+2, GLP_LO, 0.0, 0.0); glp_set_obj_coef(ilp.lp, i+2, (has_cost?fence_cost(Branching):0)*freq_sum); glp_set_col_kind(ilp.lp, i+2, GLP_BV); /* cf variable for e */ const std::string name_cf="cf_"+i2string(i); glp_set_col_name(ilp.lp, i+3, name_cf.c_str()); glp_set_col_bnds(ilp.lp, i+3, GLP_LO, 0.0, 0.0); glp_set_obj_coef(ilp.lp, i+3, (has_cost?fence_cost(Ctlfence):0)*freq_sum); glp_set_col_kind(ilp.lp, i+3, GLP_BV); #endif if(model==Power) { /* lwf variable for e */ const std::string name_lwf="lwf_"+i2string(i); glp_set_col_name(ilp.lp, i+2/*4*/, name_lwf.c_str()); glp_set_col_bnds(ilp.lp, i+2/*4*/, GLP_LO, 0.0, 0.0); glp_set_obj_coef(ilp.lp, i+2/*4*/, (has_cost?fence_cost(Lwfence):0)*freq_sum); glp_set_col_kind(ilp.lp, i+2/*4*/, GLP_BV); } } else { /* fence variable for e */ const std::string name_f="f_"+i2string(i); glp_set_col_name(ilp.lp, i, name_f.c_str()); glp_set_col_bnds(ilp.lp, i, GLP_LO, 0.0, 0.0); glp_set_obj_coef(ilp.lp, i, (has_cost?fence_cost(Fence):0)*freq_sum); glp_set_col_kind(ilp.lp, i, GLP_BV); } } #else throw "Sorry, musketeer requires glpk; please recompile\ musketeer with glpk."; #endif }
void glp_mpl_build_prob(glp_tran *tran, glp_prob *prob) { /* build LP/MIP problem instance from the model */ int m, n, i, j, t, kind, type, len, *ind; double lb, ub, *val; if (tran->phase != 3) xerror("glp_mpl_build_prob: invalid call sequence\n"); /* erase the problem object */ glp_erase_prob(prob); /* set problem name */ glp_set_prob_name(prob, mpl_get_prob_name(tran)); /* build rows (constraints) */ m = mpl_get_num_rows(tran); if (m > 0) glp_add_rows(prob, m); for (i = 1; i <= m; i++) { /* set row name */ glp_set_row_name(prob, i, mpl_get_row_name(tran, i)); /* set row bounds */ type = mpl_get_row_bnds(tran, i, &lb, &ub); switch (type) { case MPL_FR: type = GLP_FR; break; case MPL_LO: type = GLP_LO; break; case MPL_UP: type = GLP_UP; break; case MPL_DB: type = GLP_DB; break; case MPL_FX: type = GLP_FX; break; default: xassert(type != type); } if (type == GLP_DB && fabs(lb - ub) < 1e-9 * (1.0 + fabs(lb))) { type = GLP_FX; if (fabs(lb) <= fabs(ub)) ub = lb; else lb = ub; } glp_set_row_bnds(prob, i, type, lb, ub); /* warn about non-zero constant term */ if (mpl_get_row_c0(tran, i) != 0.0) xprintf("glp_mpl_build_prob: row %s; constant term %.12g ig" "nored\n", mpl_get_row_name(tran, i), mpl_get_row_c0(tran, i)); } /* build columns (variables) */ n = mpl_get_num_cols(tran); if (n > 0) glp_add_cols(prob, n); for (j = 1; j <= n; j++) { /* set column name */ glp_set_col_name(prob, j, mpl_get_col_name(tran, j)); /* set column kind */ kind = mpl_get_col_kind(tran, j); switch (kind) { case MPL_NUM: break; case MPL_INT: case MPL_BIN: glp_set_col_kind(prob, j, GLP_IV); break; default: xassert(kind != kind); } /* set column bounds */ type = mpl_get_col_bnds(tran, j, &lb, &ub); switch (type) { case MPL_FR: type = GLP_FR; break; case MPL_LO: type = GLP_LO; break; case MPL_UP: type = GLP_UP; break; case MPL_DB: type = GLP_DB; break; case MPL_FX: type = GLP_FX; break; default: xassert(type != type); } if (kind == MPL_BIN) { if (type == GLP_FR || type == GLP_UP || lb < 0.0) lb = 0.0; if (type == GLP_FR || type == GLP_LO || ub > 1.0) ub = 1.0; type = GLP_DB; } if (type == GLP_DB && fabs(lb - ub) < 1e-9 * (1.0 + fabs(lb))) { type = GLP_FX; if (fabs(lb) <= fabs(ub)) ub = lb; else lb = ub; } glp_set_col_bnds(prob, j, type, lb, ub); } /* load the constraint matrix */ ind = xcalloc(1+n, sizeof(int)); val = xcalloc(1+n, sizeof(double)); for (i = 1; i <= m; i++) { len = mpl_get_mat_row(tran, i, ind, val); glp_set_mat_row(prob, i, len, ind, val); } /* build objective function (the first objective is used) */ for (i = 1; i <= m; i++) { kind = mpl_get_row_kind(tran, i); if (kind == MPL_MIN || kind == MPL_MAX) { /* set objective name */ glp_set_obj_name(prob, mpl_get_row_name(tran, i)); /* set optimization direction */ glp_set_obj_dir(prob, kind == MPL_MIN ? GLP_MIN : GLP_MAX); /* set constant term */ glp_set_obj_coef(prob, 0, mpl_get_row_c0(tran, i)); /* set objective coefficients */ len = mpl_get_mat_row(tran, i, ind, val); for (t = 1; t <= len; t++) glp_set_obj_coef(prob, ind[t], val[t]); break; } } /* free working arrays */ xfree(ind); xfree(val); return; }
/** * Create the MLP problem * * @param mlp the MLP handle * @param addresses the hashmap containing all adresses * @return GNUNET_OK or GNUNET_SYSERR */ static int mlp_create_problem (struct GAS_MLP_Handle *mlp, struct GNUNET_CONTAINER_MultiHashMap * addresses) { int res = GNUNET_OK; int col; int c; char *name; GNUNET_assert (mlp->prob == NULL); /* create the glpk problem */ mlp->prob = glp_create_prob (); /* Set a problem name */ glp_set_prob_name (mlp->prob, "gnunet ats bandwidth distribution"); /* Set optimization direction to maximize */ glp_set_obj_dir (mlp->prob, GLP_MAX); /* Adding invariant columns */ /* Diversity d column */ col = glp_add_cols (mlp->prob, 1); mlp->c_d = col; /* Column name */ glp_set_col_name (mlp->prob, col, "d"); /* Column objective function coefficient */ glp_set_obj_coef (mlp->prob, col, mlp->co_D); /* Column lower bound = 0.0 */ glp_set_col_bnds (mlp->prob, col, GLP_LO, 0.0, 0.0); /* Utilization u column */ col = glp_add_cols (mlp->prob, 1); mlp->c_u = col; /* Column name */ glp_set_col_name (mlp->prob, col, "u"); /* Column objective function coefficient */ glp_set_obj_coef (mlp->prob, col, mlp->co_U); /* Column lower bound = 0.0 */ glp_set_col_bnds (mlp->prob, col, GLP_LO, 0.0, 0.0); #if ENABLE_C9 /* Relativity r column */ col = glp_add_cols (mlp->prob, 1); mlp->c_r = col; /* Column name */ glp_set_col_name (mlp->prob, col, "r"); /* Column objective function coefficient */ glp_set_obj_coef (mlp->prob, col, mlp->co_R); /* Column lower bound = 0.0 */ glp_set_col_bnds (mlp->prob, col, GLP_LO, 0.0, 0.0); #endif /* Quality metric columns */ col = glp_add_cols(mlp->prob, mlp->m_q); for (c = 0; c < mlp->m_q; c++) { mlp->c_q[c] = col + c; GNUNET_asprintf (&name, "q_%u", mlp->q[c]); glp_set_col_name (mlp->prob, col + c, name); /* Column lower bound = 0.0 */ glp_set_col_bnds (mlp->prob, col + c, GLP_LO, 0.0, 0.0); GNUNET_free (name); /* Coefficient == Qm */ glp_set_obj_coef (mlp->prob, col + c, mlp->co_Q[c]); } /* Add columns for addresses */ GNUNET_CONTAINER_multihashmap_iterate (addresses, create_columns_it, mlp); /* Add constraints */ mlp_add_constraints_all_addresses (mlp, addresses); /* Load the matrix */ glp_load_matrix(mlp->prob, (mlp->ci-1), mlp->ia, mlp->ja, mlp->ar); return res; }
int CConstraints::GLPK_lp(CModel* pmodel) { glp_prob* lp = glp_create_prob(); int iRow = (int) m_vWeights.size(); //int iCol = (int) m_iWeightLength + m_iPatternNum; int iSize = iRow * ( m_iWeightLength + 1); int ia[10 + iSize], ja[1 + iSize]; double ar[1 + iSize]; glp_set_prob_name(lp, "StrLP"); glp_set_obj_dir(lp, GLP_MIN); glp_add_rows(lp, (int) m_vWeights.size()); // setup rows for (int i = 0; i < (int) m_vWeights.size(); i ++) { char tmp[200]; sprintf(tmp, "cc_%d", i + 1); glp_set_row_name(lp, i + 1, tmp); glp_set_row_bnds(lp, i + 1, GLP_LO, m_fDistance - m_fEpsilon, 0); } glp_add_cols(lp, m_iWeightLength + m_iPatternNum); for (int i = 0; i < m_iWeightLength; i ++) { char tmp[200]; sprintf(tmp, "w%d", i + 1); glp_set_col_name(lp, i + 1, tmp); glp_set_col_bnds(lp, i + 1, GLP_LO, 0, 0.0); glp_set_obj_coef(lp, i + 1, 1.0); } for (int i = 0; i < m_iPatternNum; i ++) { char tmp[200]; sprintf(tmp, "e%d", i + 1); glp_set_col_name(lp, m_iWeightLength + i + 1, tmp); glp_set_col_bnds(lp, m_iWeightLength + i + 1, GLP_LO, 0, 0.0); glp_set_obj_coef(lp, m_iWeightLength + i + 1, m_fC / m_iPatternNum); } int iIndex = 1; for (int i = 0; i < (int)m_vWeights.size(); i ++) { double* pd = m_vWeights[i]; for (int j = 0; j < (int) m_iWeightLength; j ++) { ia[iIndex] = i + 1, ja[iIndex] = j + 1; if (pmodel->m_vSign[j] <= 0) { ar[iIndex] = -pd[j]; } else { ar[iIndex] = pd[j]; } iIndex ++; } ia[iIndex] = i + 1; ja[iIndex] = m_iWeightLength + m_vPatternIndex[i] + 1; //ar[iIndex] = 1; ar[iIndex] = m_vLoss[i]; iIndex ++; } glp_load_matrix(lp, iIndex - 1, ia, ja, ar); glp_simplex(lp, NULL); double z = glp_get_obj_val(lp); fprintf(stderr, "minimal value %f \n", z); for (int i = 0; i < m_iWeightLength; i ++) { double x = glp_get_col_prim(lp, i + 1); if (pmodel->m_vSign[i] <=0) { pmodel->m_vWeight[i] = -x; } else { pmodel->m_vWeight[i] = x; } if (x != 0) fprintf(stderr, "(w%d, %f)\t", i + 1, pmodel->m_vWeight[i]); } for (int i = 0; i < m_iPatternNum; i ++) { double x = glp_get_col_prim(lp, m_iWeightLength + i + 1); pmodel->m_vTheta[i] = x; if (x != 0) fprintf(stderr, "(e%d, %f)\t", i + 1, pmodel->m_vTheta[i]); } glp_delete_prob(lp); return 1; }
bool isFeasible() { int nCons; int coef1[MAXNEDGES], coef2[MAXNEDGES]; int ind[MAXNEDGES+1]; double val[MAXNEDGES+1]; glp_prob * lp = glp_create_prob(); glp_set_obj_dir(lp, GLP_MAX); glp_add_cols(lp, nEdges+1); for (int i=0; i<nEdges+1; i++) glp_set_col_bnds(lp, i+1, GLP_LO, 0, 0); glp_set_obj_coef(lp, nEdges+1, 1); nCons = 0; for (int i=0; i<nEdges; i++) { nCons++; glp_add_rows(lp,1); glp_set_row_bnds(lp, nCons, GLP_UP, 0, 0); ind[1] = nEdges+1; val[1] = 1; //gamma <= l_e ind[2] = i+1; val[2] = -1; glp_set_mat_row(lp, nCons, 2, ind, val); } for (int m=0; m<k; m++) { int first = -1; for (int i=0; i<paths[m].n; i++) if (paths[m].isShort[i]) { first = i; break; } assert(first>=0); setCoef(coef1, m, first); for (int i=first+1; i<paths[m].n; i++) if (paths[m].isShort[i]) { setCoef(coef2, m, i); nCons++; glp_add_rows(lp,1); glp_set_row_bnds(lp, nCons, GLP_FX, 0, 0); int nEle = 0; for (int j=0; j<nEdges; j++) if (coef1[j] ^ coef2[j]) { nEle++; ind[nEle] = j+1; val[nEle] = (coef1[j])? 1:-1; } glp_set_mat_row(lp, nCons, nEle, ind, val); } for (int i=0; i<paths[m].n; i++) if (!paths[m].isShort[i]){ setCoef(coef2, m, i); nCons++; glp_add_rows(lp,1); glp_set_row_bnds(lp, nCons, GLP_UP, 0, 0); int nEle = 0; for (int j=0; j<nEdges; j++) if (coef1[j] ^ coef2[j]) { nEle++; ind[nEle] = j+1; val[nEle] = (coef1[j])? 1:-1; } glp_set_mat_row(lp, nCons, nEle, ind, val); } } nCons++; glp_add_rows(lp,1); glp_set_row_bnds(lp, nCons, GLP_UP, 0, 1); for (int j=0; j<nEdges; j++) { ind[j+1] = j+1; val[j+1] = 1; } glp_set_mat_row(lp, nCons, nEdges, ind, val); glp_term_out(GLP_OFF); glp_simplex(lp, NULL); double ret = glp_get_obj_val(lp); glp_delete_prob(lp); return (ret>0); }
int main(int argc, char *argv[]) { /* structures de données propres à GLPK */ glp_prob *prob; // déclaration d'un pointeur sur le problème int ia[1 + NBCREUX]; int ja[1 + NBCREUX]; double ar[1 + NBCREUX]; // déclaration des 3 tableaux servant à définir la partie creuse de la matrice des contraintes int p[N+1]; p[1] = 34; p[2] = 6; p[3] = 8; p[4] = 17; p[5] = 16; p[6] = 5; p[7] = 13; p[8] = 21; p[9] = 25; p[10] = 31; p[11] = 14; p[12] = 13; p[13] = 33; p[14] = 9; p[15] = 25; p[16] = 25; /* variables récupérant les résultats de la résolution du problème (fonction objectif et valeur des variables) */ int i,j,pos; double z; double x[NBVAR]; /* Les déclarations suivantes sont optionnelles, leur but est de donner des noms aux variables et aux contraintes. Cela permet de lire plus facilement le modèle saisi si on en demande un affichage à GLPK, ce qui est souvent utile pour détecter une erreur! */ char nomcontr[NBCONTR][8]; /* ici, les contraintes seront nommées "caisse1", "caisse2",... */ char numero[NBCONTR][3]; /* pour un nombre à deux chiffres */ char nomvar[NBVAR][3]; /* "xA", "xB", ... */ /* Création d'un problème (initialement vide) */ prob = glp_create_prob(); /* allocation mémoire pour le problème */ glp_set_prob_name(prob, "wagons"); /* affectation d'un nom (on pourrait mettre NULL) */ glp_set_obj_dir(prob, GLP_MIN); /* Il s'agit d'un problème de minimisation, on utiliserait la constante GLP_MAX dans le cas contraire */ /* Déclaration du nombre de contraintes (nombre de lignes de la matrice des contraintes) : NBCONTR */ glp_add_rows(prob, NBCONTR); /* On commence par préciser les bornes sur les constrainte, les indices des contraintes commencent à 1 (!) dans GLPK */ for(i = 1;i <= N;i++) { /* partie optionnelle : donner un nom aux contraintes */ strcpy(nomcontr[i-1], "caisse"); sprintf(numero[i-1], "%d", i); strcat(nomcontr[i-1], numero[i-1]); /* Les contraintes sont nommés "salle1", "salle2"... */ glp_set_row_name(prob, i, nomcontr[i-1]); /* Affectation du nom à la contrainte i */ /* partie indispensable : les bornes sur les contraintes */ glp_set_row_bnds(prob, i, GLP_FX, 1.0, 1.0); } for(i = N+1;i <= NBCONTR;i++) { /* partie optionnelle : donner un nom aux contraintes */ strcpy(nomcontr[i-1], "chaMax"); sprintf(numero[i-1], "%d", i); strcat(nomcontr[i-1], numero[i-1]); /* Les contraintes sont nommés "chargemax", "chargemax2"... */ glp_set_row_name(prob, i, nomcontr[i-1]); /* Affectation du nom à la contrainte i */ // il doit manquer un bout ici glp_set_row_bnds(prob, i, GLP_UP, 0.0, 0.0); //<=0 // on met cmax a gauche car c'est une variable // il aura le coeff -1 dans la mat creuse } /* Déclaration du nombre de variables : NBVAR */ glp_add_cols(prob, NBVAR); /* On précise le type des variables, les indices commencent à 1 également pour les variables! */ for(i = 1;i <= NBVAR;i++) { if(i==NBVAR){ sprintf(nomvar[i-1],"Cm"); glp_set_col_name(prob, i , nomvar[i-1]); glp_set_col_bnds(prob, i, GLP_LO, 0.0, 0.0); }else{ /* partie optionnelle : donner un nom aux variables */ sprintf(nomvar[i-1],"x%d",i-1); glp_set_col_name(prob, i , nomvar[i-1]); /* Les variables sont nommées "xA", "xB"... afin de respecter les noms de variables de l'exercice 2.2 */ /* partie obligatoire : bornes éventuelles sur les variables, et type */ glp_set_col_bnds(prob, i, GLP_DB, 0.0, 1.0); /* bornes sur les variables, comme sur les contraintes */ glp_set_col_kind(prob, i, GLP_BV); /* les variables sont par défaut continues, nous précisons ici qu'elles sont binaires avec la constante GLP_BV, on utiliserait GLP_IV pour des variables entières */ } } /* définition des coefficients des variables dans la fonction objectif */ for(i = 1;i <= N*M;i++) glp_set_obj_coef(prob,i,0.0); // Tous les coûts sont ici à 0! Mais on doit specifier quand meme glp_set_obj_coef(prob,N*M+1,1.0); // 1 fois cmax /* Définition des coefficients non-nuls dans la matrice des contraintes, autrement dit les coefficients de la matrice creuse */ /* Les indices commencent également à 1 ! */ // pour i de 1 a n //pour i de 1 a m /* xij intervient dans la ligne i avec un coeff 1 et dans la ligne n+j avec un coeff pi ia -> i et n+j ar -> 1 et pi ja -> xij -> (i-1)*m+j */ pos = 1; for(i=1; i<=N; i++){ for(j=1; j<=M; j++){ ia[pos] = i; ja[pos] = (i-1)*M+j; ar[pos] = 1; pos++; ia[pos] = N+j; ja[pos] = (i-1)*M+j; ar[pos] = p[i]; pos++; } } //Cmax a -1 !!! for(i=N+1; i<=N+M;i++){ ia[pos] = i; ja[pos] = N*M+1; ar[pos] = -1; pos++; } /* chargement de la matrice dans le problème */ glp_load_matrix(prob,NBCREUX,ia,ja,ar); /* Optionnel : écriture de la modélisation dans un fichier (TRES utile pour debugger!) */ glp_write_lp(prob,NULL,"wagons.lp"); /* Résolution, puis lecture des résultats */ glp_simplex(prob,NULL); glp_intopt(prob,NULL); /* Résolution */ z = glp_mip_obj_val(prob); /* Récupération de la valeur optimale. Dans le cas d'un problème en variables continues, l'appel est différent : z = glp_get_obj_val(prob); */ for(i = 0;i < NBVAR; i++) x[i] = glp_mip_col_val(prob,i+1); /* Récupération de la valeur des variables, Appel différent dans le cas d'un problème en variables continues : for(i = 0;i < p.nbvar;i++) x[i] = glp_get_col_prim(prob,i+1); */ printf("z = %lf\n",z); for(i = 0;i < NBVAR;i++) printf("x%d = %d, ",i,(int)(x[i] + 0.5)); /* un cast est ajouté, x[i] pourrait être égal à 0.99999... */ puts(""); /* libération mémoire */ glp_delete_prob(prob); /* J'adore qu'un plan se déroule sans accroc! */ return 0; }
int glpk (int sense, int n, int m, double *c, int nz, int *rn, int *cn, double *a, double *b, char *ctype, int *freeLB, double *lb, int *freeUB, double *ub, int *vartype, int isMIP, int lpsolver, int save_pb, char *save_filename, char *filetype, double *xmin, double *fmin, double *status, double *lambda, double *redcosts, double *time, double *mem) { int typx = 0; int method; clock_t t_start = clock(); // Obsolete //lib_set_fault_hook (NULL, glpk_fault_hook); //Redirect standard output if (glpIntParam[0] > 1) glp_term_hook (glpk_print_hook, NULL); else glp_term_hook (NULL, NULL); //-- Create an empty LP/MILP object glp_prob *lp = glp_create_prob (); //-- Set the sense of optimization if (sense == 1) glp_set_obj_dir (lp, GLP_MIN); else glp_set_obj_dir (lp, GLP_MAX); //-- Define the number of unknowns and their domains. glp_add_cols (lp, n); for (int i = 0; i < n; i++) { //-- Define type of the structural variables if (! freeLB[i] && ! freeUB[i]) glp_set_col_bnds (lp, i+1, GLP_DB, lb[i], ub[i]); else { if (! freeLB[i] && freeUB[i]) glp_set_col_bnds (lp, i+1, GLP_LO, lb[i], ub[i]); else { if (freeLB[i] && ! freeUB[i]) glp_set_col_bnds (lp, i+1, GLP_UP, lb[i], ub[i]); else glp_set_col_bnds (lp, i+1, GLP_FR, lb[i], ub[i]); } } // -- Set the objective coefficient of the corresponding // -- structural variable. No constant term is assumed. glp_set_obj_coef(lp,i+1,c[i]); if (isMIP) glp_set_col_kind (lp, i+1, vartype[i]); } glp_add_rows (lp, m); for (int i = 0; i < m; i++) { /* If the i-th row has no lower bound (types F,U), the corrispondent parameter will be ignored. If the i-th row has no upper bound (types F,L), the corrispondent parameter will be ignored. If the i-th row is of S type, the i-th LB is used, but the i-th UB is ignored. */ switch (ctype[i]) { case 'F': typx = GLP_FR; break; // upper bound case 'U': typx = GLP_UP; break; // lower bound case 'L': typx = GLP_LO; break; // fixed constraint case 'S': typx = GLP_FX; break; // double-bounded variable case 'D': typx = GLP_DB; break; } glp_set_row_bnds (lp, i+1, typx, b[i], b[i]); } // Load constraint matrix A glp_load_matrix (lp, nz, rn, cn, a); // Save problem if (save_pb) { if (!strcmp(filetype,"cplex")){ if (lpx_write_cpxlp (lp, save_filename) != 0) { mexErrMsgTxt("glpkcc: unable to write the problem"); longjmp (mark, -1); } }else{ if (!strcmp(filetype,"fixedmps")){ if (lpx_write_mps (lp, save_filename) != 0) { mexErrMsgTxt("glpkcc: unable to write the problem"); longjmp (mark, -1); } }else{ if (!strcmp(filetype,"freemps")){ if (lpx_write_freemps (lp, save_filename) != 0) { mexErrMsgTxt("glpkcc: unable to write the problem"); longjmp (mark, -1); } }else{// plain text if (lpx_print_prob (lp, save_filename) != 0) { mexErrMsgTxt("glpkcc: unable to write the problem"); longjmp (mark, -1); } } } } } //-- scale the problem data (if required) if (glpIntParam[1] && (! glpIntParam[16] || lpsolver != 1)) lpx_scale_prob (lp); //-- build advanced initial basis (if required) if (lpsolver == 1 && ! glpIntParam[16]) lpx_adv_basis (lp); glp_smcp sParam; glp_init_smcp(&sParam); //-- set control parameters if (lpsolver==1){ //remap of control parameters for simplex method sParam.msg_lev=glpIntParam[0]; // message level // simplex method: primal/dual if (glpIntParam[2]==0) sParam.meth=GLP_PRIMAL; else sParam.meth=GLP_DUALP; // pricing technique if (glpIntParam[3]==0) sParam.pricing=GLP_PT_STD; else sParam.pricing=GLP_PT_PSE; //sParam.r_test not available sParam.tol_bnd=glpRealParam[1]; // primal feasible tollerance sParam.tol_dj=glpRealParam[2]; // dual feasible tollerance sParam.tol_piv=glpRealParam[3]; // pivot tollerance sParam.obj_ll=glpRealParam[4]; // lower limit sParam.obj_ul=glpRealParam[5]; // upper limit // iteration limit if (glpIntParam[5]==-1) sParam.it_lim=INT_MAX; else sParam.it_lim=glpIntParam[5]; // time limit if (glpRealParam[6]==-1) sParam.tm_lim=INT_MAX; else sParam.tm_lim=(int) glpRealParam[6]; sParam.out_frq=glpIntParam[7]; // output frequency sParam.out_dly=(int) glpRealParam[7]; // output delay // presolver if (glpIntParam[16]) sParam.presolve=GLP_ON; else sParam.presolve=GLP_OFF; }else{ for(int i = 0; i < NIntP; i++) lpx_set_int_parm (lp, IParam[i], glpIntParam[i]); for (int i = 0; i < NRealP; i++) lpx_set_real_parm (lp, RParam[i], glpRealParam[i]); } // Choose simplex method ('S') or interior point method ('T') to solve the problem if (lpsolver == 1) method = 'S'; else method = 'T'; int errnum; switch (method){ case 'S': { if (isMIP){ method = 'I'; errnum = lpx_intopt (lp); } else{ errnum = glp_simplex(lp, &sParam); errnum += 100; //this is to avoid ambiguity in the return codes. } } break; case 'T': errnum = lpx_interior(lp); break; default: xassert (method != method); } /* errnum assumes the following results: errnum = 0 <=> No errors errnum = 1 <=> Iteration limit exceeded. errnum = 2 <=> Numerical problems with basis matrix. */ if (errnum == LPX_E_OK || errnum==100){ // Get status and object value if (isMIP) { *status = glp_mip_status (lp); *fmin = glp_mip_obj_val (lp); } else { if (lpsolver == 1) { *status = glp_get_status (lp); *fmin = glp_get_obj_val (lp); } else { *status = glp_ipt_status (lp); *fmin = glp_ipt_obj_val (lp); } } // Get optimal solution (if exists) if (isMIP) { for (int i = 0; i < n; i++) xmin[i] = glp_mip_col_val (lp, i+1); } else { /* Primal values */ for (int i = 0; i < n; i++) { if (lpsolver == 1) xmin[i] = glp_get_col_prim (lp, i+1); else xmin[i] = glp_ipt_col_prim (lp, i+1); } /* Dual values */ for (int i = 0; i < m; i++) { if (lpsolver == 1) lambda[i] = glp_get_row_dual (lp, i+1); else lambda[i] = glp_ipt_row_dual (lp, i+1); } /* Reduced costs */ for (int i = 0; i < glp_get_num_cols (lp); i++) { if (lpsolver == 1) redcosts[i] = glp_get_col_dual (lp, i+1); else redcosts[i] = glp_ipt_col_dual (lp, i+1); } } *time = (clock () - t_start) / CLOCKS_PER_SEC; glp_ulong tpeak; lib_mem_usage(NULL, NULL, NULL, &tpeak); *mem=(double)(4294967296.0 * tpeak.hi + tpeak.lo) / (1024); glp_delete_prob (lp); return 0; } glp_delete_prob (lp); *status = errnum; return errnum; }
int main(int argc, char *argv[]) { /* Structures de données propres à GLPK */ glp_prob *prob; // Déclaration d'un pointeur sur le problème int ia[1 + NBCREUX]; int ja[1 + NBCREUX]; double ar[1 + NBCREUX]; // Déclaration des 3 tableaux servant à définir la partie creuse de la matrice des contraintes /* Variables récupérant les résultats de la résolution du problème (fonction objectif et valeur des variables) */ int i, j; double z; double x[NBVAR]; // Autres variables int * p = (int*)malloc(n * sizeof(int)); p[1] = 34; p[2] = 6; p[3] = 8; p[4] = 17; p[5] = 16; p[6] = 5; p[7] = 13; p[8] = 21; p[9] = 25; p[10] = 31; p[11] = 14; p[12] = 13; p[13] = 33; p[14] = 9; p[15] = 25; p[16] = 25; /* Transfert de ces données dans les structures utilisées par la bibliothèque GLPK */ prob = glp_create_prob(); /* allocation mémoire pour le problème */ glp_set_prob_name(prob, "wagons"); /* affectation d'un nom */ glp_set_obj_dir(prob, GLP_MIN); /* Il s'agit d'un problème de minimisation */ /* Déclaration du nombre de contraintes (nombre de lignes de la matrice des contraintes) */ glp_add_rows(prob, NBCONTR); /* On commence par préciser les bornes sur les contraintes, les indices commencent à 1 (!) dans GLPK */ /* Premier ensemble de contraintes ( c = 1 ) */ for(i = 1; i <= n; i++) { glp_set_row_bnds(prob, i, GLP_FX, 1.0, 1.0); } /* Second ensembles de contraintes (c <= 0 ) */ for(i = n + 1; i <= NBCONTR; i++) { glp_set_row_bnds(prob, i, GLP_UP, 0.0, 0.0); } /* Déclaration du nombre de variables */ glp_add_cols(prob, NBVAR); /* On précise le type des variables, les indices commencent à 1 également pour les variables! */ for(i = 1; i <= NBVAR - 1; i++) { glp_set_col_bnds(prob, i, GLP_DB, 0.0, 1.0); glp_set_col_kind(prob, i, GLP_BV); /* les variables sont binaires */ } glp_set_col_bnds(prob, NBVAR, GLP_LO, 0.0, 0.0); /* La dernière variables est continue (par défaut) non négative */ /* Définition des coefficients des variables dans la fonction objectif */ for(i = 1;i <= n*m;i++) { glp_set_obj_coef(prob,i,0.0); // Tous les coûts sont à 0 (sauf le dernier) } /* Dernier coût (qui vaut 1) */ glp_set_obj_coef(prob,n*m + 1,1.0); /* Définition des coefficients non-nuls dans la matrice des contraintes, autrement dit les coefficients de la matrice creuse */ int pos = 1; for(i = 1; i <= n; i++) { for(j = 1; j <= m; j++) { // Première moitié de la matrice ja[pos] = (i - 1)*m + j; ia[pos] = i; ar[pos] = 1; pos++; // Deuxième moitié de la matrice ja[pos] = (i - 1)*m + j; ia[pos] = n + j; ar[pos] = p[i]; pos++; } } // ajout des -1 dans la dernière colonne for(i = n + 1; i <= n + m; i++) { ja[pos] = n*m + 1; ia[pos] = i; ar[pos] = -1; pos++; } /* Chargement de la matrice dans le problème */ glp_load_matrix(prob,NBCREUX,ia,ja,ar); /* Ecriture de la modélisation dans un fichier */ glp_write_lp(prob,NULL,"wagons.lp"); /* Résolution, puis lecture des résultats */ glp_simplex(prob,NULL); glp_intopt(prob,NULL); /* Résolution */ z = glp_mip_obj_val(prob); /* Récupération de la valeur optimale. Dans le cas d'un problème en variables continues, l'appel est différent : z = glp_get_obj_val(prob); */ for(i = 0;i < NBVAR; i++) x[i] = glp_mip_col_val(prob,i+1); /* Récupération de la valeur des variables, Appel différent dans le cas d'un problème en variables continues : for(i = 0;i < p.nbvar;i++) x[i] = glp_get_col_prim(prob,i+1); */ printf("z = %lf\n",z); for(i = 0;i < NBVAR;i++) printf("x%c = %d, ",'B'+i,(int)(x[i] + 0.5)); /* un cast est ajouté, x[i] pourrait être égal à 0.99999... */ puts(""); /* Libération de la mémoire */ glp_delete_prob(prob); free(p); return 0; }
int glp_read_prob(glp_prob *P, int flags, const char *fname) { DMX _csa, *csa = &_csa; int mip, m, n, nnz, ne, i, j, k, type, kind, ret, *ln = NULL, *ia = NULL, *ja = NULL; double lb, ub, temp, *ar = NULL; char *rf = NULL, *cf = NULL; if (P == NULL || P->magic != GLP_PROB_MAGIC) xerror("glp_read_prob: P = %p; invalid problem object\n", P); if (flags != 0) xerror("glp_read_prob: flags = %d; invalid parameter\n", flags); if (fname == NULL) xerror("glp_read_prob: fname = %d; invalid parameter\n", fname); glp_erase_prob(P); if (setjmp(csa->jump)) { ret = 1; goto done; } csa->fname = fname; csa->fp = NULL; csa->count = 0; csa->c = '\n'; csa->field[0] = '\0'; csa->empty = csa->nonint = 0; xprintf("Reading problem data from '%s'...\n", fname); csa->fp = glp_open(fname, "r"); if (csa->fp == NULL) { xprintf("Unable to open '%s' - %s\n", fname, get_err_msg()); longjmp(csa->jump, 1); } /* read problem line */ read_designator(csa); if (strcmp(csa->field, "p") != 0) error(csa, "problem line missing or invalid"); read_field(csa); if (strcmp(csa->field, "lp") == 0) mip = 0; else if (strcmp(csa->field, "mip") == 0) mip = 1; else error(csa, "wrong problem designator; 'lp' or 'mip' expected"); read_field(csa); if (strcmp(csa->field, "min") == 0) glp_set_obj_dir(P, GLP_MIN); else if (strcmp(csa->field, "max") == 0) glp_set_obj_dir(P, GLP_MAX); else error(csa, "objective sense missing or invalid"); read_field(csa); if (!(str2int(csa->field, &m) == 0 && m >= 0)) error(csa, "number of rows missing or invalid"); read_field(csa); if (!(str2int(csa->field, &n) == 0 && n >= 0)) error(csa, "number of columns missing or invalid"); read_field(csa); if (!(str2int(csa->field, &nnz) == 0 && nnz >= 0)) error(csa, "number of constraint coefficients missing or inval" "id"); if (m > 0) { glp_add_rows(P, m); for (i = 1; i <= m; i++) glp_set_row_bnds(P, i, GLP_FX, 0.0, 0.0); } if (n > 0) { glp_add_cols(P, n); for (j = 1; j <= n; j++) { if (!mip) glp_set_col_bnds(P, j, GLP_LO, 0.0, 0.0); else glp_set_col_kind(P, j, GLP_BV); } } end_of_line(csa); /* allocate working arrays */ rf = xcalloc(1+m, sizeof(char)); memset(rf, 0, 1+m); cf = xcalloc(1+n, sizeof(char)); memset(cf, 0, 1+n); ln = xcalloc(1+nnz, sizeof(int)); ia = xcalloc(1+nnz, sizeof(int)); ja = xcalloc(1+nnz, sizeof(int)); ar = xcalloc(1+nnz, sizeof(double)); /* read descriptor lines */ ne = 0; for (;;) { read_designator(csa); if (strcmp(csa->field, "i") == 0) { /* row descriptor */ read_field(csa); if (str2int(csa->field, &i) != 0) error(csa, "row number missing or invalid"); if (!(1 <= i && i <= m)) error(csa, "row number out of range"); read_field(csa); if (strcmp(csa->field, "f") == 0) type = GLP_FR; else if (strcmp(csa->field, "l") == 0) type = GLP_LO; else if (strcmp(csa->field, "u") == 0) type = GLP_UP; else if (strcmp(csa->field, "d") == 0) type = GLP_DB; else if (strcmp(csa->field, "s") == 0) type = GLP_FX; else error(csa, "row type missing or invalid"); if (type == GLP_LO || type == GLP_DB || type == GLP_FX) { read_field(csa); if (str2num(csa->field, &lb) != 0) error(csa, "row lower bound/fixed value missing or in" "valid"); } else lb = 0.0; if (type == GLP_UP || type == GLP_DB) { read_field(csa); if (str2num(csa->field, &ub) != 0) error(csa, "row upper bound missing or invalid"); } else ub = 0.0; if (rf[i] & 0x01) error(csa, "duplicate row descriptor"); glp_set_row_bnds(P, i, type, lb, ub), rf[i] |= 0x01; } else if (strcmp(csa->field, "j") == 0) { /* column descriptor */ read_field(csa); if (str2int(csa->field, &j) != 0) error(csa, "column number missing or invalid"); if (!(1 <= j && j <= n)) error(csa, "column number out of range"); if (!mip) kind = GLP_CV; else { read_field(csa); if (strcmp(csa->field, "c") == 0) kind = GLP_CV; else if (strcmp(csa->field, "i") == 0) kind = GLP_IV; else if (strcmp(csa->field, "b") == 0) { kind = GLP_IV; type = GLP_DB, lb = 0.0, ub = 1.0; goto skip; } else error(csa, "column kind missing or invalid"); } read_field(csa); if (strcmp(csa->field, "f") == 0) type = GLP_FR; else if (strcmp(csa->field, "l") == 0) type = GLP_LO; else if (strcmp(csa->field, "u") == 0) type = GLP_UP; else if (strcmp(csa->field, "d") == 0) type = GLP_DB; else if (strcmp(csa->field, "s") == 0) type = GLP_FX; else error(csa, "column type missing or invalid"); if (type == GLP_LO || type == GLP_DB || type == GLP_FX) { read_field(csa); if (str2num(csa->field, &lb) != 0) error(csa, "column lower bound/fixed value missing or" " invalid"); } else lb = 0.0; if (type == GLP_UP || type == GLP_DB) { read_field(csa); if (str2num(csa->field, &ub) != 0) error(csa, "column upper bound missing or invalid"); } else ub = 0.0; skip: if (cf[j] & 0x01) error(csa, "duplicate column descriptor"); glp_set_col_kind(P, j, kind); glp_set_col_bnds(P, j, type, lb, ub), cf[j] |= 0x01; } else if (strcmp(csa->field, "a") == 0) { /* coefficient descriptor */ read_field(csa); if (str2int(csa->field, &i) != 0) error(csa, "row number missing or invalid"); if (!(0 <= i && i <= m)) error(csa, "row number out of range"); read_field(csa); if (str2int(csa->field, &j) != 0) error(csa, "column number missing or invalid"); if (!((i == 0 ? 0 : 1) <= j && j <= n)) error(csa, "column number out of range"); read_field(csa); if (i == 0) { if (str2num(csa->field, &temp) != 0) error(csa, "objective %s missing or invalid", j == 0 ? "constant term" : "coefficient"); if (cf[j] & 0x10) error(csa, "duplicate objective %s", j == 0 ? "constant term" : "coefficient"); glp_set_obj_coef(P, j, temp), cf[j] |= 0x10; } else { if (str2num(csa->field, &temp) != 0) error(csa, "constraint coefficient missing or invalid" ); if (ne == nnz) error(csa, "too many constraint coefficient descripto" "rs"); ln[++ne] = csa->count; ia[ne] = i, ja[ne] = j, ar[ne] = temp; } } else if (strcmp(csa->field, "n") == 0) { /* symbolic name descriptor */ read_field(csa); if (strcmp(csa->field, "p") == 0) { /* problem name */ read_field(csa); if (P->name != NULL) error(csa, "duplicate problem name"); glp_set_prob_name(P, csa->field); } else if (strcmp(csa->field, "z") == 0) { /* objective name */ read_field(csa); if (P->obj != NULL) error(csa, "duplicate objective name"); glp_set_obj_name(P, csa->field); } else if (strcmp(csa->field, "i") == 0) { /* row name */ read_field(csa); if (str2int(csa->field, &i) != 0) error(csa, "row number missing or invalid"); if (!(1 <= i && i <= m)) error(csa, "row number out of range"); read_field(csa); if (P->row[i]->name != NULL) error(csa, "duplicate row name"); glp_set_row_name(P, i, csa->field); } else if (strcmp(csa->field, "j") == 0) { /* column name */ read_field(csa); if (str2int(csa->field, &j) != 0) error(csa, "column number missing or invalid"); if (!(1 <= j && j <= n)) error(csa, "column number out of range"); read_field(csa); if (P->col[j]->name != NULL) error(csa, "duplicate column name"); glp_set_col_name(P, j, csa->field); } else error(csa, "object designator missing or invalid"); } else if (strcmp(csa->field, "e") == 0) break; else error(csa, "line designator missing or invalid"); end_of_line(csa); } if (ne < nnz) error(csa, "too few constraint coefficient descriptors"); xassert(ne == nnz); k = glp_check_dup(m, n, ne, ia, ja); xassert(0 <= k && k <= nnz); if (k > 0) { csa->count = ln[k]; error(csa, "duplicate constraint coefficient"); } glp_load_matrix(P, ne, ia, ja, ar); /* print some statistics */ if (P->name != NULL) xprintf("Problem: %s\n", P->name); if (P->obj != NULL) xprintf("Objective: %s\n", P->obj); xprintf("%d row%s, %d column%s, %d non-zero%s\n", m, m == 1 ? "" : "s", n, n == 1 ? "" : "s", nnz, nnz == 1 ? "" : "s"); if (glp_get_num_int(P) > 0) { int ni = glp_get_num_int(P); int nb = glp_get_num_bin(P); if (ni == 1) { if (nb == 0) xprintf("One variable is integer\n"); else xprintf("One variable is binary\n"); } else { xprintf("%d integer variables, ", ni); if (nb == 0) xprintf("none"); else if (nb == 1) xprintf("one"); else if (nb == ni) xprintf("all"); else xprintf("%d", nb); xprintf(" of which %s binary\n", nb == 1 ? "is" : "are"); } } xprintf("%d lines were read\n", csa->count); /* problem data has been successfully read */ glp_sort_matrix(P); ret = 0; done: if (csa->fp != NULL) glp_close(csa->fp); if (rf != NULL) xfree(rf); if (cf != NULL) xfree(cf); if (ln != NULL) xfree(ln); if (ia != NULL) xfree(ia); if (ja != NULL) xfree(ja); if (ar != NULL) xfree(ar); if (ret) glp_erase_prob(P); return ret; }
void glp_maxflow_lp(glp_prob *lp, glp_graph *G, int names, int s, int t, int a_cap) { glp_vertex *v; glp_arc *a; int i, j, type, ind[1+2]; double cap, val[1+2]; if (!(names == GLP_ON || names == GLP_OFF)) xerror("glp_maxflow_lp: names = %d; invalid parameter\n", names); if (!(1 <= s && s <= G->nv)) xerror("glp_maxflow_lp: s = %d; source node number out of rang" "e\n", s); if (!(1 <= t && t <= G->nv)) xerror("glp_maxflow_lp: t = %d: sink node number out of range " "\n", t); if (s == t) xerror("glp_maxflow_lp: s = t = %d; source and sink nodes must" " be distinct\n", s); if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double)) xerror("glp_maxflow_lp: a_cap = %d; invalid offset\n", a_cap); glp_erase_prob(lp); if (names) glp_set_prob_name(lp, G->name); glp_set_obj_dir(lp, GLP_MAX); glp_add_rows(lp, G->nv); for (i = 1; i <= G->nv; i++) { v = G->v[i]; if (names) glp_set_row_name(lp, i, v->name); if (i == s) type = GLP_LO; else if (i == t) type = GLP_UP; else type = GLP_FX; glp_set_row_bnds(lp, i, type, 0.0, 0.0); } if (G->na > 0) glp_add_cols(lp, G->na); for (i = 1, j = 0; i <= G->nv; i++) { v = G->v[i]; for (a = v->out; a != NULL; a = a->t_next) { j++; if (names) { char name[50+1]; sprintf(name, "x[%d,%d]", a->tail->i, a->head->i); xassert(strlen(name) < sizeof(name)); glp_set_col_name(lp, j, name); } if (a->tail->i != a->head->i) { ind[1] = a->tail->i, val[1] = +1.0; ind[2] = a->head->i, val[2] = -1.0; glp_set_mat_col(lp, j, 2, ind, val); } if (a_cap >= 0) memcpy(&cap, (char *)a->data + a_cap, sizeof(double)); else cap = 1.0; if (cap == DBL_MAX) type = GLP_LO; else if (cap != 0.0) type = GLP_DB; else type = GLP_FX; glp_set_col_bnds(lp, j, type, 0.0, cap); if (a->tail->i == s) glp_set_obj_coef(lp, j, +1.0); else if (a->head->i == s) glp_set_obj_coef(lp, j, -1.0); } } xassert(j == G->na); return; }
void inline instrumentert::instrument_minimum_interference_inserter( const std::set<event_grapht::critical_cyclet>& set_of_cycles) { /* Idea: We solve this by a linear programming approach, using for instance glpk lib. Input: the edges to instrument E, the cycles C_j Pb: min sum_{e_i in E} d(e_i).x_i s.t. for all j, sum_{e_i in C_j} >= 1, where e_i is a pair to potentially instrument, x_i is a Boolean stating whether we instrument e_i, and d() is the cost of an instrumentation. Output: the x_i, saying which pairs to instrument For this instrumentation, we propose: d(poW*)=1 d(poRW)=d(rfe)=2 d(poRR)=3 This function can be refined with the actual times we get in experimenting the different pairs in a single IRIW. */ #ifdef HAVE_GLPK /* first, identify all the unsafe pairs */ std::set<event_grapht::critical_cyclet::delayt> edges; for(std::set<event_grapht::critical_cyclet>::iterator C_j=set_of_cycles.begin(); C_j!=set_of_cycles.end(); ++C_j) for(std::set<event_grapht::critical_cyclet::delayt>::const_iterator e_i= C_j->unsafe_pairs.begin(); e_i!=C_j->unsafe_pairs.end(); ++e_i) edges.insert(*e_i); glp_prob* lp; glp_iocp parm; glp_init_iocp(&parm); parm.msg_lev=GLP_MSG_OFF; parm.presolve=GLP_ON; lp=glp_create_prob(); glp_set_prob_name(lp, "instrumentation optimisation"); glp_set_obj_dir(lp, GLP_MIN); message.debug() << "edges: "<<edges.size()<<" cycles:"<<set_of_cycles.size() << messaget::eom; /* sets the variables and coefficients */ glp_add_cols(lp, edges.size()); unsigned i=0; for(std::set<event_grapht::critical_cyclet::delayt>::iterator e_i=edges.begin(); e_i!=edges.end(); ++e_i) { ++i; std::string name="e_"+i2string(i); glp_set_col_name(lp, i, name.c_str()); glp_set_col_bnds(lp, i, GLP_LO, 0.0, 0.0); glp_set_obj_coef(lp, i, cost(*e_i)); glp_set_col_kind(lp, i, GLP_BV); } /* sets the constraints (soundness): one per cycle */ glp_add_rows(lp, set_of_cycles.size()); i=0; for(std::set<event_grapht::critical_cyclet>::iterator C_j=set_of_cycles.begin(); C_j!=set_of_cycles.end(); ++C_j) { ++i; std::string name="C_"+i2string(i); glp_set_row_name(lp, i, name.c_str()); glp_set_row_bnds(lp, i, GLP_LO, 1.0, 0.0); /* >= 1*/ } const unsigned mat_size=set_of_cycles.size()*edges.size(); message.debug() << "size of the system: " << mat_size << messaget::eom; int* imat=(int*)malloc(sizeof(int)*(mat_size+1)); int* jmat=(int*)malloc(sizeof(int)*(mat_size+1)); double* vmat=(double*)malloc(sizeof(double)*(mat_size+1)); /* fills the constraints coeff */ /* tables read from 1 in glpk -- first row/column ignored */ unsigned col=1; unsigned row=1; i=1; for(std::set<event_grapht::critical_cyclet::delayt>::iterator e_i=edges.begin(); e_i!=edges.end(); ++e_i) { row=1; for(std::set<event_grapht::critical_cyclet>::iterator C_j=set_of_cycles.begin(); C_j!=set_of_cycles.end(); ++C_j) { imat[i]=row; jmat[i]=col; if(C_j->unsafe_pairs.find(*e_i)!=C_j->unsafe_pairs.end()) vmat[i]=1.0; else vmat[i]=0.0; ++i; ++row; } ++col; } #ifdef DEBUG for(i=1; i<=mat_size; ++i) message.statistics() <<i<<"["<<imat[i]<<","<<jmat[i]<<"]="<<vmat[i] << messaget::eom; #endif /* solves MIP by branch-and-cut */ glp_load_matrix(lp, mat_size, imat, jmat, vmat); glp_intopt(lp, &parm); /* loads results (x_i) */ message.statistics() << "minimal cost: " << glp_mip_obj_val(lp) << messaget::eom; i=0; for(std::set<event_grapht::critical_cyclet::delayt>::iterator e_i=edges.begin(); e_i!=edges.end(); ++e_i) { ++i; if(glp_mip_col_val(lp, i)>=1) { const abstract_eventt& first_ev=egraph[e_i->first]; var_to_instr.insert(first_ev.variable); id2loc.insert( std::pair<irep_idt,source_locationt>(first_ev.variable,first_ev.source_location)); if(!e_i->is_po) { const abstract_eventt& second_ev=egraph[e_i->second]; var_to_instr.insert(second_ev.variable); id2loc.insert( std::pair<irep_idt,source_locationt>(second_ev.variable,second_ev.source_location)); } } } glp_delete_prob(lp); free(imat); free(jmat); free(vmat); #else throw "Sorry, minimum interference option requires glpk; " "please recompile goto-instrument with glpk."; #endif }
int main() { // Variáveis auxiliares int i, j, constraintNumber, *constraintIndices; double *constraintCoefficients; // Aloca os vetores utilizados para criar as restrições do problema // *********************************************************************************************** // ATENÇÃO ===> É importante dizer que estes vetores serão utilizados da posição 1 em diante // Ou seja, no GLPK você aloca uma posição a mais e descarta a posição 0 dos vetores. // *********************************************************************************************** constraintIndices = (int*)malloc((n+1)*sizeof(int)); constraintCoefficients = (double*)malloc((n+1)*sizeof(double)); // Cria um modelo com nenhuma variável e nenhuma restrição glp_prob *model = glp_create_prob(); // Define o sentido da otimização que, para este problema, é minimização glp_set_obj_dir(model, GLP_MIN); // Cria as variáveis (colunas) no modelo // Para este problema são necessárias n*n variáveis // Estas n*n variáveis são definidas pelo GLPK através dos indices que vão de 1 até n*n (x1, x2, ..., x(n*n)) // Portanto, neste momento é importante determinar qual variável no GLPK (índice) representará qual variável x[i,j] // Para tanto, fazemos o mapeamento das variáveis x[i,j] utilizando a fórmula (i-1)*n + j // Isto é, a variável x[i,j] será representada pela variável de índice (i-1)*n + j no modelo do GLPK // Note que é imprescindível que cada índice (variável do GLPK) seja associado a no máximo uma variável x[i,j] // Caso contrário, uma variável do GLPK pode representar duas variáveis x[i,j] diferentes que assumem valores distintos nas soluções ótimas // Neste caso, o modelo estará incorreto glp_add_cols(model, n*n); // Ajuste dos tipos, limitantes e coeficientes da função objetivo das variáveis do modelo for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) { // Define o tipo da variável como sendo binária (em outros modelos poderia ser contínua (GLP_CV) ou inteira (GLP_IV)) glp_set_col_kind(model, (i-1)*n + j, GLP_BV); // Define o limitante inferior (0) e superior (1) da variável // Consultem no manual as outras forma para definir apenas o limitante inferior ou superior glp_set_col_bnds(model, (i-1)*n + j, GLP_DB, 0.0, 1.0); // Define o coeficiente da variável na função objetivo glp_set_obj_coef(model, (i-1)*n + j, c[i-1][j-1]); } // Cria no modelo 2n restrições (linhas) nulas (com os coeficientes e limitantes zerados) // Ou seja, neste momento é criada uma matriz de zeros que correspondem aos coeficientes das restrições do modelo // O próximo passo será modificar esta matriz de tal forma que ela represente as restrições do problema descrito glp_add_rows(model, 2*n); // Esta variável define qual das restrições (qual linha da matriz de coeficientes) estamos modificando // ************************************************************************************************************ // ATENÇÃO: perceba que as restrições (linhas), assim como as variáveis (colunas), são indexadas a partir de 1. // ************************************************************************************************************ constraintNumber = 1; // Preenchimento das restrições limitando a soma das linhas: // sum{j in 1..n} w[i,j]*x[i,j] <= u[i] para i in 1..n for (i = 1; i <= n; i++) { // Define o limite superior (RHS) da restrição glp_set_row_bnds(model, constraintNumber, GLP_UP, 0.0, u[i-1]); for (j = 1; j <= n; j++) { // Ajusta o índice da variável que será informado à rotina do GLPK constraintIndices[j] = (i-1)*n + j; // Ajusta o coeficiente da variável cujo índice foi definido na linha anterior para ser informado ao GLPK // ****************************************************************************************************** // ATENÇÃO: perceba que na matriz w os índices e colunas são indexados a partir de ZERO ! // ****************************************************************************************************** constraintCoefficients[j] = w[i-1][j-1]; } // Passa ao GLPK a restrição que acabou de ser definida nos vetores constraintIndices e constraintCoefficients glp_set_mat_row(model, constraintNumber, n, constraintIndices, constraintCoefficients); // atualiza o indice da próxima restrição a ser inserida constraintNumber++; } // Preenchimento das restrições limitando a soma das colunas: // sum{i in 1..n} w[i,j]*x[i,j] >= l[i] para j in 1..n for (j = 1; j <= n; j++) { // Define o limite inferior (RHS) da restrição glp_set_row_bnds(model, constraintNumber, GLP_LO, l[j-1], 0.0); for (i = 1; i <= n; i++) { // Ajusta o índice da variável que será informado a rotina do GLPK constraintIndices[i] = (i-1)*n + j; // Ajusta o coeficiente da variável cujo índice foi definido na linha anterior para ser informado ao GLPK constraintCoefficients[i] = w[i-1][j-1]; } // Passa ao GLPK a restrição que acabou de ser definida nos vetores constraintIndices e constraintCoefficients glp_set_mat_row(model, constraintNumber, n, constraintIndices, constraintCoefficients); // atualiza o indice da próxima restrição a ser inserida constraintNumber++; } // Define os parâmetros que serão passados ao resolvedor glp_iocp param; glp_init_iocp(¶m); // Ativa o presolver param.presolve = GLP_ON; // Resolve o modelo int status = glp_intopt(model, ¶m); // Verifica se houve algum erro durante a otimização if (status) { printf("Ocorreu um erro durante o processo de otimizacao.\n"); } else { // Verifica se o método encontrou uma solução status = glp_mip_status(model); if ((status == GLP_OPT) || (status == GLP_FEAS)) { // Imprime a solução encontrada if (status == GLP_OPT) printf("Solucao otima encontrada!\n"); else printf("A solucao encontrada pode nao ser otima!\n"); printf("Custo da solucao: %f\n", glp_mip_obj_val(model)); for (i = 1; i <= n; i++) { for (j = 1; j <= n; j++) printf("%f ", glp_mip_col_val(model, (i-1)*n + j)); printf("\n"); } } else { printf("Nenhuma solucao foi encontrada!\n"); } } // Desaloca os vetores free(constraintIndices); free(constraintCoefficients); return 0; }
void ILP::sample() { PPReader& reader = handler->get_reader(); // Read in all the data to this->data point *p; while ((p = reader.get())) { data.push_back(*p); } delete p; // Encode the problem into ILP uint N = data.size(); glp_prob *lp = glp_create_prob(); glp_set_obj_dir(lp, GLP_MIN); glp_add_rows(lp, 1 + 3*N*(N-1)/2); glp_add_cols(lp, N + N*(N-1)/2); vector<int> ia(1, 0); vector<int> ja(1, 0); vector<double> ar(1, 0.0); for (uint i = 1; i <= N; i++) { glp_set_obj_coef(lp, i, 0); glp_set_col_bnds(lp, i, GLP_DB, 0.0, 1.0); glp_set_col_kind(lp, i, GLP_BV); } for (uint i = 1; i <= N; i++) { ia.push_back(1); ja.push_back(i); ar.push_back(1.0); } glp_set_row_bnds(lp, 1, GLP_FX, K, K); // Set: // 1. coefficient for objective // 2. row bounds // 3. column bounds // 4. coefficient matrix for constraints uint k = 1; for (uint i = 1; i <= N-1; i++) { for (uint j = i+1; j <= N; j++) { point a = data[i-1]; point b = data[j-1]; // object coefficient and column bounds double l = handler->loss(handler->dist(a, b)); glp_set_obj_coef(lp, N+k, l); glp_set_col_bnds(lp, N+k, GLP_DB, 0.0, 1.0); glp_set_col_kind(lp, N+k, GLP_BV); // row bounds glp_set_row_bnds(lp, 1 + (k-1)*3 + 1, GLP_LO, 0.0, 1.0); glp_set_row_bnds(lp, 1 + (k-1)*3 + 2, GLP_LO, 0.0, 1.0); glp_set_row_bnds(lp, 1 + (k-1)*3 + 3, GLP_LO, -1.0, 1.0); // coefficient matrix ia.push_back(1 + (k-1)*3 + 1); ja.push_back(i); ar.push_back(1.0); ia.push_back(1 + (k-1)*3 + 1); ja.push_back(N+k); ar.push_back(-1.0); ia.push_back(1 + (k-1)*3 + 2); ja.push_back(j); ar.push_back(1.0); ia.push_back(1 + (k-1)*3 + 2); ja.push_back(N+k); ar.push_back(-1.0); ia.push_back(1 + (k-1)*3 + 3); ja.push_back(i); ar.push_back(-1.0); ia.push_back(1 + (k-1)*3 + 3); ja.push_back(j); ar.push_back(-1.0); ia.push_back(1 + (k-1)*3 + 3); ja.push_back(N+k); ar.push_back(1.0); k++; } } int* ia_a = &ia[0]; int* ja_a = &ja[0]; double* ar_a = &ar[0]; glp_load_matrix(lp, ia.size()-1, ia_a, ja_a, ar_a); glp_iocp parm; glp_init_iocp(&parm); parm.presolve = GLP_ON; parm.msg_lev = GLP_MSG_OFF; int ret = glp_intopt(lp, &parm); // cout << "program returned: " << ret << endl; // Collect processed results for (uint i = 1; i <= N; i++) { double x = glp_mip_col_val(lp, i); if (x == 1.0) { sampled.push_back(data[i-1]); } } }