static int get_num_procs (void) { #ifdef HAVE_PTHREAD_AFFINITY_NP if (gomp_places_list == NULL) { /* Count only the CPUs this process can use. */ if (gomp_cpusetp && pthread_getaffinity_np (pthread_self (), gomp_get_cpuset_size, gomp_cpusetp) == 0) { int ret = gomp_cpuset_popcount (gomp_get_cpuset_size, gomp_cpusetp); return ret != 0 ? ret : 1; } } else { /* We can't use pthread_getaffinity_np in this case (we have changed it ourselves, it binds to just one CPU). Count instead the number of different CPUs we are using. gomp_init_affinity updated gomp_available_cpus to the number of CPUs in the GOMP_AFFINITY mask that we are allowed to use though. */ return gomp_available_cpus; } #endif #if defined(__ANDROID__) return sc_nprocessors_actu (); #elif defined(_SC_NPROCESSORS_ONLN) return sysconf (_SC_NPROCESSORS_ONLN); #else return gomp_icv (false)->nthreads_var; #endif }
unsigned gomp_dynamic_max_threads (void) { unsigned n_onln, loadavg, nthreads_var = gomp_icv (false)->nthreads_var; n_onln = get_num_procs (); if (n_onln > nthreads_var) n_onln = nthreads_var; loadavg = 0; #ifdef HAVE_GETLOADAVG { double dloadavg[3]; if (getloadavg (dloadavg, 3) == 3) { /* Add 0.1 to get a kind of biased rounding. */ loadavg = dloadavg[2] + 0.1; } } #endif if (loadavg >= n_onln) return 1; else return n_onln - loadavg; }
bool GOMP_loop_ull_doacross_runtime_start (unsigned ncounts, gomp_ull *counts, gomp_ull *istart, gomp_ull *iend) { struct gomp_task_icv *icv = gomp_icv (false); switch (icv->run_sched_var) { case GFS_STATIC: return gomp_loop_ull_doacross_static_start (ncounts, counts, icv->run_sched_chunk_size, istart, iend); case GFS_DYNAMIC: return gomp_loop_ull_doacross_dynamic_start (ncounts, counts, icv->run_sched_chunk_size, istart, iend); case GFS_GUIDED: return gomp_loop_ull_doacross_guided_start (ncounts, counts, icv->run_sched_chunk_size, istart, iend); case GFS_AUTO: /* For now map to schedule(static), later on we could play with feedback driven choice. */ return gomp_loop_ull_doacross_static_start (ncounts, counts, 0, istart, iend); default: abort (); } }
void GOMP_parallel_end (void) { struct gomp_task_icv *icv = gomp_icv (false); if (__builtin_expect (icv->thread_limit_var != UINT_MAX, 0)) { struct gomp_thread *thr = gomp_thread (); struct gomp_team *team = thr->ts.team; unsigned int nthreads = team ? team->nthreads : 1; gomp_team_end (); if (nthreads > 1) { /* If not nested, there is just one thread in the contention group left, no need for atomicity. */ if (thr->ts.team == NULL) thr->thread_pool->threads_busy = 1; else { #ifdef HAVE_SYNC_BUILTINS __sync_fetch_and_add (&thr->thread_pool->threads_busy, 1UL - nthreads); #else gomp_mutex_lock (&gomp_managed_threads_lock); thr->thread_pool->threads_busy -= nthreads - 1; gomp_mutex_unlock (&gomp_managed_threads_lock); #endif } } } else gomp_team_end (); }
bool GOMP_loop_ull_ordered_runtime_start (bool up, gomp_ull start, gomp_ull end, gomp_ull incr, gomp_ull *istart, gomp_ull *iend) { struct gomp_task_icv *icv = gomp_icv (false); switch (icv->run_sched_var) { case GFS_STATIC: return gomp_loop_ull_ordered_static_start (up, start, end, incr, icv->run_sched_chunk_size, istart, iend); case GFS_DYNAMIC: return gomp_loop_ull_ordered_dynamic_start (up, start, end, incr, icv->run_sched_chunk_size, istart, iend); case GFS_GUIDED: return gomp_loop_ull_ordered_guided_start (up, start, end, incr, icv->run_sched_chunk_size, istart, iend); case GFS_AUTO: /* For now map to schedule(static), later on we could play with feedback driven choice. */ return gomp_loop_ull_ordered_static_start (up, start, end, incr, 0, istart, iend); default: abort (); } }
unsigned gomp_dynamic_max_threads (void) { unsigned n_onln, loadavg; unsigned nthreads_var = gomp_icv (false)->nthreads_var; #ifdef _SC_NPROCESSORS_ONLN n_onln = sysconf (_SC_NPROCESSORS_ONLN); if (n_onln > nthreads_var) n_onln = nthreads_var; #else n_onln = nthreads_var; #endif loadavg = 0; #ifdef HAVE_GETLOADAVG { double dloadavg[3]; if (getloadavg (dloadavg, 3) == 3) { /* Add 0.1 to get a kind of biased rounding. */ loadavg = dloadavg[2] + 0.1; } } #endif if (loadavg >= n_onln) return 1; else return n_onln - loadavg; }
int omp_get_num_procs (void) { #ifdef _SC_NPROCESSORS_ONLN return sysconf (_SC_NPROCESSORS_ONLN); #else return gomp_icv (false)->nthreads_var; #endif }
unsigned gomp_dynamic_max_threads (void) { unsigned n_onln = (unsigned) omp_get_num_procs(); unsigned nthreads_var = gomp_icv (false)->nthreads_var; if (n_onln > nthreads_var) return nthreads_var; else return n_onln; }
void gomp_set_nest_lock_30 (omp_nest_lock_t *lock) { void *me = gomp_icv (true); if (lock->owner != me) { pthread_mutex_lock (&lock->lock); lock->owner = me; } lock->count++; }
void gomp_set_nest_lock_30 (omp_nest_lock_t *lock) { void *me = gomp_icv (true); if (lock->owner != me) { while (sem_wait (&lock->lock) != 0) ; lock->owner = me; } lock->count++; }
int gomp_test_nest_lock_30 (omp_nest_lock_t *lock) { void *me = gomp_icv (true); if (lock->owner != me) { if (sem_trywait (&lock->lock) != 0) return 0; lock->owner = me; } return ++lock->count; }
int gomp_test_nest_lock_30 (omp_nest_lock_t *lock) { void *me = gomp_icv (true); if (lock->owner != me) { if (pthread_mutex_trylock (&lock->lock) != 0) return 0; lock->owner = me; } return ++lock->count; }
static int get_num_procs (void) { #ifdef HAVE_PTHREAD_AFFINITY_NP cpu_set_t cpuset; if (gomp_cpu_affinity == NULL) { /* Count only the CPUs this process can use. */ if (pthread_getaffinity_np (pthread_self (), sizeof (cpuset), &cpuset) == 0) { int ret = cpuset_popcount (&cpuset); return ret != 0 ? ret : 1; } } else { size_t idx; static int affinity_cpus; /* We can't use pthread_getaffinity_np in this case (we have changed it ourselves, it binds to just one CPU). Count instead the number of different CPUs we are using. */ CPU_ZERO (&cpuset); if (affinity_cpus == 0) { int cpus = 0; for (idx = 0; idx < gomp_cpu_affinity_len; idx++) if (! CPU_ISSET (gomp_cpu_affinity[idx], &cpuset)) { cpus++; CPU_SET (gomp_cpu_affinity[idx], &cpuset); } affinity_cpus = cpus; } return affinity_cpus; } #endif #ifdef _SC_NPROCESSORS_ONLN return sysconf (_SC_NPROCESSORS_ONLN); #else return gomp_icv (false)->nthreads_var; #endif }
int gomp_test_nest_lock_30 (omp_nest_lock_t *lock) { void *me = gomp_icv (true); if (lock->owner == me) return ++lock->count; if (__sync_bool_compare_and_swap (&lock->lock, 0, 1)) { lock->owner = me; lock->count = 1; return 1; } return 0; }
int gomp_test_nest_lock_30 (omp_nest_lock_t *lock) { void *me = gomp_icv (true); int oldval; if (lock->owner == me) return ++lock->count; oldval = 0; if (__atomic_compare_exchange_n (&lock->lock, &oldval, 1, false, MEMMODEL_ACQUIRE, MEMMODEL_RELAXED)) { lock->owner = me; lock->count = 1; return 1; } return 0; }
void GOMP_task (void (*fn) (void *), void *data, void (*cpyfn) (void *, void *), long arg_size, long arg_align, bool if_clause, unsigned flags, void **depend) { struct gomp_thread *thr = gomp_thread (); struct gomp_team *team = thr->ts.team; #ifdef HAVE_BROKEN_POSIX_SEMAPHORES /* If pthread_mutex_* is used for omp_*lock*, then each task must be tied to one thread all the time. This means UNTIED tasks must be tied and if CPYFN is non-NULL IF(0) must be forced, as CPYFN might be running on different thread than FN. */ if (cpyfn) if_clause = false; if (flags & 1) flags &= ~1; #endif /* If parallel or taskgroup has been cancelled, don't start new tasks. */ if (team && (gomp_team_barrier_cancelled (&team->barrier) || (thr->task->taskgroup && thr->task->taskgroup->cancelled))) return; if (!if_clause || team == NULL || (thr->task && thr->task->final_task) || team->task_count > 64 * team->nthreads) { struct gomp_task task; /* If there are depend clauses and earlier deferred sibling tasks with depend clauses, check if there isn't a dependency. If there is, we need to wait for them. There is no need to handle depend clauses for non-deferred tasks other than this, because the parent task is suspended until the child task finishes and thus it can't start further child tasks. */ if ((flags & 8) && thr->task && thr->task->depend_hash) gomp_task_maybe_wait_for_dependencies (depend); gomp_init_task (&task, thr->task, gomp_icv (false)); task.kind = GOMP_TASK_IFFALSE; task.final_task = (thr->task && thr->task->final_task) || (flags & 2); if (thr->task) { task.in_tied_task = thr->task->in_tied_task; task.taskgroup = thr->task->taskgroup; } thr->task = &task; if (__builtin_expect (cpyfn != NULL, 0)) { char buf[arg_size + arg_align - 1]; char *arg = (char *) (((uintptr_t) buf + arg_align - 1) & ~(uintptr_t) (arg_align - 1)); cpyfn (arg, data); fn (arg); } else fn (data); /* Access to "children" is normally done inside a task_lock mutex region, but the only way this particular task.children can be set is if this thread's task work function (fn) creates children. So since the setter is *this* thread, we need no barriers here when testing for non-NULL. We can have task.children set by the current thread then changed by a child thread, but seeing a stale non-NULL value is not a problem. Once past the task_lock acquisition, this thread will see the real value of task.children. */ if (task.children != NULL) { gomp_mutex_lock (&team->task_lock); gomp_clear_parent (task.children); gomp_mutex_unlock (&team->task_lock); } gomp_end_task (); } else { struct gomp_task *task; struct gomp_task *parent = thr->task; struct gomp_taskgroup *taskgroup = parent->taskgroup; char *arg; bool do_wake; size_t depend_size = 0; if (flags & 8) depend_size = ((uintptr_t) depend[0] * sizeof (struct gomp_task_depend_entry)); task = gomp_malloc (sizeof (*task) + depend_size + arg_size + arg_align - 1); arg = (char *) (((uintptr_t) (task + 1) + depend_size + arg_align - 1) & ~(uintptr_t) (arg_align - 1)); gomp_init_task (task, parent, gomp_icv (false)); task->kind = GOMP_TASK_IFFALSE; task->in_tied_task = parent->in_tied_task; task->taskgroup = taskgroup; thr->task = task; if (cpyfn) { cpyfn (arg, data); task->copy_ctors_done = true; } else memcpy (arg, data, arg_size); thr->task = parent; task->kind = GOMP_TASK_WAITING; task->fn = fn; task->fn_data = arg; task->final_task = (flags & 2) >> 1; gomp_mutex_lock (&team->task_lock); /* If parallel or taskgroup has been cancelled, don't start new tasks. */ if (__builtin_expect ((gomp_team_barrier_cancelled (&team->barrier) || (taskgroup && taskgroup->cancelled)) && !task->copy_ctors_done, 0)) { gomp_mutex_unlock (&team->task_lock); gomp_finish_task (task); free (task); return; } if (taskgroup) taskgroup->num_children++; if (depend_size) { size_t ndepend = (uintptr_t) depend[0]; size_t nout = (uintptr_t) depend[1]; size_t i; hash_entry_type ent; task->depend_count = ndepend; task->num_dependees = 0; if (parent->depend_hash == NULL) parent->depend_hash = htab_create (2 * ndepend > 12 ? 2 * ndepend : 12); for (i = 0; i < ndepend; i++) { task->depend[i].addr = depend[2 + i]; task->depend[i].next = NULL; task->depend[i].prev = NULL; task->depend[i].task = task; task->depend[i].is_in = i >= nout; task->depend[i].redundant = false; task->depend[i].redundant_out = false; hash_entry_type *slot = htab_find_slot (&parent->depend_hash, &task->depend[i], INSERT); hash_entry_type out = NULL, last = NULL; if (*slot) { /* If multiple depends on the same task are the same, all but the first one are redundant. As inout/out come first, if any of them is inout/out, it will win, which is the right semantics. */ if ((*slot)->task == task) { task->depend[i].redundant = true; continue; } for (ent = *slot; ent; ent = ent->next) { if (ent->redundant_out) break; last = ent; /* depend(in:...) doesn't depend on earlier depend(in:...). */ if (i >= nout && ent->is_in) continue; if (!ent->is_in) out = ent; struct gomp_task *tsk = ent->task; if (tsk->dependers == NULL) { tsk->dependers = gomp_malloc (sizeof (struct gomp_dependers_vec) + 6 * sizeof (struct gomp_task *)); tsk->dependers->n_elem = 1; tsk->dependers->allocated = 6; tsk->dependers->elem[0] = task; task->num_dependees++; continue; } /* We already have some other dependency on tsk from earlier depend clause. */ else if (tsk->dependers->n_elem && (tsk->dependers->elem[tsk->dependers->n_elem - 1] == task)) continue; else if (tsk->dependers->n_elem == tsk->dependers->allocated) { tsk->dependers->allocated = tsk->dependers->allocated * 2 + 2; tsk->dependers = gomp_realloc (tsk->dependers, sizeof (struct gomp_dependers_vec) + (tsk->dependers->allocated * sizeof (struct gomp_task *))); } tsk->dependers->elem[tsk->dependers->n_elem++] = task; task->num_dependees++; } task->depend[i].next = *slot; (*slot)->prev = &task->depend[i]; } *slot = &task->depend[i]; /* There is no need to store more than one depend({,in}out:) task per address in the hash table chain for the purpose of creation of deferred tasks, because each out depends on all earlier outs, thus it is enough to record just the last depend({,in}out:). For depend(in:), we need to keep all of the previous ones not terminated yet, because a later depend({,in}out:) might need to depend on all of them. So, if the new task's clause is depend({,in}out:), we know there is at most one other depend({,in}out:) clause in the list (out). For non-deferred tasks we want to see all outs, so they are moved to the end of the chain, after first redundant_out entry all following entries should be redundant_out. */ if (!task->depend[i].is_in && out) { if (out != last) { out->next->prev = out->prev; out->prev->next = out->next; out->next = last->next; out->prev = last; last->next = out; if (out->next) out->next->prev = out; } out->redundant_out = true; } } if (task->num_dependees) { gomp_mutex_unlock (&team->task_lock); return; } } if (parent->children) { task->next_child = parent->children; task->prev_child = parent->children->prev_child; task->next_child->prev_child = task; task->prev_child->next_child = task; } else { task->next_child = task; task->prev_child = task; } parent->children = task; if (taskgroup) { if (taskgroup->children) { task->next_taskgroup = taskgroup->children; task->prev_taskgroup = taskgroup->children->prev_taskgroup; task->next_taskgroup->prev_taskgroup = task; task->prev_taskgroup->next_taskgroup = task; } else { task->next_taskgroup = task; task->prev_taskgroup = task; } taskgroup->children = task; } if (team->task_queue) { task->next_queue = team->task_queue; task->prev_queue = team->task_queue->prev_queue; task->next_queue->prev_queue = task; task->prev_queue->next_queue = task; } else { task->next_queue = task; task->prev_queue = task; team->task_queue = task; } ++team->task_count; ++team->task_queued_count; gomp_team_barrier_set_task_pending (&team->barrier); do_wake = team->task_running_count + !parent->in_tied_task < team->nthreads; gomp_mutex_unlock (&team->task_lock); if (do_wake) gomp_team_barrier_wake (&team->barrier, 1); } }
void GOMP_task (void (*fn) (void *), void *data, void (*cpyfn) (void *, void *), long arg_size, long arg_align, bool if_clause, unsigned flags, void **depend, int priority) { struct gomp_thread *thr = gomp_thread (); struct gomp_team *team = thr->ts.team; #ifdef HAVE_BROKEN_POSIX_SEMAPHORES /* If pthread_mutex_* is used for omp_*lock*, then each task must be tied to one thread all the time. This means UNTIED tasks must be tied and if CPYFN is non-NULL IF(0) must be forced, as CPYFN might be running on different thread than FN. */ if (cpyfn) if_clause = false; flags &= ~GOMP_TASK_FLAG_UNTIED; #endif /* If parallel or taskgroup has been cancelled, don't start new tasks. */ if (team && (gomp_team_barrier_cancelled (&team->barrier) || (thr->task->taskgroup && thr->task->taskgroup->cancelled))) return; if ((flags & GOMP_TASK_FLAG_PRIORITY) == 0) priority = 0; /* FIXME, use priority. */ (void) priority; if (!if_clause || team == NULL || (thr->task && thr->task->final_task) || team->task_count > 64 * team->nthreads) { struct gomp_task task; /* If there are depend clauses and earlier deferred sibling tasks with depend clauses, check if there isn't a dependency. If there is, we need to wait for them. There is no need to handle depend clauses for non-deferred tasks other than this, because the parent task is suspended until the child task finishes and thus it can't start further child tasks. */ if ((flags & GOMP_TASK_FLAG_DEPEND) && thr->task && thr->task->depend_hash) gomp_task_maybe_wait_for_dependencies (depend); gomp_init_task (&task, thr->task, gomp_icv (false)); task.kind = GOMP_TASK_UNDEFERRED; task.final_task = (thr->task && thr->task->final_task) || (flags & GOMP_TASK_FLAG_FINAL); if (thr->task) { task.in_tied_task = thr->task->in_tied_task; task.taskgroup = thr->task->taskgroup; } thr->task = &task; if (__builtin_expect (cpyfn != NULL, 0)) { char buf[arg_size + arg_align - 1]; char *arg = (char *) (((uintptr_t) buf + arg_align - 1) & ~(uintptr_t) (arg_align - 1)); cpyfn (arg, data); fn (arg); } else fn (data); /* Access to "children" is normally done inside a task_lock mutex region, but the only way this particular task.children can be set is if this thread's task work function (fn) creates children. So since the setter is *this* thread, we need no barriers here when testing for non-NULL. We can have task.children set by the current thread then changed by a child thread, but seeing a stale non-NULL value is not a problem. Once past the task_lock acquisition, this thread will see the real value of task.children. */ if (task.children != NULL) { gomp_mutex_lock (&team->task_lock); gomp_clear_parent (task.children); gomp_mutex_unlock (&team->task_lock); } gomp_end_task (); } else { struct gomp_task *task; struct gomp_task *parent = thr->task; struct gomp_taskgroup *taskgroup = parent->taskgroup; char *arg; bool do_wake; size_t depend_size = 0; if (flags & GOMP_TASK_FLAG_DEPEND) depend_size = ((uintptr_t) depend[0] * sizeof (struct gomp_task_depend_entry)); task = gomp_malloc (sizeof (*task) + depend_size + arg_size + arg_align - 1); arg = (char *) (((uintptr_t) (task + 1) + depend_size + arg_align - 1) & ~(uintptr_t) (arg_align - 1)); gomp_init_task (task, parent, gomp_icv (false)); task->kind = GOMP_TASK_UNDEFERRED; task->in_tied_task = parent->in_tied_task; task->taskgroup = taskgroup; thr->task = task; if (cpyfn) { cpyfn (arg, data); task->copy_ctors_done = true; } else memcpy (arg, data, arg_size); thr->task = parent; task->kind = GOMP_TASK_WAITING; task->fn = fn; task->fn_data = arg; task->final_task = (flags & GOMP_TASK_FLAG_FINAL) >> 1; gomp_mutex_lock (&team->task_lock); /* If parallel or taskgroup has been cancelled, don't start new tasks. */ if (__builtin_expect ((gomp_team_barrier_cancelled (&team->barrier) || (taskgroup && taskgroup->cancelled)) && !task->copy_ctors_done, 0)) { gomp_mutex_unlock (&team->task_lock); gomp_finish_task (task); free (task); return; } if (taskgroup) taskgroup->num_children++; if (depend_size) { gomp_task_handle_depend (task, parent, depend); if (task->num_dependees) { gomp_mutex_unlock (&team->task_lock); return; } } if (parent->children) { task->next_child = parent->children; task->prev_child = parent->children->prev_child; task->next_child->prev_child = task; task->prev_child->next_child = task; } else { task->next_child = task; task->prev_child = task; } parent->children = task; if (taskgroup) { /* If applicable, place task into its taskgroup. */ if (taskgroup->children) { task->next_taskgroup = taskgroup->children; task->prev_taskgroup = taskgroup->children->prev_taskgroup; task->next_taskgroup->prev_taskgroup = task; task->prev_taskgroup->next_taskgroup = task; } else { task->next_taskgroup = task; task->prev_taskgroup = task; } taskgroup->children = task; } if (team->task_queue) { task->next_queue = team->task_queue; task->prev_queue = team->task_queue->prev_queue; task->next_queue->prev_queue = task; task->prev_queue->next_queue = task; } else { task->next_queue = task; task->prev_queue = task; team->task_queue = task; } ++team->task_count; ++team->task_queued_count; gomp_team_barrier_set_task_pending (&team->barrier); do_wake = team->task_running_count + !parent->in_tied_task < team->nthreads; gomp_mutex_unlock (&team->task_lock); if (do_wake) gomp_team_barrier_wake (&team->barrier, 1); } }
void gomp_create_target_task (struct gomp_device_descr *devicep, void (*fn) (void *), size_t mapnum, void **hostaddrs, size_t *sizes, unsigned short *kinds, unsigned int flags, void **depend) { struct gomp_thread *thr = gomp_thread (); struct gomp_team *team = thr->ts.team; /* If parallel or taskgroup has been cancelled, don't start new tasks. */ if (team && (gomp_team_barrier_cancelled (&team->barrier) || (thr->task->taskgroup && thr->task->taskgroup->cancelled))) return; struct gomp_target_task *ttask; struct gomp_task *task; struct gomp_task *parent = thr->task; struct gomp_taskgroup *taskgroup = parent->taskgroup; bool do_wake; size_t depend_size = 0; if (depend != NULL) depend_size = ((uintptr_t) depend[0] * sizeof (struct gomp_task_depend_entry)); task = gomp_malloc (sizeof (*task) + depend_size + sizeof (*ttask) + mapnum * (sizeof (void *) + sizeof (size_t) + sizeof (unsigned short))); gomp_init_task (task, parent, gomp_icv (false)); task->kind = GOMP_TASK_WAITING; task->in_tied_task = parent->in_tied_task; task->taskgroup = taskgroup; ttask = (struct gomp_target_task *) &task->depend[(uintptr_t) depend[0]]; ttask->devicep = devicep; ttask->fn = fn; ttask->mapnum = mapnum; memcpy (ttask->hostaddrs, hostaddrs, mapnum * sizeof (void *)); ttask->sizes = (size_t *) &ttask->hostaddrs[mapnum]; memcpy (ttask->sizes, sizes, mapnum * sizeof (size_t)); ttask->kinds = (unsigned short *) &ttask->sizes[mapnum]; memcpy (ttask->kinds, kinds, mapnum * sizeof (unsigned short)); ttask->flags = flags; task->fn = gomp_target_task_fn; task->fn_data = ttask; task->final_task = 0; gomp_mutex_lock (&team->task_lock); /* If parallel or taskgroup has been cancelled, don't start new tasks. */ if (__builtin_expect (gomp_team_barrier_cancelled (&team->barrier) || (taskgroup && taskgroup->cancelled), 0)) { gomp_mutex_unlock (&team->task_lock); gomp_finish_task (task); free (task); return; } if (taskgroup) taskgroup->num_children++; if (depend_size) { gomp_task_handle_depend (task, parent, depend); if (task->num_dependees) { gomp_mutex_unlock (&team->task_lock); return; } } if (parent->children) { task->next_child = parent->children; task->prev_child = parent->children->prev_child; task->next_child->prev_child = task; task->prev_child->next_child = task; } else { task->next_child = task; task->prev_child = task; } parent->children = task; if (taskgroup) { /* If applicable, place task into its taskgroup. */ if (taskgroup->children) { task->next_taskgroup = taskgroup->children; task->prev_taskgroup = taskgroup->children->prev_taskgroup; task->next_taskgroup->prev_taskgroup = task; task->prev_taskgroup->next_taskgroup = task; } else { task->next_taskgroup = task; task->prev_taskgroup = task; } taskgroup->children = task; } if (team->task_queue) { task->next_queue = team->task_queue; task->prev_queue = team->task_queue->prev_queue; task->next_queue->prev_queue = task; task->prev_queue->next_queue = task; } else { task->next_queue = task; task->prev_queue = task; team->task_queue = task; } ++team->task_count; ++team->task_queued_count; gomp_team_barrier_set_task_pending (&team->barrier); do_wake = team->task_running_count + !parent->in_tied_task < team->nthreads; gomp_mutex_unlock (&team->task_lock); if (do_wake) gomp_team_barrier_wake (&team->barrier, 1); }
unsigned gomp_resolve_num_threads (unsigned specified, unsigned count) { struct gomp_thread *thread = gomp_thread(); struct gomp_task_icv *icv; unsigned threads_requested, max_num_threads, num_threads; unsigned long remaining; icv = gomp_icv (false); if (specified == 1) return 1; else if (thread->ts.active_level >= 1 && !icv->nest_var) return 1; else if (thread->ts.active_level >= gomp_max_active_levels_var) return 1; /* If NUM_THREADS not specified, use nthreads_var. */ if (specified == 0) threads_requested = icv->nthreads_var; else threads_requested = specified; max_num_threads = threads_requested; /* If dynamic threads are enabled, bound the number of threads that we launch. */ if (icv->dyn_var) { unsigned dyn = gomp_dynamic_max_threads (); if (dyn < max_num_threads) max_num_threads = dyn; /* Optimization for parallel sections. */ if (count && count < max_num_threads) max_num_threads = count; } /* ULONG_MAX stands for infinity. */ if (__builtin_expect (gomp_thread_limit_var == ULONG_MAX, 1) || max_num_threads == 1) return max_num_threads; #ifdef HAVE_SYNC_BUILTINS do { remaining = gomp_remaining_threads_count; num_threads = max_num_threads; if (num_threads > remaining) num_threads = remaining + 1; } while (__sync_val_compare_and_swap (&gomp_remaining_threads_count, remaining, remaining - num_threads + 1) != remaining); #else gomp_mutex_lock (&gomp_remaining_threads_lock); num_threads = max_num_threads; remaining = gomp_remaining_threads_count; if (num_threads > remaining) num_threads = remaining + 1; gomp_remaining_threads_count -= num_threads - 1; gomp_mutex_unlock (&gomp_remaining_threads_lock); #endif return num_threads; }
unsigned gomp_dynamic_max_threads (void) { return gomp_icv (false)->nthreads_var; }
int omp_get_num_procs (void) { return gomp_icv (false)->nthreads_var; }
unsigned gomp_resolve_num_threads (unsigned specified, unsigned count) { struct gomp_thread *thr = gomp_thread (); struct gomp_task_icv *icv; unsigned threads_requested, max_num_threads, num_threads; unsigned long busy; struct gomp_thread_pool *pool; icv = gomp_icv (false); if (specified == 1) return 1; else if (thr->ts.active_level >= 1 && !icv->nest_var) return 1; else if (thr->ts.active_level >= gomp_max_active_levels_var) return 1; /* If NUM_THREADS not specified, use nthreads_var. */ if (specified == 0) threads_requested = icv->nthreads_var; else threads_requested = specified; max_num_threads = threads_requested; /* If dynamic threads are enabled, bound the number of threads that we launch. */ if (icv->dyn_var) { unsigned dyn = gomp_dynamic_max_threads (); if (dyn < max_num_threads) max_num_threads = dyn; /* Optimization for parallel sections. */ if (count && count < max_num_threads) max_num_threads = count; } /* UINT_MAX stands for infinity. */ if (__builtin_expect (icv->thread_limit_var == UINT_MAX, 1) || max_num_threads == 1) return max_num_threads; /* The threads_busy counter lives in thread_pool, if there isn't a thread_pool yet, there must be just one thread in the contention group. If thr->team is NULL, this isn't nested parallel, so there is just one thread in the contention group as well, no need to handle it atomically. */ pool = thr->thread_pool; if (thr->ts.team == NULL || pool == NULL) { num_threads = max_num_threads; if (num_threads > icv->thread_limit_var) num_threads = icv->thread_limit_var; if (pool) pool->threads_busy = num_threads; return num_threads; } #ifdef HAVE_SYNC_BUILTINS do { busy = pool->threads_busy; num_threads = max_num_threads; if (icv->thread_limit_var - busy + 1 < num_threads) num_threads = icv->thread_limit_var - busy + 1; } while (__sync_val_compare_and_swap (&pool->threads_busy, busy, busy + num_threads - 1) != busy); #else gomp_mutex_lock (&gomp_managed_threads_lock); num_threads = max_num_threads; busy = pool->threads_busy; if (icv->thread_limit_var - busy + 1 < num_threads) num_threads = icv->thread_limit_var - busy + 1; pool->threads_busy += num_threads - 1; gomp_mutex_unlock (&gomp_managed_threads_lock); #endif return num_threads; }
void GOMP_taskloop (void (*fn) (void *), void *data, void (*cpyfn) (void *, void *), long arg_size, long arg_align, unsigned flags, unsigned long num_tasks, int priority, TYPE start, TYPE end, TYPE step) { struct gomp_thread *thr = gomp_thread (); struct gomp_team *team = thr->ts.team; #ifdef HAVE_BROKEN_POSIX_SEMAPHORES /* If pthread_mutex_* is used for omp_*lock*, then each task must be tied to one thread all the time. This means UNTIED tasks must be tied and if CPYFN is non-NULL IF(0) must be forced, as CPYFN might be running on different thread than FN. */ if (cpyfn) flags &= ~GOMP_TASK_FLAG_IF; flags &= ~GOMP_TASK_FLAG_UNTIED; #endif /* If parallel or taskgroup has been cancelled, don't start new tasks. */ if (team && gomp_team_barrier_cancelled (&team->barrier)) return; #ifdef TYPE_is_long TYPE s = step; if (step > 0) { if (start >= end) return; s--; } else { if (start <= end) return; s++; } UTYPE n = (end - start + s) / step; #else UTYPE n; if (flags & GOMP_TASK_FLAG_UP) { if (start >= end) return; n = (end - start + step - 1) / step; } else { if (start <= end) return; n = (start - end - step - 1) / -step; } #endif TYPE task_step = step; unsigned long nfirst = n; if (flags & GOMP_TASK_FLAG_GRAINSIZE) { unsigned long grainsize = num_tasks; #ifdef TYPE_is_long num_tasks = n / grainsize; #else UTYPE ndiv = n / grainsize; num_tasks = ndiv; if (num_tasks != ndiv) num_tasks = ~0UL; #endif if (num_tasks <= 1) { num_tasks = 1; task_step = end - start; } else if (num_tasks >= grainsize #ifndef TYPE_is_long && num_tasks != ~0UL #endif ) { UTYPE mul = num_tasks * grainsize; task_step = (TYPE) grainsize * step; if (mul != n) { task_step += step; nfirst = n - mul - 1; } } else { UTYPE div = n / num_tasks; UTYPE mod = n % num_tasks; task_step = (TYPE) div * step; if (mod) { task_step += step; nfirst = mod - 1; } } } else { if (num_tasks == 0) num_tasks = team ? team->nthreads : 1; if (num_tasks >= n) num_tasks = n; else { UTYPE div = n / num_tasks; UTYPE mod = n % num_tasks; task_step = (TYPE) div * step; if (mod) { task_step += step; nfirst = mod - 1; } } } if (flags & GOMP_TASK_FLAG_NOGROUP) { if (thr->task && thr->task->taskgroup && thr->task->taskgroup->cancelled) return; } else ialias_call (GOMP_taskgroup_start) (); if (priority > gomp_max_task_priority_var) priority = gomp_max_task_priority_var; if ((flags & GOMP_TASK_FLAG_IF) == 0 || team == NULL || (thr->task && thr->task->final_task) || team->task_count + num_tasks > 64 * team->nthreads) { unsigned long i; if (__builtin_expect (cpyfn != NULL, 0)) { struct gomp_task task[num_tasks]; struct gomp_task *parent = thr->task; arg_size = (arg_size + arg_align - 1) & ~(arg_align - 1); char buf[num_tasks * arg_size + arg_align - 1]; char *arg = (char *) (((uintptr_t) buf + arg_align - 1) & ~(uintptr_t) (arg_align - 1)); char *orig_arg = arg; for (i = 0; i < num_tasks; i++) { gomp_init_task (&task[i], parent, gomp_icv (false)); task[i].priority = priority; task[i].kind = GOMP_TASK_UNDEFERRED; task[i].final_task = (thr->task && thr->task->final_task) || (flags & GOMP_TASK_FLAG_FINAL); if (thr->task) { task[i].in_tied_task = thr->task->in_tied_task; task[i].taskgroup = thr->task->taskgroup; } thr->task = &task[i]; cpyfn (arg, data); arg += arg_size; } arg = orig_arg; for (i = 0; i < num_tasks; i++) { thr->task = &task[i]; ((TYPE *)arg)[0] = start; start += task_step; ((TYPE *)arg)[1] = start; if (i == nfirst) task_step -= step; fn (arg); arg += arg_size; if (!priority_queue_empty_p (&task[i].children_queue, MEMMODEL_RELAXED)) { gomp_mutex_lock (&team->task_lock); gomp_clear_parent (&task[i].children_queue); gomp_mutex_unlock (&team->task_lock); } gomp_end_task (); } } else for (i = 0; i < num_tasks; i++) { struct gomp_task task; gomp_init_task (&task, thr->task, gomp_icv (false)); task.priority = priority; task.kind = GOMP_TASK_UNDEFERRED; task.final_task = (thr->task && thr->task->final_task) || (flags & GOMP_TASK_FLAG_FINAL); if (thr->task) { task.in_tied_task = thr->task->in_tied_task; task.taskgroup = thr->task->taskgroup; } thr->task = &task; ((TYPE *)data)[0] = start; start += task_step; ((TYPE *)data)[1] = start; if (i == nfirst) task_step -= step; fn (data); if (!priority_queue_empty_p (&task.children_queue, MEMMODEL_RELAXED)) { gomp_mutex_lock (&team->task_lock); gomp_clear_parent (&task.children_queue); gomp_mutex_unlock (&team->task_lock); } gomp_end_task (); } } else { struct gomp_task *tasks[num_tasks]; struct gomp_task *parent = thr->task; struct gomp_taskgroup *taskgroup = parent->taskgroup; char *arg; int do_wake; unsigned long i; for (i = 0; i < num_tasks; i++) { struct gomp_task *task = gomp_malloc (sizeof (*task) + arg_size + arg_align - 1); tasks[i] = task; arg = (char *) (((uintptr_t) (task + 1) + arg_align - 1) & ~(uintptr_t) (arg_align - 1)); gomp_init_task (task, parent, gomp_icv (false)); task->priority = priority; task->kind = GOMP_TASK_UNDEFERRED; task->in_tied_task = parent->in_tied_task; task->taskgroup = taskgroup; thr->task = task; if (cpyfn) { cpyfn (arg, data); task->copy_ctors_done = true; } else memcpy (arg, data, arg_size); ((TYPE *)arg)[0] = start; start += task_step; ((TYPE *)arg)[1] = start; if (i == nfirst) task_step -= step; thr->task = parent; task->kind = GOMP_TASK_WAITING; task->fn = fn; task->fn_data = arg; task->final_task = (flags & GOMP_TASK_FLAG_FINAL) >> 1; } gomp_mutex_lock (&team->task_lock); /* If parallel or taskgroup has been cancelled, don't start new tasks. */ if (__builtin_expect ((gomp_team_barrier_cancelled (&team->barrier) || (taskgroup && taskgroup->cancelled)) && cpyfn == NULL, 0)) { gomp_mutex_unlock (&team->task_lock); for (i = 0; i < num_tasks; i++) { gomp_finish_task (tasks[i]); free (tasks[i]); } if ((flags & GOMP_TASK_FLAG_NOGROUP) == 0) ialias_call (GOMP_taskgroup_end) (); return; } if (taskgroup) taskgroup->num_children += num_tasks; for (i = 0; i < num_tasks; i++) { struct gomp_task *task = tasks[i]; priority_queue_insert (PQ_CHILDREN, &parent->children_queue, task, priority, PRIORITY_INSERT_BEGIN, /*last_parent_depends_on=*/false, task->parent_depends_on); if (taskgroup) priority_queue_insert (PQ_TASKGROUP, &taskgroup->taskgroup_queue, task, priority, PRIORITY_INSERT_BEGIN, /*last_parent_depends_on=*/false, task->parent_depends_on); priority_queue_insert (PQ_TEAM, &team->task_queue, task, priority, PRIORITY_INSERT_END, /*last_parent_depends_on=*/false, task->parent_depends_on); ++team->task_count; ++team->task_queued_count; } gomp_team_barrier_set_task_pending (&team->barrier); if (team->task_running_count + !parent->in_tied_task < team->nthreads) { do_wake = team->nthreads - team->task_running_count - !parent->in_tied_task; if ((unsigned long) do_wake > num_tasks) do_wake = num_tasks; } else do_wake = 0; gomp_mutex_unlock (&team->task_lock); if (do_wake) gomp_team_barrier_wake (&team->barrier, do_wake); } if ((flags & GOMP_TASK_FLAG_NOGROUP) == 0) ialias_call (GOMP_taskgroup_end) (); }