示例#1
0
static int pdf_make_base_space_function(gx_device_pdf *pdev, gs_function_t **pfn,
                                        int ncomp, float *data_low, float *data_high)
{
    gs_function_ElIn_params_t params;
    float *ptr1, *ptr2;
    int i, code;

    ptr1 = (float *)
           gs_alloc_byte_array(pdev->memory, 2, sizeof(float), "pdf_make_function(Domain)");
    if (ptr1 == 0) {
        return gs_note_error(gs_error_VMerror);
    }
    ptr2 = (float *)
           gs_alloc_byte_array(pdev->memory, 2 * ncomp, sizeof(float), "pdf_make_function(Range)");
    if (ptr2 == 0) {
        gs_free_object(pdev->memory, (void *)ptr1, "pdf_make_function(Range)");
        return gs_note_error(gs_error_VMerror);
    }
    params.m = 1;
    params.n = ncomp;
    params.N = 1.0f;
    ptr1[0] = 0.0f;
    ptr1[1] = 1.0f;
    for (i=0; i<ncomp; i++) {
        ptr2[i*2] = 0.0f;
        ptr2[(i*2) + 1] = 1.0f;
    }
    params.Domain = ptr1;
    params.Range = ptr2;

    ptr1 = (float *)gs_alloc_byte_array(pdev->memory, ncomp, sizeof(float), "pdf_make_function(C0)");
    if (ptr1 == 0) {
        gs_free_object(pdev->memory, (void *)params.Domain, "pdf_make_function(C0)");
        gs_free_object(pdev->memory, (void *)params.Range, "pdf_make_function(C0)");
        return gs_note_error(gs_error_VMerror);
    }
    ptr2 = (float *)gs_alloc_byte_array(pdev->memory, ncomp, sizeof(float), "pdf_make_function(C1)");
    if (ptr2 == 0) {
        gs_free_object(pdev->memory, (void *)params.Domain, "pdf_make_function(C1)");
        gs_free_object(pdev->memory, (void *)params.Range, "pdf_make_function(C1)");
        gs_free_object(pdev->memory, (void *)ptr1, "pdf_make_function(C1)");
        return gs_note_error(gs_error_VMerror);
    }

    for (i=0; i<ncomp; i++) {
        ptr1[i] = data_low[i];
        ptr2[i] = data_high[i];
    }
    params.C0 = ptr1;
    params.C1 = ptr2;
    code = gs_function_ElIn_init(pfn, &params, pdev->memory);
    if (code < 0) {
        gs_free_object(pdev->memory, (void *)params.Domain, "pdf_make_function");
        gs_free_object(pdev->memory, (void *)params.Range, "pdf_make_function");
        gs_free_object(pdev->memory, (void *)params.C0, "pdf_make_function");
        gs_free_object(pdev->memory, (void *)params.C1, "pdf_make_function");
    }
    return code;
}
示例#2
0
/* the dictionary parameter for the BoundedHuffman filters. */
static int
zcomputecodes(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    os_ptr op1 = op - 1;
    uint asize;
    hc_definition def;
    ushort *data;
    long *freqs;
    int code = 0;

    check_type(*op, t_integer);
    check_write_type(*op1, t_array);
    asize = r_size(op1);
    if (op->value.intval < 1 || op->value.intval > max_hc_length)
        return_error(e_rangecheck);
    def.num_counts = op->value.intval;
    if (asize < def.num_counts + 2)
        return_error(e_rangecheck);
    def.num_values = asize - (def.num_counts + 1);
    data = (ushort *) gs_alloc_byte_array(imemory, asize, sizeof(ushort),
                                          "zcomputecodes");
    freqs = (long *)gs_alloc_byte_array(imemory, def.num_values,
                                        sizeof(long),
                                        "zcomputecodes(freqs)");

    if (data == 0 || freqs == 0)
        code = gs_note_error(e_VMerror);
    else {
        uint i;

        def.counts = data;
        def.values = data + (def.num_counts + 1);
        for (i = 0; i < def.num_values; i++) {
            const ref *pf = op1->value.const_refs + i + def.num_counts + 1;

            if (!r_has_type(pf, t_integer)) {
                code = gs_note_error(e_typecheck);
                break;
            }
            freqs[i] = pf->value.intval;
        }
        if (!code) {
            code = hc_compute(&def, freqs, imemory);
            if (code >= 0) {
                /* Copy back results. */
                for (i = 0; i < asize; i++)
                    make_int(op1->value.refs + i, data[i]);
            }
        }
    }
    gs_free_object(imemory, freqs, "zcomputecodes(freqs)");
    gs_free_object(imemory, data, "zcomputecodes");
    if (code < 0)
        return code;
    pop(1);
    return code;
}
示例#3
0
文件: pxvendor.c 项目: hackqiang/gs
/* -------------------- public routines below ----------------- */
int
pxJR3BeginImage(px_args_t * par, px_state_t * pxs)
{
    int code = 0;

    if (!par->source.available) {
	px_vendor_state_t *v_state =
	    gs_alloc_struct(pxs->memory, px_vendor_state_t,
			    &st_px_vendor_state,
			    "pxJR3BeginImage(vendor_state)");
	byte *row;
	UINT16 *qvalues;

	if (v_state == 0)
	    return_error(errorInsufficientMemory);
	if (par->pv[8]) {	/* SourceWidth */
	    v_state->SourceWidth = par->pv[8]->value.i;
	    v_state->data_per_row = par->pv[8]->value.i;
	    v_state->color_space = pxs->pxgs->color_space;
	    if (v_state->color_space != eGraySub)
		v_state->data_per_row *= 3;
	}
	v_state->state = vu_blank;
	v_state->rowwritten = 0;

	row = gs_alloc_byte_array(pxs->memory, 1, v_state->data_per_row,
				  "pxJR3BeginImage(row)");

	if (row == 0)
	    return_error(errorInsufficientMemory);

	qvalues =
	    (UINT16 *) gs_alloc_byte_array(pxs->memory, 192, sizeof(UINT16),
					   "pxJR3BeginImage(qvalues)");

	if (qvalues == 0)
	    return_error(errorInsufficientMemory);
	pxs->vendor_state = v_state;
	pxs->vendor_state->row = row;
	pxs->vendor_state->qvalues = qvalues;
	pxs->vendor_state->qcount = 0;
    }
    if (par->pv[1]) {
	ulong len = par->pv[1]->value.i;

	/* zero or two payloads */
	if (len) {
	    code = vu_tag_dispatch(par, pxs);

	    /* Multiple payloads, reset to read 2nd */
	    if (code == 0 && par->source.position < len)
	        code = vu_tag_dispatch(par, pxs);
	}
    }
    return code;
}
示例#4
0
/* Finish building a FunctionType 0 (Sampled) function. */
int
gs_build_function_0(i_ctx_t *i_ctx_p, const ref *op, const gs_function_params_t * mnDR,
		    int depth, gs_function_t ** ppfn, gs_memory_t *mem)
{
    gs_function_Sd_params_t params;
    ref *pDataSource;
    int code;

    *(gs_function_params_t *) & params = *mnDR;
    params.Encode = 0;
    params.Decode = 0;
    params.Size = 0;
    if ((code = dict_find_string(op, "DataSource", &pDataSource)) <= 0)
	return (code < 0 ? code : gs_note_error(e_rangecheck));
    switch (r_type(pDataSource)) {
	case t_string:
	    data_source_init_string2(&params.DataSource,
				     pDataSource->value.const_bytes,
				     r_size(pDataSource));
	    break;
	case t_file: {
	    stream *s;

	    check_read_known_file_else(s, pDataSource, return_error,
				       return_error(e_invalidfileaccess));
	    if (!(s->modes & s_mode_seek))
		return_error(e_ioerror);
	    data_source_init_stream(&params.DataSource, s);
	    break;
	}
	default:
	    return_error(e_rangecheck);
    }
    if ((code = dict_int_param(op, "Order", 1, 3, 1, &params.Order)) < 0 ||
	(code = dict_int_param(op, "BitsPerSample", 1, 32, 0,
			       &params.BitsPerSample)) < 0 ||
	((code = fn_build_float_array(op, "Encode", false, true, &params.Encode, mem)) != 2 * params.m && (code != 0 || params.Encode != 0)) ||
	((code = fn_build_float_array(op, "Decode", false, true, &params.Decode, mem)) != 2 * params.n && (code != 0 || params.Decode != 0))
	) {
	goto fail;
    } {
	int *ptr = (int *)
	    gs_alloc_byte_array(mem, params.m, sizeof(int), "Size");

	if (ptr == 0) {
	    code = gs_note_error(e_VMerror);
	    goto fail;
	}
	params.Size = ptr;
	code = dict_ints_param(op, "Size", params.m, ptr);
	if (code != params.m)
	    goto fail;
    }
    code = gs_function_Sd_init(ppfn, &params, mem);
    if (code >= 0)
	return 0;
fail:
    gs_function_Sd_free_params(&params, mem);
    return (code < 0 ? code : gs_note_error(e_rangecheck));
}
示例#5
0
/*
 * If necessary, scale the Range or Decode array for fn_make_scaled.
 * Note that we must always allocate a new array.
 */
int
fn_scale_pairs(const float **ppvalues, const float *pvalues, int npairs,
               const gs_range_t *pranges, gs_memory_t *mem)
{
    if (pvalues == 0)
        *ppvalues = 0;
    else {
        float *out = (float *)
            gs_alloc_byte_array(mem, 2 * npairs, sizeof(*pvalues),
                                "fn_scale_pairs");

        *ppvalues = out;
        if (out == 0)
            return_error(gs_error_VMerror);
        if (pranges) {
            /* Allocate and compute scaled ranges. */
            int i;
            for (i = 0; i < npairs; ++i) {
                double base = pranges[i].rmin, factor = pranges[i].rmax - base;

                out[2 * i] = pvalues[2 * i] * factor + base;
                out[2 * i + 1] = pvalues[2 * i + 1] * factor + base;
            }
        } else
            memcpy(out, pvalues, 2 * sizeof(*pvalues) * npairs);
    }
    return 0;
}
示例#6
0
/*
 * Collect a heap-allocated array of floats.  If the key is missing, set
 * *pparray = 0 and return 0; otherwise set *pparray and return the number
 * of elements.  Note that 0-length arrays are acceptable, so if the value
 * returned is 0, the caller must check whether *pparray == 0.
 */
int
fn_build_float_array(const ref * op, const char *kstr, bool required,
                     bool even, const float **pparray, gs_memory_t *mem)
{
    ref *par;
    int code;

    *pparray = 0;
    if (dict_find_string(op, kstr, &par) <= 0)
        return (required ? gs_note_error(gs_error_rangecheck) : 0);
    if (!r_is_array(par))
        return_error(gs_error_typecheck);
    {
        uint size = r_size(par);
        float *ptr = (float *)
            gs_alloc_byte_array(mem, size, sizeof(float), kstr);

        if (ptr == 0)
            return_error(gs_error_VMerror);
        code = dict_float_array_check_param(mem, op, kstr, size,
                                            ptr, NULL,
                                            0, gs_error_rangecheck);
        if (code < 0 || (even && (code & 1) != 0)) {
            gs_free_object(mem, ptr, kstr);
            return(code < 0 ? code : gs_note_error(gs_error_rangecheck));
        }
        *pparray = ptr;
    }
    return code;
}
示例#7
0
static int
ref_param_read_float_array(gs_param_list * plist, gs_param_name pkey,
			   gs_param_float_array * pvalue)
{
    iparam_list *const iplist = (iparam_list *) plist;
    iparam_loc loc;
    ref aref, elt;
    int code = ref_param_read_array(iplist, pkey, &loc);
    float *pfv;
    uint size;
    long i;

    if (code != 0)
	return code;
    size = r_size(loc.pvalue);
    pfv = (float *)gs_alloc_byte_array(plist->memory, size, sizeof(float),
				       "ref_param_read_float_array");

    if (pfv == 0)
	return_error(e_VMerror);
    aref = *loc.pvalue;
    loc.pvalue = &elt;
    for (i = 0; code >= 0 && i < size; i++) {
        array_get(plist->memory, &aref, i, &elt);
	code = float_param(&elt, pfv + i);
    }
    if (code < 0) {
	gs_free_object(plist->memory, pfv, "ref_read_float_array_param");
	return (*loc.presult = code);
    }
    pvalue->data = pfv;
    pvalue->size = size;
    pvalue->persistent = true;
    return 0;
}
示例#8
0
void* _cmsCalloc(unsigned int nelts, unsigned int size)
{
    void *ptr;

    ptr = gs_alloc_byte_array(gs_lib_ctx_get_non_gc_memory_t(), nelts, size, "lcms");
    gs_warn2("lcms calloc (%d) at 0x%x",nelts*size,ptr);
    return ptr;
}
示例#9
0
/* Initialize the filter. */
static int
s_ISpecialDownScale_init(stream_state * st)
{
    stream_ISpecialDownScale_state *const ss = (stream_ISpecialDownScale_state *) st;
    gs_memory_t *mem = ss->memory;

    ss->sizeofPixelIn = ss->params.BitsPerComponentIn / 8;
    ss->sizeofPixelOut = ss->params.BitsPerComponentOut / 8;

    ss->src_size = 
        ss->params.WidthIn * ss->sizeofPixelIn * ss->params.spp_interp;
    ss->dst_size = 
        ss->params.WidthOut * ss->sizeofPixelOut * ss->params.spp_interp;

    /* Initialize destination DDAs. */
    ss->dst_x = 0;
    ss->src_offset = ss->dst_offset = 0;
    dda_init(ss->dda_x, 0, ss->params.WidthIn, ss->params.WidthOut);
    ss->dda_x_init = ss->dda_x;
    ss->src_y = ss->dst_y = 0;
    dda_init(ss->dda_y, 0, ss->params.HeightOut, ss->params.HeightIn);

    /* create intermediate image to hold horizontal zoom */
    ss->tmp = 
        gs_alloc_byte_array(mem, ss->params.WidthOut * ss->params.spp_interp,
                            ss->sizeofPixelIn, "image_scale tmp");
    /* Allocate buffers for 1 row of source and destination. */
    ss->dst = 
        gs_alloc_byte_array(mem, ss->params.WidthOut * ss->params.spp_interp,
                            ss->sizeofPixelOut, "image_scale dst");
    ss->src = 
        gs_alloc_byte_array(mem, ss->params.WidthIn * ss->params.spp_interp,
                            ss->sizeofPixelIn, "image_scale src");
    if (ss->tmp == 0 || ss->dst == 0 || ss->src == 0) {
        s_ISpecialDownScale_release(st);
        return ERRC;
/****** WRONG ******/
    }

    return 0;

}
示例#10
0
/*
 * Copy an array of numeric values when scaling a function.
 */
void *
fn_copy_values(const void *pvalues, int count, int size, gs_memory_t *mem)
{
    if (pvalues) {
        void *values = gs_alloc_byte_array(mem, count, size, "fn_copy_values");

        if (values)
            memcpy(values, pvalues, count * size);
        return values;
    } else
        return 0;		/* caller must check */
}
示例#11
0
RELOC_PTRS_END

/* ------ Public procedures ------ */

/*
 * Create a new DeviceN colorspace.
 */
int
gs_cspace_new_DeviceN(
    gs_color_space **ppcs,
    uint num_components,
    gs_color_space *palt_cspace,
    gs_memory_t *pmem
    )
{
    gs_color_space *pcs;
    gs_device_n_params *pcsdevn;
    gs_separation_name *pnames;
    int code;

    if (palt_cspace == 0 || !palt_cspace->type->can_be_alt_space)
        return_error(gs_error_rangecheck);

    pcs = gs_cspace_alloc(pmem, &gs_color_space_type_DeviceN);
    if (pcs == NULL)
        return_error(gs_error_VMerror);
    pcsdevn = &pcs->params.device_n;
    pcsdevn->names = NULL;
    pcsdevn->map = NULL;
    pcsdevn->colorants = NULL;

    /* Allocate space for color names list. */
    code = alloc_device_n_map(&pcsdevn->map, pmem, "gs_cspace_build_DeviceN");
    if (code < 0) {
        gs_free_object(pmem, pcs, "gs_cspace_new_DeviceN");
        return code;
    }
    /* Allocate space for color names list. */
    pnames = (gs_separation_name *)
        gs_alloc_byte_array(pmem, num_components, sizeof(gs_separation_name),
                          ".gs_cspace_build_DeviceN(names)");
    if (pnames == 0) {
        gs_free_object(pmem, pcsdevn->map, ".gs_cspace_build_DeviceN(map)");
        gs_free_object(pmem, pcs, "gs_cspace_new_DeviceN");
        return_error(gs_error_VMerror);
    }
    pcs->base_space = palt_cspace;
    rc_increment_cs(palt_cspace);
    pcsdevn->names = pnames;
    pcsdevn->num_components = num_components;
    *ppcs = pcs;
    return 0;
}
示例#12
0
void* _cmsCalloc(unsigned int nelts, unsigned int size)
{
    void *ptr;

#if defined(SHARE_LCMS) && SHARE_LCMS==1
    ptr = malloc(nelts * size);
#else
    ptr = gs_alloc_byte_array(gs_lib_ctx_get_non_gc_memory_t(), nelts, size, "lcms");
#endif

    if (ptr != NULL)
        memset(ptr, 0, nelts * size);
    return ptr;
}
示例#13
0
gs_color_index_cache_t *
gs_color_index_cache_create(gs_memory_t *memory, const gs_color_space *direct_space, gx_device *dev,
                            gs_imager_state *pis, bool need_frac, gx_device *trans_dev)
{
    int client_num_components = cs_num_components(direct_space);
    int device_num_components = trans_dev->color_info.num_components;
    gs_color_index_cache_elem_t *buf = ( gs_color_index_cache_elem_t *)gs_alloc_byte_array(memory, COLOR_INDEX_CACHE_SIZE,
                    sizeof(gs_color_index_cache_elem_t), "gs_color_index_cache_create");
    float *paint_values = (float *)gs_alloc_byte_array(memory, COLOR_INDEX_CACHE_SIZE * client_num_components,
                    sizeof(float), "gs_color_index_cache_create");
    frac31 *frac_values = (need_frac ? (frac31 *)gs_alloc_byte_array(memory, COLOR_INDEX_CACHE_SIZE * device_num_components,
                                            sizeof(frac31), "gs_color_index_cache_create") : NULL);
    gs_color_index_cache_t *pcic = gs_alloc_struct(memory, gs_color_index_cache_t, &st_color_index_cache, "gs_color_index_cache_create");

    if (buf == NULL || paint_values == NULL || (need_frac && frac_values == NULL) || pcic == NULL) {
        gs_free_object(memory, buf, "gs_color_index_cache_create");
        gs_free_object(memory, paint_values, "gs_color_index_cache_create");
        gs_free_object(memory, frac_values, "gs_color_index_cache_create");
        gs_free_object(memory, pcic, "gs_color_index_cache_create");
        return NULL;
    }
    memset(pcic, 0, sizeof(*pcic));
    memset(buf, 0, COLOR_INDEX_CACHE_SIZE * sizeof(gs_color_index_cache_elem_t));
    pcic->direct_space = direct_space;
    pcic->pis = pis;
    pcic->dev = dev;
    pcic->trans_dev = trans_dev;
    pcic->device_num_components = device_num_components;
    pcic->client_num_components = client_num_components;
    pcic->memory = memory;
    pcic->used = 1; /* Never use the 0th element. */
    pcic->buf = buf;
    pcic->recent_touch = MYNULL;
    pcic->paint_values = paint_values;
    pcic->frac_values = frac_values;
    return pcic;
}
示例#14
0
static int
ref_param_read_string_array(gs_param_list * plist, gs_param_name pkey,
			    gs_param_string_array * pvalue)
{
    iparam_list *const iplist = (iparam_list *) plist;
    iparam_loc loc;
    ref aref;
    int code = ref_param_read_array(iplist, pkey, &loc);
    gs_param_string *psv;
    uint size;
    long i;

    if (code != 0)
	return code;
    size = r_size(loc.pvalue);
    psv = (gs_param_string *)
	gs_alloc_byte_array(plist->memory, size, sizeof(gs_param_string),
			    "ref_param_read_string_array");
    if (psv == 0)
	return_error(e_VMerror);
    aref = *loc.pvalue;
    if (r_has_type(&aref, t_array)) {
	for (i = 0; code >= 0 && i < size; i++) {
	    loc.pvalue = aref.value.refs + i;
	    code = ref_param_read_string_value(plist->memory, &loc, psv + i);
	}
    } else {
	ref elt;

	loc.pvalue = &elt;
	for (i = 0; code >= 0 && i < size; i++) {
	    array_get(plist->memory, &aref, i, &elt);
	    code = ref_param_read_string_value(plist->memory, &loc, psv + i);
	}
    }
    if (code < 0) {
	gs_free_object(plist->memory, psv, "ref_param_read_string_array");
	return (*loc.presult = code);
    }
    pvalue->data = psv;
    pvalue->size = size;
    pvalue->persistent = true;
    return 0;
}
示例#15
0
/* <function_proc> <array> .scalefunction <function_proc> */
static int
zscalefunction(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    gs_function_t *pfn;
    gs_function_t *psfn;
    gs_range_t *ranges;
    int code;
    uint i;

    check_proc(op[-1]);
    pfn = ref_function(op - 1);
    if (pfn == 0 || !r_is_array(op))
        return_error(gs_error_typecheck);
    if (r_size(op) != 2 * pfn->params.n)
        return_error(gs_error_rangecheck);
    ranges = (gs_range_t *)
        gs_alloc_byte_array(imemory, pfn->params.n, sizeof(gs_range_t),
                            "zscalefunction");
    if (ranges == 0)
        return_error(gs_error_VMerror);
    for (i = 0; i < pfn->params.n; ++i) {
        ref rval[2];
        float val[2];

        if ((code = array_get(op, 2 * i, &rval[0])) < 0 ||
            (code = array_get(op, 2 * i + 1, &rval[1])) < 0 ||
            (code = float_params(rval + 1, 2, val)) < 0)
            return code;
        ranges[i].rmin = val[0];
        ranges[i].rmax = val[1];
    }
    code = gs_function_make_scaled(pfn, &psfn, ranges, imemory);
    gs_free_object(imemory, ranges, "zscalefunction");
    if (code < 0 ||
        (code = make_function_proc(i_ctx_p, op - 1, psfn)) < 0) {
        gs_function_free(psfn, true, imemory);
        return code;
    }
    pop(1);
    return 0;
}
示例#16
0
/* See pxoper.h for details. */
static int
px_save_array(px_value_t * pv, px_state_t * pxs, client_name_t cname,
              uint nbytes)
{
    if (pv->type & pxd_on_heap) {       /* Turn off the "on heap" bit, to prevent freeing. */
        pv->type &= ~pxd_on_heap;
    } else {                    /* Allocate a heap copy.  Only the first nbytes bytes */
        /* of the data are valid. */
        uint num_elements = pv->value.array.size;
        uint elt_size = value_size(pv);
        byte *copy = gs_alloc_byte_array(pxs->memory, num_elements,
                                         elt_size, cname);

        if (copy == 0)
            return_error(errorInsufficientMemory);
        memcpy(copy, pv->value.array.data, nbytes);
        pv->value.array.data = copy;
    }
    return 0;
}
示例#17
0
/*
 * Similar to fn_build_float_array() except
 * - numeric parameter is accepted and converted to 1-element array
 * - number of elements is not checked for even/odd
 */
int
fn_build_float_array_forced(const ref * op, const char *kstr, bool required,
                     const float **pparray, gs_memory_t *mem)
{
    ref *par;
    int code;
    uint size;
    float *ptr;

    *pparray = 0;
    if (dict_find_string(op, kstr, &par) <= 0)
        return (required ? gs_note_error(gs_error_rangecheck) : 0);

    if( r_is_array(par) )
        size = r_size(par);
    else if(r_type(par) == t_integer || r_type(par) == t_real)
        size = 1;
    else
        return_error(gs_error_typecheck);
    ptr = (float *)gs_alloc_byte_array(mem, size, sizeof(float), kstr);

    if (ptr == 0)
        return_error(gs_error_VMerror);
    if(r_is_array(par) )
        code = dict_float_array_check_param(mem, op, kstr,
                                            size, ptr, NULL,
                                            0, gs_error_rangecheck);
    else {
        code = dict_float_param(op, kstr, 0., ptr); /* defailt cannot happen */
        if( code == 0 )
            code = 1;
    }

    if (code < 0 ) {
        gs_free_object(mem, ptr, kstr);
        return code;
    }
    *pparray = ptr;
    return code;
}
示例#18
0
/* <array> <offset> setdash - */
static int
zsetdash(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    os_ptr op1 = op - 1;
    double offset;
    int code = real_param(op, &offset);
    uint i, n;
    gs_memory_t *mem = imemory;
    float *pattern;

    if (code < 0)
	return_op_typecheck(op);
    if (!r_is_array(op1))
	return_op_typecheck(op1);
    /* Adobe interpreters apparently don't check the array for */
    /* read access, so we won't either. */
    /*check_read(*op1); */
    /* Unpack the dash pattern and check it */
    n = r_size(op1);
    pattern =
	(float *)gs_alloc_byte_array(mem, n, sizeof(float), "setdash");

    if (pattern == 0)
	return_error(e_VMerror);
    for (i = 0, code = 0; i < n && code >= 0; ++i) {
	ref element;

	array_get(mem, op1, (long)i, &element);
	code = float_param(&element, &pattern[i]);
    }
    if (code >= 0)
	code = gs_setdash(igs, pattern, n, offset);
    gs_free_object(mem, pattern, "setdash");	/* gs_setdash copies this */
    if (code < 0)
	return code;
    ref_assign(&istate->dash_pattern_array, op1);
    pop(2);
    return code;
}
示例#19
0
static int
ref_param_read_int_array(gs_param_list * plist, gs_param_name pkey,
			 gs_param_int_array * pvalue)
{
    iparam_list *const iplist = (iparam_list *) plist;
    iparam_loc loc;
    int code = ref_param_read_array(iplist, pkey, &loc);
    int *piv;
    uint size;
    long i;

    if (code != 0)
	return code;
    size = r_size(loc.pvalue);
    piv = (int *)gs_alloc_byte_array(plist->memory, size, sizeof(int),
				     "ref_param_read_int_array");

    if (piv == 0)
	return_error(e_VMerror);
    for (i = 0; i < size; i++) {
	ref elt;

	array_get(plist->memory, loc.pvalue, i, &elt);
	if (!r_has_type(&elt, t_integer)) {
	    code = gs_note_error(e_typecheck);
	    break;
	}
	piv[i] = (int)elt.value.intval;
    }
    if (code < 0) {
	gs_free_object(plist->memory, piv, "ref_param_read_int_array");
	return (*loc.presult = code);
    }
    pvalue->data = piv;
    pvalue->size = size;
    pvalue->persistent = true;
    return 0;
}
示例#20
0
/*
 * Allocate an indexed map for an Indexed or Separation color space.
 */
int
alloc_indexed_map(gs_indexed_map ** ppmap, int nvals, gs_memory_t * pmem,
		  client_name_t cname)
{
    gs_indexed_map *pimap;

    rc_alloc_struct_1(pimap, gs_indexed_map, &st_indexed_map, pmem,
		      return_error(gs_error_VMerror), cname);
    if (nvals > 0) {
	pimap->values =
	    (float *)gs_alloc_byte_array(pmem, nvals, sizeof(float), cname);

	if (pimap->values == 0) {
	    gs_free_object(pmem, pimap, cname);
	    return_error(gs_error_VMerror);
	}
    } else
	pimap->values = 0;
    pimap->rc.free = free_indexed_map;
    pimap->proc_data = 0;	/* for GC */
    pimap->num_values = nvals;
    *ppmap = pimap;
    return 0;
}
示例#21
0
/* Initialize for reading parameters. */
static int
ref_param_read_init(iparam_list * plist, uint count, const ref * ppolicies,
		    bool require_all, gs_ref_memory_t *imem)
{
    gs_param_list_init((gs_param_list *)plist, &ref_read_procs,
		       (gs_memory_t *)imem);
    plist->ref_memory = imem;
    if (ppolicies == 0)
	make_null(&plist->u.r.policies);
    else
	plist->u.r.policies = *ppolicies;
    plist->u.r.require_all = require_all;
    plist->count = count;
    plist->results = (int *)
	gs_alloc_byte_array(plist->memory, count, sizeof(int),
			    "ref_param_read_init");

    if (plist->results == 0)
	return_error(e_VMerror);
    memset(plist->results, 0, count * sizeof(int));

    plist->int_keys = false;
    return 0;
}
示例#22
0
void* _cmsCalloc(unsigned int nelts, unsigned int size)
{
    return gs_alloc_byte_array(gs_lib_ctx_get_non_gc_memory_t(), nelts, size, "lcms");
}
示例#23
0
/* Send the page to the printer.  For now, just send the whole image. */
static int
ljet5_print_page(gx_device_printer * pdev, FILE * prn_stream)
{
    gs_memory_t *mem = pdev->memory;
    uint line_size = gdev_mem_bytes_per_scan_line((gx_device *) pdev);
    uint line_size_words = (line_size + W - 1) / W;
    uint out_size = line_size + (line_size / 127) + 1;
    word *line = (word *)gs_alloc_byte_array(mem, line_size_words, W, "ljet5(line)");
    byte *out = gs_alloc_bytes(mem, out_size, "ljet5(out)");
    int code = 0;
    int lnum;
    stream fs;
    stream *const s = &fs;
    byte buf[200];		/* arbitrary */

    if (line == 0 || out == 0) {
	code = gs_note_error(gs_error_VMerror);
	goto done;
    }
    s_init(s, mem);
    swrite_file(s, prn_stream, buf, sizeof(buf));

    /* Write the page header. */
    {
	static const byte page_header[] = {
	    pxtBeginPage,
	    DUSP(0, 0), DA(pxaPoint),
	    pxtSetCursor
	};
	static const byte mono_header[] = {
	    DUB(eGray), DA(pxaColorSpace),
	    DUB(e8Bit), DA(pxaPaletteDepth),
	    pxt_ubyte_array, pxt_ubyte, 2, 0xff, 0x00, DA(pxaPaletteData),
	    pxtSetColorSpace
	};
	static const byte gray_header[] = {
	    DUB(eGray), DA(pxaColorSpace),
	    pxtSetColorSpace
	};

	px_write_page_header(s, (gx_device *)pdev);
	px_write_select_media(s, (gx_device *)pdev, NULL, NULL, 0, false, false);
	PX_PUT_LIT(s, page_header);
	if (pdev->color_info.depth == 1)
	    PX_PUT_LIT(s, mono_header);
	else
	    PX_PUT_LIT(s, gray_header);
    }

    /* Write the image header. */
    {
	static const byte mono_image_header[] = {
	    DA(pxaDestinationSize),
	    DUB(eIndexedPixel), DA(pxaColorMapping),
	    DUB(e1Bit), DA(pxaColorDepth),
	    pxtBeginImage
	};
	static const byte gray_image_header[] = {
	    DA(pxaDestinationSize),
	    DUB(eDirectPixel), DA(pxaColorMapping),
	    DUB(e8Bit), DA(pxaColorDepth),
	    pxtBeginImage
	};

	px_put_us(s, pdev->width);
	px_put_a(s, pxaSourceWidth);
	px_put_us(s, pdev->height);
	px_put_a(s, pxaSourceHeight);
	px_put_usp(s, pdev->width, pdev->height);
	if (pdev->color_info.depth == 1)
	    PX_PUT_LIT(s, mono_image_header);
	else
	    PX_PUT_LIT(s, gray_image_header);
    }

    /* Write the image data, compressing each line. */
    for (lnum = 0; lnum < pdev->height; ++lnum) {
	int ncompr;
	static const byte line_header[] = {
	    DA(pxaStartLine),
	    DUS(1), DA(pxaBlockHeight),
	    DUB(eRLECompression), DA(pxaCompressMode),
	    pxtReadImage
	};

	code = gdev_prn_copy_scan_lines(pdev, lnum, (byte *) line, line_size);
	if (code < 0)
	    goto fin;
	px_put_us(s, lnum);
	PX_PUT_LIT(s, line_header);
	ncompr = gdev_pcl_mode2compress_padded(line, line + line_size_words,
					       out, true);
	px_put_data_length(s, ncompr);
	px_put_bytes(s, out, ncompr);
    }

    /* Finish up. */
  fin:
    spputc(s, pxtEndImage);
    spputc(s, pxtEndPage);
    sflush(s);
  done:
    gs_free_object(mem, out, "ljet5(out)");
    gs_free_object(mem, line, "ljet5(line)");
    return code;
}
示例#24
0
/* Set up and start the render threads */
static int
clist_setup_render_threads(gx_device *dev, int y)
{
    gx_device_printer *pdev = (gx_device_printer *)dev;
    gx_device_clist *cldev = (gx_device_clist *)dev;
    gx_device_clist_common *cdev = (gx_device_clist_common *)cldev;
    gx_device_clist_reader *crdev = &cldev->reader;
    gs_memory_t *mem = cdev->bandlist_memory;
    gx_device *protodev;
    gs_c_param_list paramlist;
    int i, code, band;
    int band_count = cdev->nbands;
    char fmode[4];

    crdev->num_render_threads = pdev->num_render_threads_requested;

    if(gs_debug[':'] != 0)
	dprintf1("%% %d rendering threads requested.\n", pdev->num_render_threads_requested);

    if (crdev->num_render_threads > band_count)
	crdev->num_render_threads = band_count;	/* don't bother starting more threads than bands */

    /* Allocate and initialize an array of thread control structures */
    crdev->render_threads = (clist_render_thread_control_t *)
	      gs_alloc_byte_array(mem, crdev->num_render_threads,
	      sizeof(clist_render_thread_control_t), "clist_setup_render_threads" );
    /* fallback to non-threaded if allocation fails */
    if (crdev->render_threads == NULL) {
	eprintf(" VMerror prevented threads from starting.\n");
	return_error(gs_error_VMerror);
    }


    memset(crdev->render_threads, 0, crdev->num_render_threads *
	    sizeof(clist_render_thread_control_t));
    crdev->main_thread_data = cdev->data;		/* save data area */
    /* Based on the line number requested, decide the order of band rendering */
    /* Almost all devices go in increasing line order (except the bmp* devices ) */
    crdev->thread_lookahead_direction = (y < (cdev->height - 1)) ? 1 : -1;
    band = y / crdev->page_info.band_params.BandHeight;

    /* Close the files so we can open them in multiple threads */
    if ((code = cdev->page_info.io_procs->fclose(cdev->page_cfile, cdev->page_cfname, false)) < 0 ||
        (code = cdev->page_info.io_procs->fclose(cdev->page_bfile, cdev->page_bfname, false)) < 0) {
	gs_free_object(mem, crdev->render_threads, "clist_setup_render_threads");
	crdev->render_threads = NULL;
	eprintf("Closing clist files prevented threads from starting.\n");
        return_error(gs_error_unknownerror); /* shouldn't happen */
    }
    cdev->page_cfile = cdev->page_bfile = NULL;
    strcpy(fmode, "r");			/* read access for threads */
    strncat(fmode, gp_fmode_binary_suffix, 1);
    /* Find the prototype for this device (needed so we can copy from it) */
    for (i=0; (protodev = (gx_device *)gs_getdevice(i)) != NULL; i++)
	if (strcmp(protodev->dname, dev->dname) == 0)
	    break;
    if (protodev == NULL) {
	eprintf("Could not find prototype device. Rendering threads not started.\n");
	return gs_error_rangecheck;
    }

    gs_c_param_list_write(&paramlist, mem);
    if ((code = gs_getdeviceparams(dev, (gs_param_list *)&paramlist)) < 0) {
	eprintf1("Error getting device params, code=%d. Rendering threads not started.\n", code);
	return code;
    }

    /* Loop creating the devices and semaphores for each thread, then start them */
    for (i=0; (i < crdev->num_render_threads) && (band >= 0) && (band < band_count);
	    i++, band += crdev->thread_lookahead_direction) {
	gx_device *ndev;
	gx_device_clist *ncldev;
	gx_device_clist_common *ncdev;
	clist_render_thread_control_t *thread = &(crdev->render_threads[i]);

	/* Every thread will have a 'chunk allocator' to reduce the interaction
	 * with the 'base' allocator which has 'mutex' (locking) protection. 
	 * This improves performance of the threads.
	 */
	if ((code = gs_memory_chunk_wrap(&(thread->memory), mem )) < 0) {
	    eprintf1("chunk_wrap returned error code: %d\n", code);
	    break;
	}

        thread->band = -1;		/* a value that won't match any valid band */
	if ((code = gs_copydevice((gx_device **) &ndev, protodev, thread->memory)) < 0) {
	    code = 0;		/* even though we failed, no cleanup needed */
	    break;
	}
	ncldev = (gx_device_clist *)ndev;
	ncdev = (gx_device_clist_common *)ndev;
	gx_device_fill_in_procs(ndev);
	((gx_device_printer *)ncdev)->buffer_memory = ncdev->memory =
		ncdev->bandlist_memory = thread->memory;
	gs_c_param_list_read(&paramlist);
	ndev->PageCount = dev->PageCount;	/* copy to prevent mismatch error */
	if ((code = gs_putdeviceparams(ndev, (gs_param_list *)&paramlist)) < 0)
	    break;
	ncdev->page_uses_transparency = cdev->page_uses_transparency;
	/* gdev_prn_allocate_memory sets the clist for writing, creating new files.
	 * We need  to unlink those files and open the main thread's files, then
	 * reset the clist state for reading/rendering
	 */
	if ((code = gdev_prn_allocate_memory(ndev, NULL, ndev->width, ndev->height)) < 0)
	    break;
	thread->cdev = ndev;
	/* close and unlink the temp files just created */
	cdev->page_info.io_procs->fclose(ncdev->page_cfile, ncdev->page_cfname, true);
	cdev->page_info.io_procs->fclose(ncdev->page_bfile, ncdev->page_bfname, true);
	/* open the main thread's files for this thread */
	if ((code=cdev->page_info.io_procs->fopen(cdev->page_cfname, fmode, &ncdev->page_cfile,
			    thread->memory, thread->memory, true)) < 0 ||
	     (code=cdev->page_info.io_procs->fopen(cdev->page_bfname, fmode, &ncdev->page_bfile,
			    thread->memory, thread->memory, false)) < 0)
	    break;
	clist_render_init(ncldev);	/* Initialize clist device for reading */
	ncdev->page_bfile_end_pos = cdev->page_bfile_end_pos;

	/* create the buf device for this thread, and allocate the semaphores */
	if ((code = gdev_create_buf_device(cdev->buf_procs.create_buf_device,
				&(thread->bdev), cdev->target,
				band*crdev->page_band_height, NULL,
				thread->memory, clist_get_band_complexity(dev,y)) < 0)) 
	    break;
	if ((thread->sema_this = gx_semaphore_alloc(thread->memory)) == NULL ||
	    (thread->sema_group = gx_semaphore_alloc(thread->memory)) == NULL) {
	    code = gs_error_VMerror;
	    break;
	}
	/* Start thread 'i' to do band */
	if ((code = clist_start_render_thread(dev, i, band)) < 0)
	    break;
    }
    gs_c_param_list_release(&paramlist);
    /* If the code < 0, the last thread creation failed -- clean it up */
    if (code < 0) {
	/* the following relies on 'free' ignoring NULL pointers */
	gx_semaphore_free(crdev->render_threads[i].sema_group); 
	gx_semaphore_free(crdev->render_threads[i].sema_this); 
	if (crdev->render_threads[i].bdev != NULL)
	    cdev->buf_procs.destroy_buf_device(crdev->render_threads[i].bdev);
	if (crdev->render_threads[i].cdev != NULL) {
	    gx_device_clist_common *thread_cdev = (gx_device_clist_common *)crdev->render_threads[i].cdev;
	    
    	    /* Close the file handles, but don't delete (unlink) the files */
	    thread_cdev->page_info.io_procs->fclose(thread_cdev->page_bfile, thread_cdev->page_bfname, false);
	    thread_cdev->page_info.io_procs->fclose(thread_cdev->page_cfile, thread_cdev->page_cfname, false);
	    thread_cdev->do_not_open_or_close_bandfiles = true;	/* we already closed the files */

	    gdev_prn_free_memory((gx_device *)thread_cdev);
	    gs_free_object(crdev->render_threads[i].memory, thread_cdev,
	    "clist_setup_render_threads");
	}
	if (crdev->render_threads[i].memory != NULL)
	    gs_memory_chunk_release(crdev->render_threads[i].memory); 
    }
    /* If we weren't able to create at least one thread, punt	*/
    /* Although a single thread isn't any more efficient, the	*/
    /* machinery still works, so that's OK.			*/
    if (i == 0) {
	if (crdev->render_threads[0].memory != NULL)
	    gs_memory_chunk_release(crdev->render_threads[0].memory); 
	gs_free_object(mem, crdev->render_threads, "clist_setup_render_threads");
	crdev->render_threads = NULL;
	/* restore the file pointers */
	if (cdev->page_cfile == NULL) {
	    char fmode[4];

	    strcpy(fmode, "a+");	/* file already exists and we want to re-use it */
	    strncat(fmode, gp_fmode_binary_suffix, 1);
	    cdev->page_info.io_procs->fopen(cdev->page_cfname, fmode, &cdev->page_cfile,
				mem, cdev->bandlist_memory, true);
	    cdev->page_info.io_procs->fseek(cdev->page_cfile, 0, SEEK_SET, cdev->page_cfname);
	    cdev->page_info.io_procs->fopen(cdev->page_bfname, fmode, &cdev->page_bfile,
				mem, cdev->bandlist_memory, false);
	    cdev->page_info.io_procs->fseek(cdev->page_bfile, 0, SEEK_SET, cdev->page_bfname);
	}
	eprintf1("Rendering threads not started, code=%d.\n", code);
	return_error(code);
    }
    crdev->num_render_threads = i;
    crdev->curr_render_thread = 0;

    if(gs_debug[':'] != 0)
	dprintf1("%% Using %d rendering threads\n", i);

    return 0;
}
示例#25
0
int
gs_shading_LfGt_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
			       const gs_fixed_rect * rect_clip,
			       gx_device * dev, gs_imager_state * pis)
{
    const gs_shading_LfGt_t * const psh = (const gs_shading_LfGt_t *)psh0;
    patch_fill_state_t pfs;
    const gs_shading_mesh_t *pshm = (const gs_shading_mesh_t *)psh;
    shade_coord_stream_t cs;
    shading_vertex_t *vertex = NULL;
    byte *color_buffer = NULL;
    patch_color_t **color_buffer_ptrs = NULL; /* non-const access to vertex[i].c */
    shading_vertex_t next;
    int per_row = psh->params.VerticesPerRow;
    patch_color_t *c, *cn; /* cn == next.c always, provides a non-contst access. */
    int i, code;

    if (VD_TRACE_TRIANGLE_PATCH && vd_allowed('s')) {
	vd_get_dc('s');
	vd_set_shift(0, 0);
	vd_set_scale(0.01);
	vd_set_origin(0, 0);
    }
    shade_init_fill_state((shading_fill_state_t *)&pfs,
			  (const gs_shading_t *)psh, dev, pis);
    pfs.Function = pshm->params.Function;
    pfs.rect = *rect_clip;
    code = init_patch_fill_state(&pfs);
    if (code < 0)
	goto out;
    reserve_colors(&pfs, &cn, 1); /* Can't fail. */
    next.c = cn;
    shade_next_init(&cs, (const gs_shading_mesh_params_t *)&psh->params,
		    pis);
    vertex = (shading_vertex_t *)
	gs_alloc_byte_array(pis->memory, per_row, sizeof(*vertex),
			    "gs_shading_LfGt_render");
    if (vertex == NULL) {
	code = gs_note_error(gs_error_VMerror);
	goto out;
    }
    color_buffer = gs_alloc_bytes(pis->memory, pfs.color_stack_step * per_row, "gs_shading_LfGt_fill_rectangle");
    if (color_buffer == NULL) {
	code = gs_note_error(gs_error_VMerror);
	goto out;
    }
    color_buffer_ptrs = (patch_color_t **)gs_alloc_bytes(pis->memory, 
			    sizeof(patch_color_t *) * per_row, "gs_shading_LfGt_fill_rectangle");
    if (color_buffer_ptrs == NULL) {
	code = gs_note_error(gs_error_VMerror);
	goto out;
    }
    /* CET 09-47K.PS SpecialTestJ02Test05 needs the color data alignment. */
    for (i = 0; i < per_row; ++i) {
	color_buffer_ptrs[i] = (patch_color_t *)(color_buffer + pfs.color_stack_step * i);
	vertex[i].c = color_buffer_ptrs[i];
	if ((code = Gt_next_vertex(pshm, &cs, &vertex[i], color_buffer_ptrs[i])) < 0)
	    goto out;
    }
    while (!seofp(cs.s)) {
	code = Gt_next_vertex(pshm, &cs, &next, cn);
	if (code < 0)
	    goto out;
	for (i = 1; i < per_row; ++i) {
	    code = Gt_fill_triangle(&pfs, &vertex[i - 1], &vertex[i], &next);
	    if (code < 0)
		goto out;
	    c = color_buffer_ptrs[i - 1];
	    vertex[i - 1] = next;
	    color_buffer_ptrs[i - 1] = cn;
	    next.c = cn = c;
	    code = Gt_next_vertex(pshm, &cs, &next, cn);
	    if (code < 0)
		goto out;
	    code = Gt_fill_triangle(&pfs, &vertex[i], &vertex[i - 1], &next);
	    if (code < 0)
		goto out;
	}
	c = color_buffer_ptrs[per_row - 1];
	vertex[per_row - 1] = next;
	color_buffer_ptrs[per_row - 1] = cn;
	next.c = cn = c;
    }
out:
    if (VD_TRACE_TRIANGLE_PATCH && vd_allowed('s'))
	vd_release_dc;
    gs_free_object(pis->memory, vertex, "gs_shading_LfGt_render");
    gs_free_object(pis->memory, color_buffer, "gs_shading_LfGt_render");
    gs_free_object(pis->memory, color_buffer_ptrs, "gs_shading_LfGt_render");
    release_colors(&pfs, pfs.color_stack, 1);
    if (term_patch_fill_state(&pfs))
	return_error(gs_error_unregistered); /* Must not happen. */
    if (pfs.icclink != NULL) gsicc_release_link(pfs.icclink);
    return code;
}
示例#26
0
/* Set up and start the render threads */
static int
clist_setup_render_threads(gx_device *dev, int y, gx_process_page_options_t *options)
{
    gx_device_printer *pdev = (gx_device_printer *)dev;
    gx_device_clist *cldev = (gx_device_clist *)dev;
    gx_device_clist_common *cdev = (gx_device_clist_common *)cldev;
    gx_device_clist_reader *crdev = &cldev->reader;
    gs_memory_t *mem = cdev->bandlist_memory;
    gs_memory_t *chunk_base_mem = mem->thread_safe_memory;
    gs_memory_status_t mem_status;
    int i, band;
    int code = 0;
    int band_count = cdev->nbands;
    int band_height = crdev->page_info.band_params.BandHeight;
    crdev->num_render_threads = pdev->num_render_threads_requested;

    if(gs_debug[':'] != 0)
        dmprintf1(mem, "%% %d rendering threads requested.\n", pdev->num_render_threads_requested);

    if (crdev->num_render_threads > band_count)
        crdev->num_render_threads = band_count; /* don't bother starting more threads than bands */

    /* Allocate and initialize an array of thread control structures */
    crdev->render_threads = (clist_render_thread_control_t *)
              gs_alloc_byte_array(mem, crdev->num_render_threads,
              sizeof(clist_render_thread_control_t), "clist_setup_render_threads" );
    /* fallback to non-threaded if allocation fails */
    if (crdev->render_threads == NULL) {
        emprintf(mem, " VMerror prevented threads from starting.\n");
        return_error(gs_error_VMerror);
    }

    memset(crdev->render_threads, 0, crdev->num_render_threads *
            sizeof(clist_render_thread_control_t));
    crdev->main_thread_data = cdev->data;               /* save data area */
    /* Based on the line number requested, decide the order of band rendering */
    /* Almost all devices go in increasing line order (except the bmp* devices ) */
    crdev->thread_lookahead_direction = (y < (cdev->height - 1)) ? 1 : -1;
    band = y / band_height;

    /* If the 'mem' is not thread safe, we need to wrap it in a locking memory */
    gs_memory_status(chunk_base_mem, &mem_status);
    if (mem_status.is_thread_safe == false) {
            return_error(gs_error_VMerror);
    }

    /* If we don't have one large enough already, create an icc cache list */
    if (crdev->num_render_threads > crdev->icc_cache_list_len) {
        void *old = crdev->icc_cache_list;
        crdev->icc_cache_list = gs_alloc_byte_array(mem->thread_safe_memory,
                                    crdev->num_render_threads,
                                    sizeof(void*), "clist_render_setup_threads");
        if (crdev->icc_cache_list == NULL) {
            crdev->icc_cache_list = NULL;
            return_error(gs_error_VMerror);
        }
        if (crdev->icc_cache_list_len > 0)
            memcpy(crdev->icc_cache_list, old, sizeof(void *)*crdev->icc_cache_list_len);
        memset(&crdev->icc_cache_list[crdev->icc_cache_list_len], 0,
            (crdev->num_render_threads - crdev->icc_cache_list_len) * sizeof(void *));
        crdev->icc_cache_list_len = crdev->num_render_threads;
        gs_free_object(mem, old, "clist_render_setup_threads");
    }

    /* Loop creating the devices and semaphores for each thread, then start them */
    for (i=0; (i < crdev->num_render_threads) && (band >= 0) && (band < band_count);
            i++, band += crdev->thread_lookahead_direction) {
        gx_device *ndev;
        clist_render_thread_control_t *thread = &(crdev->render_threads[i]);

        ndev = setup_device_and_mem_for_thread(chunk_base_mem, dev, false, &crdev->icc_cache_list[i]);
        if (ndev == NULL) {
            code = gs_error_VMerror;	/* set code to an error for cleanup after the loop */
            break;
        }

        thread->cdev = ndev;
        thread->memory = ndev->memory;
        thread->band = -1;              /* a value that won't match any valid band */
        thread->options = options;
        thread->buffer = NULL;
        if (options && options->init_buffer_fn) {
            code = options->init_buffer_fn(options->arg, dev, thread->memory, dev->width, band_height, &thread->buffer);
            if (code < 0)
                break;
        }

        /* create the buf device for this thread, and allocate the semaphores */
        if ((code = gdev_create_buf_device(cdev->buf_procs.create_buf_device,
                                &(thread->bdev), ndev,
                                band*crdev->page_band_height, NULL,
                                thread->memory, &(crdev->color_usage_array[0])) < 0))
            break;
        if ((thread->sema_this = gx_semaphore_alloc(thread->memory)) == NULL ||
            (thread->sema_group = gx_semaphore_alloc(thread->memory)) == NULL) {
            code = gs_error_VMerror;
            break;
        }
        /* Start thread 'i' to do band */
        if ((code = clist_start_render_thread(dev, i, band)) < 0)
            break;
    }
    /* If the code < 0, the last thread creation failed -- clean it up */
    if (code < 0) {
        band -= crdev->thread_lookahead_direction;	/* update for 'next_band' usage */
        /* the following relies on 'free' ignoring NULL pointers */
        gx_semaphore_free(crdev->render_threads[i].sema_group);
        gx_semaphore_free(crdev->render_threads[i].sema_this);
        if (crdev->render_threads[i].bdev != NULL)
            cdev->buf_procs.destroy_buf_device(crdev->render_threads[i].bdev);
        if (crdev->render_threads[i].cdev != NULL) {
            gx_device_clist_common *thread_cdev = (gx_device_clist_common *)crdev->render_threads[i].cdev;

            /* Close the file handles, but don't delete (unlink) the files */
            thread_cdev->page_info.io_procs->fclose(thread_cdev->page_info.bfile, thread_cdev->page_info.bfname, false);
            thread_cdev->page_info.io_procs->fclose(thread_cdev->page_info.cfile, thread_cdev->page_info.cfname, false);
            thread_cdev->do_not_open_or_close_bandfiles = true; /* we already closed the files */

            gdev_prn_free_memory((gx_device *)thread_cdev);
            gs_free_object(crdev->render_threads[i].memory, thread_cdev,
            "clist_setup_render_threads");
        }
        if (crdev->render_threads[i].buffer != NULL && options && options->free_buffer_fn != NULL) {
            options->free_buffer_fn(options->arg, dev, crdev->render_threads[i].memory, crdev->render_threads[i].buffer);
            crdev->render_threads[i].buffer = NULL;
        }
        if (crdev->render_threads[i].memory != NULL) {
            gs_memory_chunk_release(crdev->render_threads[i].memory);
            crdev->render_threads[i].memory = NULL;
        }
    }
    /* If we weren't able to create at least one thread, punt   */
    /* Although a single thread isn't any more efficient, the   */
    /* machinery still works, so that's OK.                     */
    if (i == 0) {
        if (crdev->render_threads[0].memory != NULL) {
            gs_memory_chunk_release(crdev->render_threads[0].memory);
            /* free up the locking wrapper if we allocated one */
            if (chunk_base_mem != mem) {
                gs_memory_locked_release((gs_memory_locked_t *)chunk_base_mem);
                gs_free_object(mem, chunk_base_mem, "clist_setup_render_threads(locked allocator)");
            }
        }
        gs_free_object(mem, crdev->render_threads, "clist_setup_render_threads");
        crdev->render_threads = NULL;
        /* restore the file pointers */
        if (cdev->page_info.cfile == NULL) {
            char fmode[4];

            strcpy(fmode, "a+");        /* file already exists and we want to re-use it */
            strncat(fmode, gp_fmode_binary_suffix, 1);
            cdev->page_info.io_procs->fopen(cdev->page_info.cfname, fmode, &cdev->page_info.cfile,
                                mem, cdev->bandlist_memory, true);
            cdev->page_info.io_procs->fseek(cdev->page_info.cfile, 0, SEEK_SET, cdev->page_info.cfname);
            cdev->page_info.io_procs->fopen(cdev->page_info.bfname, fmode, &cdev->page_info.bfile,
                                mem, cdev->bandlist_memory, false);
            cdev->page_info.io_procs->fseek(cdev->page_info.bfile, 0, SEEK_SET, cdev->page_info.bfname);
        }
        emprintf1(mem, "Rendering threads not started, code=%d.\n", code);
        return_error(code);
    }
    crdev->num_render_threads = i;
    crdev->curr_render_thread = 0;
        crdev->next_band = band;

    if(gs_debug[':'] != 0)
        dmprintf1(mem, "%% Using %d rendering threads\n", i);

    return 0;
}
示例#27
0
/*
 * Create a PDF color space corresponding to a PostScript color space.
 * For parameterless color spaces, set *pvalue to a (literal) string with
 * the color space name; for other color spaces, create a cos_array_t if
 * necessary and set *pvalue to refer to it.  In the latter case, if
 * by_name is true, return a string /Rxxxx rather than a reference to
 * the actual object.
 *
 * If ppranges is not NULL, then if  the domain of the color space had
 * to be scaled (to convert a CIEBased space to ICCBased), store a pointer
 * to the ranges in *ppranges, otherwise set *ppranges to 0.
 */
int
pdf_color_space_named(gx_device_pdf *pdev, cos_value_t *pvalue,
		const gs_range_t **ppranges,
		const gs_color_space *pcs,
		const pdf_color_space_names_t *pcsn,
		bool by_name, const byte *res_name, int name_length)
{
    gs_color_space_index csi = gs_color_space_get_index(pcs);
    cos_array_t *pca;
    cos_dict_t *pcd;
    cos_value_t v;
    const gs_cie_common *pciec;
    gs_function_t *pfn;
    const gs_range_t *ranges = 0;
    uint serialized_size;
    byte *serialized = NULL, serialized0[100];
    pdf_resource_t *pres = NULL;
    int code;

    if (ppranges)
	*ppranges = 0;		/* default */
    switch (csi) {
    case gs_color_space_index_DeviceGray:
	cos_c_string_value(pvalue, pcsn->DeviceGray);
	return 0;
    case gs_color_space_index_DeviceRGB:
	cos_c_string_value(pvalue, pcsn->DeviceRGB);
	return 0;
    case gs_color_space_index_DeviceCMYK:
	cos_c_string_value(pvalue, pcsn->DeviceCMYK);
	return 0;
    case gs_color_space_index_Pattern:
	if (!pcs->params.pattern.has_base_space) {
	    cos_c_string_value(pvalue, "/Pattern");
	    return 0;
	}
	break;
    case gs_color_space_index_CIEICC:
        /*
	 * Take a special early exit for unrecognized ICCBased color spaces,
	 * or for PDF 1.2 output (ICCBased color spaces date from PDF 1.3).
	 */
        if (pcs->params.icc.picc_info->picc == 0 ||
	    pdev->CompatibilityLevel < 1.3
	    ) {
	    if (res_name != NULL)
		return 0; /* Ignore .includecolorspace */
            return pdf_color_space( pdev, pvalue, ppranges,
                                    pcs->base_space,
                                    pcsn, by_name);
	}
        break;
    default:
	break;
    }
    if (pdev->params.ColorConversionStrategy == ccs_CMYK && 
	    csi != gs_color_space_index_DeviceCMYK &&
	    csi != gs_color_space_index_DeviceGray &&
	    csi != gs_color_space_index_Pattern)
	return_error(gs_error_rangecheck);
    if (pdev->params.ColorConversionStrategy == ccs_sRGB && 
	    csi != gs_color_space_index_DeviceRGB && 
	    csi != gs_color_space_index_DeviceGray &&
	    csi != gs_color_space_index_Pattern)
	return_error(gs_error_rangecheck);
    if (pdev->params.ColorConversionStrategy == ccs_Gray && 
	    csi != gs_color_space_index_DeviceGray &&
	    csi != gs_color_space_index_Pattern)
	return_error(gs_error_rangecheck);
    /* Check whether we already have a PDF object for this color space. */
    if (pcs->id != gs_no_id)
	pres = pdf_find_resource_by_gs_id(pdev, resourceColorSpace, pcs->id);
    if (pres == NULL) {
	stream s;

	s_init(&s, pdev->memory);
	swrite_position_only(&s);
	code = cs_serialize(pcs, &s);
	if (code < 0)
	    return_error(gs_error_unregistered); /* Must not happen. */
	serialized_size = stell(&s);
	sclose(&s);
	if (serialized_size <= sizeof(serialized0))
	    serialized = serialized0;
	else {
	    serialized = gs_alloc_bytes(pdev->pdf_memory, serialized_size, "pdf_color_space");
	    if (serialized == NULL)
		return_error(gs_error_VMerror);
	}
	swrite_string(&s, serialized, serialized_size);
	code = cs_serialize(pcs, &s);
	if (code < 0)
	    return_error(gs_error_unregistered); /* Must not happen. */
	if (stell(&s) != serialized_size) 
	    return_error(gs_error_unregistered); /* Must not happen. */
	sclose(&s);
	pres = pdf_find_cspace_resource(pdev, serialized, serialized_size);
	if (pres != NULL) {
	    if (serialized != serialized0)
		gs_free_object(pdev->pdf_memory, serialized, "pdf_color_space");
	    serialized = NULL;
	}
    }
    if (pres) {
	const pdf_color_space_t *const ppcs =
	    (const pdf_color_space_t *)pres;

	if (ppranges != 0 && ppcs->ranges != 0)
	    *ppranges = ppcs->ranges;
	pca = (cos_array_t *)pres->object;
	goto ret;
    }

    /* Space has parameters -- create an array. */
    pca = cos_array_alloc(pdev, "pdf_color_space");
    if (pca == 0)
	return_error(gs_error_VMerror);

    switch (csi) {

    case gs_color_space_index_CIEICC:
	code = pdf_iccbased_color_space(pdev, pvalue, pcs, pca);
        break;

    case gs_color_space_index_CIEA: {
	/* Check that we can represent this as a CalGray space. */
	const gs_cie_a *pcie = pcs->params.a;
	bool unitary = cie_ranges_are_0_1(&pcie->RangeA, 1);
	bool identityA = (pcie->MatrixA.u == 1 && pcie->MatrixA.v == 1 && 
	                  pcie->MatrixA.w == 1);
	gs_vector3 expts;

	pciec = (const gs_cie_common *)pcie;
	if (!pcie->common.MatrixLMN.is_identity) {
	    code = pdf_convert_cie_space(pdev, pca, pcs, "GRAY", pciec,
					 &pcie->RangeA, ONE_STEP_NOT, NULL,
					 &ranges);
	    break;
	}
	if (unitary && identityA &&
	    CIE_CACHE_IS_IDENTITY(&pcie->caches.DecodeA) &&
	    CIE_SCALAR3_CACHE_IS_EXPONENTIAL(pcie->common.caches.DecodeLMN, expts) &&
	    expts.v == expts.u && expts.w == expts.u
	    ) {
	    DO_NOTHING;
	} else if (unitary && identityA &&
		   CIE_CACHE3_IS_IDENTITY(pcie->common.caches.DecodeLMN) &&
		   cie_vector_cache_is_exponential(&pcie->caches.DecodeA, &expts.u)
		   ) {
	    DO_NOTHING;
	} else {
	    code = pdf_convert_cie_space(pdev, pca, pcs, "GRAY", pciec,
					 &pcie->RangeA, ONE_STEP_NOT, NULL,
					 &ranges);
	    break;
	}
	code = cos_array_add(pca, cos_c_string_value(&v, "/CalGray"));
	if (code < 0)
	    return code;
	pcd = cos_dict_alloc(pdev, "pdf_color_space(dict)");
	if (pcd == 0)
	    return_error(gs_error_VMerror);
	if (expts.u != 1) {
	    code = cos_dict_put_c_key_real(pcd, "/Gamma", expts.u);
	    if (code < 0)
		return code;
	}
    }
    cal:
    /* Finish handling a CIE-based color space (Calxxx or Lab). */
    if (code < 0)
	return code;
    code = pdf_finish_cie_space(pca, pcd, pciec);
    break;

    case gs_color_space_index_CIEABC: {
	/* Check that we can represent this as a CalRGB space. */
	const gs_cie_abc *pcie = pcs->params.abc;
	bool unitary = cie_ranges_are_0_1(pcie->RangeABC.ranges, 3);
	gs_vector3 expts;
	const gs_matrix3 *pmat = NULL;
	cie_cache_one_step_t one_step =
	    cie_cached_abc_is_one_step(pcie, &pmat);

	pciec = (const gs_cie_common *)pcie;
	if (unitary) {
	    switch (one_step) {
	    case ONE_STEP_ABC:
		if (CIE_VECTOR3_CACHE_IS_EXPONENTIAL(pcie->caches.DecodeABC.caches, expts))
		    goto calrgb;
		break;
	    case ONE_STEP_LMN:
		if (CIE_SCALAR3_CACHE_IS_EXPONENTIAL(pcie->common.caches.DecodeLMN, expts))
		    goto calrgb;
	    default:
		break;
	    }
	}
	if (cie_is_lab(pcie)) {
	    /* Represent this as a Lab space. */
	    pcd = cos_dict_alloc(pdev, "pdf_color_space(dict)");
	    if (pcd == 0)
		return_error(gs_error_VMerror);
	    code = pdf_put_lab_color_space(pca, pcd, pcie->RangeABC.ranges);
	    goto cal;
	} else {
	    code = pdf_convert_cie_space(pdev, pca, pcs, "RGB ", pciec,
					 pcie->RangeABC.ranges,
					 one_step, pmat, &ranges);
	    break;
	}
    calrgb:
	code = cos_array_add(pca, cos_c_string_value(&v, "/CalRGB"));
	if (code < 0)
	    return code;
	pcd = cos_dict_alloc(pdev, "pdf_color_space(dict)");
	if (pcd == 0)
	    return_error(gs_error_VMerror);
	if (expts.u != 1 || expts.v != 1 || expts.w != 1) {
	    code = cos_dict_put_c_key_vector3(pcd, "/Gamma", &expts);
	    if (code < 0)
		return code;
	}
	if (!pmat->is_identity) {
	    cos_array_t *pcma =
		cos_array_alloc(pdev, "pdf_color_space(Matrix)");

	    if (pcma == 0)
		return_error(gs_error_VMerror);
	    if ((code = cos_array_add_vector3(pcma, &pmat->cu)) < 0 ||
		(code = cos_array_add_vector3(pcma, &pmat->cv)) < 0 ||
		(code = cos_array_add_vector3(pcma, &pmat->cw)) < 0 ||
		(code = cos_dict_put(pcd, (const byte *)"/Matrix", 7,
				     COS_OBJECT_VALUE(&v, pcma))) < 0
		)
		return code;
	}
    }
    goto cal;

    case gs_color_space_index_CIEDEF:
	code = pdf_convert_cie_space(pdev, pca, pcs, "RGB ",
				     (const gs_cie_common *)pcs->params.def,
				     pcs->params.def->RangeDEF.ranges,
				     ONE_STEP_NOT, NULL, &ranges);
	break;

    case gs_color_space_index_CIEDEFG:
	code = pdf_convert_cie_space(pdev, pca, pcs, "CMYK",
				     (const gs_cie_common *)pcs->params.defg,
				     pcs->params.defg->RangeDEFG.ranges,
				     ONE_STEP_NOT, NULL, &ranges);
	break;

    case gs_color_space_index_Indexed:
	code = pdf_indexed_color_space(pdev, pvalue, pcs, pca);
	break;

    case gs_color_space_index_DeviceN:
        if (pdev->CompatibilityLevel < 1.3)
	    return_error(gs_error_rangecheck);
	pfn = gs_cspace_get_devn_function(pcs);
	/****** CURRENTLY WE ONLY HANDLE Functions ******/
	if (pfn == 0)
	    return_error(gs_error_rangecheck);
	{
	    cos_array_t *psna = 
		cos_array_alloc(pdev, "pdf_color_space(DeviceN)");
	    int i;
	    byte *name_string;
	    uint name_string_length;
	    cos_value_t v_attriburtes, *va = NULL;

	    if (psna == 0)
		return_error(gs_error_VMerror);
	    for (i = 0; i < pcs->params.device_n.num_components; ++i) {
	 	if ((code = pcs->params.device_n.get_colorname_string(
				  pdev->memory,
				  pcs->params.device_n.names[i], &name_string, 
				  &name_string_length)) < 0 ||
		    (code = pdf_string_to_cos_name(pdev, name_string, 
				  name_string_length, &v)) < 0 ||
		    (code = cos_array_add_no_copy(psna, &v)) < 0)
		    return code;
	    }
	    COS_OBJECT_VALUE(&v, psna);
	    if (pcs->params.device_n.colorants != NULL) {
		cos_dict_t *colorants  = cos_dict_alloc(pdev, "pdf_color_space(DeviceN)");
		cos_value_t v_colorants, v_separation, v_colorant_name;
		const gs_device_n_attributes *csa;
		pdf_resource_t *pres_attributes;

		if (colorants == NULL)
		    return_error(gs_error_VMerror);
		code = pdf_alloc_resource(pdev, resourceOther, 0, &pres_attributes, -1);
		if (code < 0)
		    return code;
		cos_become(pres_attributes->object, cos_type_dict);
		COS_OBJECT_VALUE(&v_colorants, colorants);
		code = cos_dict_put((cos_dict_t *)pres_attributes->object, 
		    (const byte *)"/Colorants", 10, &v_colorants);
		if (code < 0)
		    return code;
		for (csa = pcs->params.device_n.colorants; csa != NULL; csa = csa->next) {
	 	    code = pcs->params.device_n.get_colorname_string(pdev->memory,
				  csa->colorant_name, &name_string, &name_string_length);
		    if (code < 0)
			return code;
		    code = pdf_color_space(pdev, &v_separation, NULL, csa->cspace, pcsn, false);
		    if (code < 0)
			return code;
		    code = pdf_string_to_cos_name(pdev, name_string, name_string_length, &v_colorant_name);
		    if (code < 0)
			return code;
		    code = cos_dict_put(colorants, v_colorant_name.contents.chars.data, 
					v_colorant_name.contents.chars.size, &v_separation);
		    if (code < 0)
			return code;
		}
    		code = pdf_substitute_resource(pdev, &pres_attributes, resourceOther, NULL, true);
		if (code < 0)
		    return code;
		va = &v_attriburtes;
		COS_OBJECT_VALUE(va, pres_attributes->object);
	    }
	    if ((code = pdf_separation_color_space(pdev, pca, "/DeviceN", &v,
						   pcs->base_space,
					pfn, &pdf_color_space_names, va)) < 0)
		return code;
	}
	break;

    case gs_color_space_index_Separation:
	pfn = gs_cspace_get_sepr_function(pcs);
	/****** CURRENTLY WE ONLY HANDLE Functions ******/
	if (pfn == 0)
	    return_error(gs_error_rangecheck);
	{
	    byte *name_string;
	    uint name_string_length;
	    if ((code = pcs->params.separation.get_colorname_string(
				  pdev->memory, 
				  pcs->params.separation.sep_name, &name_string, 
				  &name_string_length)) < 0 ||
		(code = pdf_string_to_cos_name(pdev, name_string, 
				      name_string_length, &v)) < 0 ||
		(code = pdf_separation_color_space(pdev, pca, "/Separation", &v,
					    pcs->base_space,
					    pfn, &pdf_color_space_names, NULL)) < 0)
		return code;
	}
	break;

    case gs_color_space_index_Pattern:
	if ((code = pdf_color_space(pdev, pvalue, ppranges,
				    pcs->base_space,
				    &pdf_color_space_names, false)) < 0 ||
	    (code = cos_array_add(pca,
				  cos_c_string_value(&v, "/Pattern"))) < 0 ||
	    (code = cos_array_add(pca, pvalue)) < 0
	    )
	    return code;
	break;

    default:
	return_error(gs_error_rangecheck);
    }
    /*
     * Register the color space as a resource, since it must be referenced
     * by name rather than directly.
     */
    {
	pdf_color_space_t *ppcs;

	if (code < 0 ||
	    (code = pdf_alloc_resource(pdev, resourceColorSpace, pcs->id,
				       &pres, -1)) < 0
	    ) {
	    COS_FREE(pca, "pdf_color_space");
	    return code;
	}
	pdf_reserve_object_id(pdev, pres, 0);
	if (res_name != NULL) {
	    int l = min(name_length, sizeof(pres->rname) - 1);
	    
	    memcpy(pres->rname, res_name, l);
	    pres->rname[l] = 0;
	}
	ppcs = (pdf_color_space_t *)pres;
	if (serialized == serialized0) {
	    serialized = gs_alloc_bytes(pdev->pdf_memory, serialized_size, "pdf_color_space");
	    if (serialized == NULL)
		return_error(gs_error_VMerror);
	    memcpy(serialized, serialized0, serialized_size);
	}
	ppcs->serialized = serialized;
	ppcs->serialized_size = serialized_size;
	if (ranges) {
	    int num_comp = gs_color_space_num_components(pcs);
	    gs_range_t *copy_ranges = (gs_range_t *)
		gs_alloc_byte_array(pdev->pdf_memory, num_comp,
				    sizeof(gs_range_t), "pdf_color_space");

	    if (copy_ranges == 0) {
		COS_FREE(pca, "pdf_color_space");
		return_error(gs_error_VMerror);
	    }
	    memcpy(copy_ranges, ranges, num_comp * sizeof(gs_range_t));
	    ppcs->ranges = copy_ranges;
	    if (ppranges)
		*ppranges = copy_ranges;
	} else
	    ppcs->ranges = 0;
	pca->id = pres->object->id;
	COS_FREE(pres->object, "pdf_color_space");
	pres->object = (cos_object_t *)pca;
	cos_write_object(COS_OBJECT(pca), pdev);
    }
 ret:
    if (by_name) {
	/* Return a resource name rather than an object reference. */
	discard(COS_RESOURCE_VALUE(pvalue, pca));
    } else
	discard(COS_OBJECT_VALUE(pvalue, pca));
    if (pres != NULL) {
	pres->where_used |= pdev->used_mask;
	code = pdf_add_resource(pdev, pdev->substream_Resources, "/ColorSpace", pres);
	if (code < 0)
	    return code;
    }
    return 0;
}
示例#28
0
int
dljet_mono_print_page_copies(gx_device_printer * pdev, FILE * prn_stream,
			     int num_copies, int dots_per_inch, int features,
			     const char *odd_page_init, const char *even_page_init, bool tumble)
{
    int line_size = gdev_mem_bytes_per_scan_line((gx_device *) pdev);
    int line_size_words = (line_size + W - 1) / W;
    uint storage_size_words = line_size_words * 8;	/* data, out_row, out_row_alt, prev_row */
    word *storage;
    word
	*data_words,
	*out_row_words,
	*out_row_alt_words,
	*prev_row_words;
#define data ((byte *)data_words)
#define out_row ((byte *)out_row_words)
#define out_row_alt ((byte *)out_row_alt_words)
#define prev_row ((byte *)prev_row_words)
    byte *out_data;
    int x_dpi = (int)pdev->x_pixels_per_inch;
    int y_dpi = (int)pdev->y_pixels_per_inch;
    int y_dots_per_pixel = dots_per_inch / y_dpi;
    int num_rows = dev_print_scan_lines(pdev);

    int out_count;
    int compression = -1;
    static const char *const from2to3 = "\033*b3M";
    static const char *const from3to2 = "\033*b2M";
    int penalty_from2to3 = strlen(from2to3);
    int penalty_from3to2 = strlen(from3to2);
    int paper_size = gdev_pcl_paper_size((gx_device *) pdev);
    int code = 0;
    bool dup = pdev->Duplex;
    bool dupset = pdev->Duplex_set >= 0;

    if (num_copies != 1 && !(features & PCL_CAN_PRINT_COPIES))
	return gx_default_print_page_copies(pdev, prn_stream, num_copies);
    storage =
	(ulong *)gs_alloc_byte_array(pdev->memory, storage_size_words, W,
				     "hpjet_print_page");
    if (storage == 0)		/* can't allocate working area */
	return_error(gs_error_VMerror);
    data_words = storage;
    out_row_words = data_words + (line_size_words * 2);
    out_row_alt_words = out_row_words + (line_size_words * 2);
    prev_row_words = out_row_alt_words + (line_size_words * 2);
    /* Clear temp storage */
    memset(data, 0, storage_size_words * W);

    /* Initialize printer. */
    if (pdev->PageCount == 0) {
	if (features & HACK__IS_A_LJET4PJL) {
 	    fputs("\033%-12345X@PJL\r\n@PJL ENTER LANGUAGE = PCL\r\n",
  		  prn_stream);
	}
	fputs("\033E", prn_stream);	/* reset printer */
	/* If the printer supports it, set the paper size */
	/* based on the actual requested size. */
	if (features & PCL_CAN_SET_PAPER_SIZE) {
	    fprintf(prn_stream, "\033&l%dA", paper_size);
	}
	/* If printer can duplex, set duplex mode appropriately. */
	if (features & PCL_HAS_DUPLEX) {
	    if (dupset && dup && !tumble)
		fputs("\033&l1S", prn_stream);
       else if (dupset && dup && tumble)
		fputs("\033&l2S", prn_stream);
	    else if (dupset && !dup)
		fputs("\033&l0S", prn_stream);
	    else		/* default to duplex for this printer */
		fputs("\033&l1S", prn_stream);
	}
    }
    /* Put out per-page initialization. */
    if (features & PCL_CAN_SET_PAPER_SIZE){ 
        fprintf(prn_stream, "\033&l%dA", paper_size); 
    } 
    fputs("\033&l0o0l0E", prn_stream);
    if ((features & PCL_HAS_DUPLEX) && dupset && dup)
    {
       /* We are printing duplex, so change margins as needed */
       if ((pdev->PageCount%2)==0)
          fputs(odd_page_init, prn_stream);
       else
          fputs(even_page_init, prn_stream);
    }
    else
        fputs(odd_page_init, prn_stream);
    fprintf(prn_stream, "\033&l%dX", num_copies);	/* # of copies */

    /* End raster graphics, position cursor at top. */
    fputs("\033*rB\033*p0x0Y", prn_stream);

    /* The DeskJet and DeskJet Plus reset everything upon */
    /* receiving \033*rB, so we must reinitialize graphics mode. */
    if (features & PCL_END_GRAPHICS_DOES_RESET) {
	fputs(odd_page_init, prn_stream); /* Assume this does the right thing */
	fprintf(prn_stream, "\033&l%dX", num_copies);	/* # of copies */
    }

    /* Set resolution. */
    fprintf(prn_stream, "\033*t%dR", x_dpi);

    /* Send each scan line in turn */
    {
	int lnum;
	int num_blank_lines = 0;
	word rmask = ~(word) 0 << (-pdev->width & (W * 8 - 1));

	/* Transfer raster graphics. */
	for (lnum = 0; lnum < num_rows; lnum++) {
	    register word *end_data =
	    data_words + line_size_words;

	    code = gdev_prn_copy_scan_lines(pdev, lnum,
					    (byte *) data, line_size);
	    if (code < 0)
		break;
	    /* Mask off 1-bits beyond the line width. */
	    end_data[-1] &= rmask;
	    /* Remove trailing 0s. */
	    while (end_data > data_words && end_data[-1] == 0)
		end_data--;
	    if (end_data == data_words) {	/* Blank line */
		num_blank_lines++;
		continue;
	    }
	    /* We've reached a non-blank line. */
	    /* Put out a spacing command if necessary. */
	    if (num_blank_lines == lnum) {
		/* We're at the top of a page. */
		if (features & PCL_ANY_SPACING) {
		    if (num_blank_lines > 0)
			fprintf(prn_stream, "\033*p+%dY",
				num_blank_lines * y_dots_per_pixel);
		    /* Start raster graphics. */
		    fputs("\033*r1A", prn_stream);
		} else if (features & PCL_MODE_3_COMPRESSION) {
		    /* Start raster graphics. */
		    fputs("\033*r1A", prn_stream);
#if 1				/* don't waste paper */
		    if (num_blank_lines > 0)
			fputs("\033*b0W", prn_stream);
		    num_blank_lines = 0;
#else
		    for (; num_blank_lines; num_blank_lines--)
			fputs("\033*b0W", prn_stream);
#endif
		} else {
		    /* Start raster graphics. */
		    fputs("\033*r1A", prn_stream);
		    for (; num_blank_lines; num_blank_lines--)
			fputs("\033*bW", prn_stream);
		}
	    }
	    /* Skip blank lines if any */
	    else if (num_blank_lines != 0) {
		/*
		 * Moving down from current position causes head motion
		 * on the DeskJet, so if the number of lines is small,
		 * we're better off printing blanks.
		 */
		/*
		 * For Canon LBP4i and some others, <ESC>*b<n>Y doesn't
		 * properly clear the seed row if we are in compression mode
		 * 3.
		 */
		if ((num_blank_lines < MIN_SKIP_LINES && compression != 3) ||
		    !(features & PCL_ANY_SPACING)
		    ) {
		    bool mode_3ns =
			(features & PCL_MODE_3_COMPRESSION) &&
			!(features & PCL_ANY_SPACING);

		    if (mode_3ns && compression != 2) {
			/* Switch to mode 2 */
			fputs(from3to2, prn_stream);
			compression = 2;
		    }
		    if (features & PCL_MODE_3_COMPRESSION) {
			/* Must clear the seed row. */
			fputs("\033*b1Y", prn_stream);
			num_blank_lines--;
		    }
		    if (mode_3ns) {
			for (; num_blank_lines; num_blank_lines--)
			    fputs("\033*b0W", prn_stream);
		    } else {
			for (; num_blank_lines; num_blank_lines--)
			    fputs("\033*bW", prn_stream);
		    }
		} else if (features & PCL3_SPACING) {
		    fprintf(prn_stream, "\033*p+%dY",
			    num_blank_lines * y_dots_per_pixel);
		} else {
		    fprintf(prn_stream, "\033*b%dY",
			    num_blank_lines);
		}
		/* Clear the seed row (only matters for */
		/* mode 3 compression). */
		memset(prev_row, 0, line_size);
	    }
	    num_blank_lines = 0;

	    /* Choose the best compression mode */
	    /* for this particular line. */
	    if (features & PCL_MODE_3_COMPRESSION) {
		/* Compression modes 2 and 3 are both */
		/* available.  Try both and see which one */
		/* produces the least output data. */
		int count3 = gdev_pcl_mode3compress(line_size, data,
						    prev_row, out_row);
		int count2 = gdev_pcl_mode2compress(data_words, end_data,
						    out_row_alt);
		int penalty3 =
		    (compression == 3 ? 0 : penalty_from2to3);
		int penalty2 =
		    (compression == 2 ? 0 : penalty_from3to2);

		if (count3 + penalty3 < count2 + penalty2) {
		    if (compression != 3)
			fputs(from2to3, prn_stream);
		    compression = 3;
		    out_data = out_row;
		    out_count = count3;
		} else {
		    if (compression != 2)
			fputs(from3to2, prn_stream);
		    compression = 2;
		    out_data = out_row_alt;
		    out_count = count2;
		}
	    } else if (features & PCL_MODE_2_COMPRESSION) {
		out_data = out_row;
		out_count = gdev_pcl_mode2compress(data_words, end_data,
						   out_row);
	    } else {
		out_data = data;
		out_count = (byte *) end_data - data;
	    }

	    /* Transfer the data */
	    fprintf(prn_stream, "\033*b%dW", out_count);
	    fwrite(out_data, sizeof(byte), out_count,
		   prn_stream);
	}
    }

    /* end raster graphics and eject page */
    fputs("\033*rB\f", prn_stream);

    /* free temporary storage */
    gs_free_object(pdev->memory, storage, "hpjet_print_page");

    return code;
}
示例#29
0
/* Return the number of elements to pop (>0) if OK, <0 if error. */
static int
rect_get(local_rects_t * plr, os_ptr op, gs_memory_t *mem)
{
    int format, code;
    uint n, count;
    gs_rect *pr;
    double rv[4];

    switch (r_type(op)) {
	case t_array:
	case t_mixedarray:
	case t_shortarray:
	case t_string:
	    code = num_array_format(op);
	    if (code < 0)
		return code;
	    format = code;
	    count = num_array_size(op, format);
	    if (count % 4)
		return_error(e_typecheck);
	    count /= 4;
	    break;
	default:		/* better be 4 numbers */
	    code = num_params(op, 4, rv);
	    if (code < 0)
		return code;
	    plr->pr = plr->rl;
	    plr->count = 1;
	    plr->rl[0].q.x = (plr->rl[0].p.x = rv[0]) + rv[2];
	    plr->rl[0].q.y = (plr->rl[0].p.y = rv[1]) + rv[3];
	    return 4;
    }
    plr->count = count;
    if (count <= MAX_LOCAL_RECTS)
	pr = plr->rl;
    else {
	pr = (gs_rect *)gs_alloc_byte_array(mem, count, sizeof(gs_rect),
					    "rect_get");
	if (pr == 0)
	    return_error(e_VMerror);
    }
    plr->pr = pr;
    for (n = 0; n < count; n++, pr++) {
	ref rnum;
	int i;

	for (i = 0; i < 4; i++) {
	    code = num_array_get(mem, (const ref *)op, format,
				 (n << 2) + i, &rnum);
	    switch (code) {
		case t_integer:
		    rv[i] = rnum.value.intval;
		    break;
		case t_real:
		    rv[i] = rnum.value.realval;
		    break;
		default:	/* code < 0 */
		    return code;
	    }
	}
	pr->q.x = (pr->p.x = rv[0]) + rv[2];
	pr->q.y = (pr->p.y = rv[1]) + rv[3];
    }
    return 1;
}
示例#30
0
/* Finish building a FunctionType 3 (1-Input Stitching) function. */
int
gs_build_function_3(i_ctx_t *i_ctx_p, const ref *op, const gs_function_params_t * mnDR,
		    int depth, gs_function_t ** ppfn, gs_memory_t *mem)
{
    gs_function_1ItSg_params_t params;
    int code;
    extern bool CPSI_mode;

    *(gs_function_params_t *) & params = *mnDR;
    params.Functions = 0;
    params.Bounds = 0;
    params.Encode = 0;
    {
	ref *pFunctions;
	gs_function_t **ptr;
	int i;

	if ((code = dict_find_string(op, "Functions", &pFunctions)) <= 0)
	    return (code < 0 ? code : gs_note_error(e_rangecheck));
	check_array_only(*pFunctions);
	params.k = r_size(pFunctions);
	code = alloc_function_array(params.k, &ptr, mem);
	if (code < 0)
	    return code;
	params.Functions = (const gs_function_t * const *)ptr;
	for (i = 0; i < params.k; ++i) {
	    ref subfn;

	    array_get(mem, pFunctions, (long)i, &subfn);
	    code = fn_build_sub_function(i_ctx_p, &subfn, &ptr[i], depth, mem, 0, 0);
	    if (code < 0)
		goto fail;
	}
    }
    if ((code = fn_build_float_array(op, "Bounds", true, false, &params.Bounds, mem)) != params.k - 1)
	goto fail;
    if (CPSI_mode) {
	/* Adobe implementation doesn't check the Encode length. */
	/* Extra elements are ignored; missing elements are filled with 0. */
	/* CET 12-14m.ps depends on this bug */
	uint sz, k2 = 2 * params.k;
	ref *encode;
	float *p = (float *)gs_alloc_byte_array(mem, k2, sizeof(float), "Encode");

	params.Encode = p;
	if (p == 0) {
	    code = gs_note_error(e_VMerror);
	    goto fail;
	}
	if (dict_find_string(op, "Encode", &encode) <= 0) {
	    code = gs_note_error(e_undefined);
	    goto fail;
	}
	if (!r_is_array(encode)) {
	    code = gs_note_error(e_typecheck);
	    goto fail;
	}
	sz =  min(k2, r_size(encode));
	code = process_float_array(mem, encode, sz, p);
	if (code < 0)
	    goto fail;
	while (sz < k2)
	    p[sz++] = 0.0;
    } else if ((code = fn_build_float_array(op, "Encode", true, true, &params.Encode, mem)) != 2 * params.k)
	goto fail;
    if (params.Range == 0)
	params.n = params.Functions[0]->params.n;
    code = gs_function_1ItSg_init(ppfn, &params, mem);
    if (code >= 0)
	return 0;
fail:
    gs_function_1ItSg_free_params(&params, mem);
    return (code < 0 ? code : gs_note_error(e_rangecheck));
}