示例#1
0
    /**
     * C++ version of gsl_blas_ztrmv().
     * @param Uplo Upper or lower triangular
     * @param TransA Transpose type
     * @param Diag Diagonal type
     * @param A A matrix
     * @param X A vector
     * @return Error code on failure
     */
    int ztrmv( CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag,
	       matrix_complex const& A, vector_complex& X ){
      return gsl_blas_ztrmv( Uplo, TransA, Diag, A.get(), X.get() ); }
示例#2
0
int
gsl_linalg_complex_cholesky_invert(gsl_matrix_complex * LLT)
{
  if (LLT->size1 != LLT->size2)
    {
      GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR);
    }
  else
    {
      size_t N = LLT->size1;
      size_t i, j;
      gsl_vector_complex_view v1;

      /* invert the lower triangle of LLT */
      for (i = 0; i < N; ++i)
        {
          double ajj;
          gsl_complex z;

          j = N - i - 1;

          { 
            gsl_complex z0 = gsl_matrix_complex_get(LLT, j, j);
            ajj = 1.0 / GSL_REAL(z0); 
          }

          GSL_SET_COMPLEX(&z, ajj, 0.0);
          gsl_matrix_complex_set(LLT, j, j, z);

          {
            gsl_complex z1 = gsl_matrix_complex_get(LLT, j, j);
            ajj = -GSL_REAL(z1);
          }

          if (j < N - 1)
            {
              gsl_matrix_complex_view m;
              
              m = gsl_matrix_complex_submatrix(LLT, j + 1, j + 1,
                                       N - j - 1, N - j - 1);
              v1 = gsl_matrix_complex_subcolumn(LLT, j, j + 1, N - j - 1);

              gsl_blas_ztrmv(CblasLower, CblasNoTrans, CblasNonUnit,
                             &m.matrix, &v1.vector);

              gsl_blas_zdscal(ajj, &v1.vector);
            }
        } /* for (i = 0; i < N; ++i) */

      /*
       * The lower triangle of LLT now contains L^{-1}. Now compute
       * A^{-1} = L^{-H} L^{-1}
       *
       * The (ij) element of A^{-1} is column i of conj(L^{-1}) dotted into
       * column j of L^{-1}
       */

      for (i = 0; i < N; ++i)
        {
          gsl_complex sum;
          for (j = i + 1; j < N; ++j)
            {
              gsl_vector_complex_view v2;
              v1 = gsl_matrix_complex_subcolumn(LLT, i, j, N - j);
              v2 = gsl_matrix_complex_subcolumn(LLT, j, j, N - j);

              /* compute Ainv[i,j] = sum_k{conj(Linv[k,i]) * Linv[k,j]} */
              gsl_blas_zdotc(&v1.vector, &v2.vector, &sum);

              /* store in upper triangle */
              gsl_matrix_complex_set(LLT, i, j, sum);
            }

          /* now compute the diagonal element */
          v1 = gsl_matrix_complex_subcolumn(LLT, i, i, N - i);
          gsl_blas_zdotc(&v1.vector, &v1.vector, &sum);
          gsl_matrix_complex_set(LLT, i, i, sum);
        }

      /* copy the Hermitian upper triangle to the lower triangle */

      for (j = 1; j < N; j++)
        {
          for (i = 0; i < j; i++)
            {
              gsl_complex z = gsl_matrix_complex_get(LLT, i, j);
              gsl_matrix_complex_set(LLT, j, i, gsl_complex_conjugate(z));
            }
        } 

      return GSL_SUCCESS;
    }
} /* gsl_linalg_complex_cholesky_invert() */