示例#1
0
int
gsl_multifit_linear_wstdform2 (const gsl_matrix * LQR,
                               const gsl_vector * Ltau,
                               const gsl_matrix * X,
                               const gsl_vector * w,
                               const gsl_vector * y,
                               gsl_matrix * Xs,
                               gsl_vector * ys,
                               gsl_matrix * M,
                               gsl_multifit_linear_workspace * work)
{
  const size_t m = LQR->size1;
  const size_t n = X->size1;
  const size_t p = X->size2;

  if (n > work->nmax || p > work->pmax)
    {
      GSL_ERROR("observation matrix larger than workspace", GSL_EBADLEN);
    }
  else if (p != LQR->size2)
    {
      GSL_ERROR("LQR and X matrices have different numbers of columns", GSL_EBADLEN);
    }
  else if (n != y->size)
    {
      GSL_ERROR("y vector does not match X", GSL_EBADLEN);
    }
  else if (w != NULL && n != w->size)
    {
      GSL_ERROR("weights vector must be length n", GSL_EBADLEN);
    }
  else if (m >= p) /* square or tall L matrix */
    {
      /* the sizes of Xs and ys depend on whether m >= p or m < p */
      if (n != Xs->size1 || p != Xs->size2)
        {
          GSL_ERROR("Xs matrix must be n-by-p", GSL_EBADLEN);
        }
      else if (n != ys->size)
        {
          GSL_ERROR("ys vector must have length n", GSL_EBADLEN);
        }
      else
        {
          int status;
          size_t i;
          gsl_matrix_const_view R = gsl_matrix_const_submatrix(LQR, 0, 0, p, p);

          /* compute Xs = sqrt(W) X and ys = sqrt(W) y */
          status = gsl_multifit_linear_applyW(X, w, y, Xs, ys);
          if (status)
            return status;

          /* compute X~ = X R^{-1} using QR decomposition of L */
          for (i = 0; i < n; ++i)
            {
              gsl_vector_view v = gsl_matrix_row(Xs, i);

              /* solve: R^T y = X_i */
              gsl_blas_dtrsv(CblasUpper, CblasTrans, CblasNonUnit, &R.matrix, &v.vector);
            }

          return GSL_SUCCESS;
        }
    }
  else /* L matrix with m < p */
    {
      const size_t pm = p - m;
      const size_t npm = n - pm;

      /*
       * This code closely follows section 2.6.1 of Hansen's
       * "Regularization Tools" manual
       */

      if (npm != Xs->size1 || m != Xs->size2)
        {
          GSL_ERROR("Xs matrix must be (n-p+m)-by-m", GSL_EBADLEN);
        }
      else if (npm != ys->size)
        {
          GSL_ERROR("ys vector must be of length (n-p+m)", GSL_EBADLEN);
        }
      else if (n != M->size1 || p != M->size2)
        {
          GSL_ERROR("M matrix must be n-by-p", GSL_EBADLEN);
        }
      else
        {
          int status;
          gsl_matrix_view A = gsl_matrix_submatrix(work->A, 0, 0, n, p);
          gsl_vector_view b = gsl_vector_subvector(work->t, 0, n);

          gsl_matrix_view LTQR = gsl_matrix_view_array(LQR->data, p, m);           /* qr(L^T) */
          gsl_matrix_view Rp = gsl_matrix_view_array(LQR->data, m, m);             /* R factor of L^T */
          gsl_vector_const_view LTtau = gsl_vector_const_subvector(Ltau, 0, m);

          /*
           * M(:,1:p-m) will hold QR decomposition of A K_o; M(:,p) will hold
           * Householder scalars
           */
          gsl_matrix_view MQR = gsl_matrix_submatrix(M, 0, 0, n, pm);
          gsl_vector_view Mtau = gsl_matrix_subcolumn(M, p - 1, 0, GSL_MIN(n, pm));

          gsl_matrix_view AKo, AKp, HqTAKp;
          gsl_vector_view v;
          size_t i;

          /* compute A = sqrt(W) X and b = sqrt(W) y */
          status = gsl_multifit_linear_applyW(X, w, y, &A.matrix, &b.vector);
          if (status)
            return status;

          /* compute: A <- A K = [ A K_p ; A K_o ] */
          gsl_linalg_QR_matQ(&LTQR.matrix, &LTtau.vector, &A.matrix);
          AKp = gsl_matrix_submatrix(&A.matrix, 0, 0, n, m); 
          AKo = gsl_matrix_submatrix(&A.matrix, 0, m, n, pm); 

          /* compute QR decomposition [H,T] = qr(A * K_o) and store in M */
          gsl_matrix_memcpy(&MQR.matrix, &AKo.matrix);
          gsl_linalg_QR_decomp(&MQR.matrix, &Mtau.vector);

          /* AKp currently contains A K_p; apply H^T from the left to get H^T A K_p */
          gsl_linalg_QR_QTmat(&MQR.matrix, &Mtau.vector, &AKp.matrix);

          /* the last npm rows correspond to H_q^T A K_p */
          HqTAKp = gsl_matrix_submatrix(&AKp.matrix, pm, 0, npm, m);

          /* solve: Xs R_p^T = H_q^T A K_p for Xs */
          gsl_matrix_memcpy(Xs, &HqTAKp.matrix);
          for (i = 0; i < npm; ++i)
            {
              gsl_vector_view x = gsl_matrix_row(Xs, i);
              gsl_blas_dtrsv(CblasUpper, CblasNoTrans, CblasNonUnit, &Rp.matrix, &x.vector);
            }

          /*
           * compute: ys = H_q^T b; this is equivalent to computing
           * the last q elements of H^T b (q = npm)
           */
          v = gsl_vector_subvector(&b.vector, pm, npm);
          gsl_linalg_QR_QTvec(&MQR.matrix, &Mtau.vector, &b.vector);
          gsl_vector_memcpy(ys, &v.vector);

          return GSL_SUCCESS;
        }
    }
}
示例#2
0
 /**
  * C++ version of gsl_linalg_QR_QTmat().
  * @param QR A QR decomposition matrix
  * @param tau A vector
  * @param A A matrix
  * @return Error code on failure
  */
 inline int QR_QTmat( matrix const& QR, vector const& tau, matrix& A ){
   return gsl_linalg_QR_QTmat( QR.get(), tau.get(), A.get() ); } 
示例#3
0
int
gsl_linalg_hesstri_decomp(gsl_matrix * A, gsl_matrix * B, gsl_matrix * U,
                          gsl_matrix * V, gsl_vector * work)
{
  const size_t N = A->size1;

  if ((N != A->size2) || (N != B->size1) || (N != B->size2))
    {
      GSL_ERROR ("Hessenberg-triangular reduction requires square matrices",
                 GSL_ENOTSQR);
    }
  else if (N != work->size)
    {
      GSL_ERROR ("length of workspace must match matrix dimension",
                 GSL_EBADLEN);
    }
  else
    {
      double cs, sn;          /* rotation parameters */
      size_t i, j;            /* looping */
      gsl_vector_view xv, yv; /* temporary views */

      /* B -> Q^T B = R (upper triangular) */
      gsl_linalg_QR_decomp(B, work);

      /* A -> Q^T A */
      gsl_linalg_QR_QTmat(B, work, A);

      /* initialize U and V if desired */

      if (U)
        {
          gsl_linalg_QR_unpack(B, work, U, B);
        }
      else
        {
          /* zero out lower triangle of B */
          for (j = 0; j < N - 1; ++j)
            {
              for (i = j + 1; i < N; ++i)
                gsl_matrix_set(B, i, j, 0.0);
            }
        }

      if (V)
        gsl_matrix_set_identity(V);

      if (N < 3)
        return GSL_SUCCESS; /* nothing more to do */

      /* reduce A and B */
      for (j = 0; j < N - 2; ++j)
        {
          for (i = N - 1; i >= (j + 2); --i)
            {
              /* step 1: rotate rows i - 1, i to kill A(i,j) */

              /*
               * compute G = [ CS SN ] so that G^t [ A(i-1,j) ] = [ * ]
               *             [-SN CS ]             [ A(i, j)  ]   [ 0 ]
               */
              gsl_linalg_givens(gsl_matrix_get(A, i - 1, j),
                                gsl_matrix_get(A, i, j),
                                &cs,
                                &sn);
              /* invert so drot() works correctly (G -> G^t) */
              sn = -sn;

              /* compute G^t A(i-1:i, j:n) */
              xv = gsl_matrix_subrow(A, i - 1, j, N - j);
              yv = gsl_matrix_subrow(A, i, j, N - j);
              gsl_blas_drot(&xv.vector, &yv.vector, cs, sn);

              /* compute G^t B(i-1:i, i-1:n) */
              xv = gsl_matrix_subrow(B, i - 1, i - 1, N - i + 1);
              yv = gsl_matrix_subrow(B, i, i - 1, N - i + 1);
              gsl_blas_drot(&xv.vector, &yv.vector, cs, sn);

              if (U)
                {
                  /* accumulate U: U -> U G */
                  xv = gsl_matrix_column(U, i - 1);
                  yv = gsl_matrix_column(U, i);
                  gsl_blas_drot(&xv.vector, &yv.vector, cs, sn);
                }

              /* step 2: rotate columns i, i - 1 to kill B(i, i - 1) */

              gsl_linalg_givens(-gsl_matrix_get(B, i, i),
                                gsl_matrix_get(B, i, i - 1),
                                &cs,
                                &sn);
              /* invert so drot() works correctly (G -> G^t) */
              sn = -sn;

              /* compute B(1:i, i-1:i) G */
              xv = gsl_matrix_subcolumn(B, i - 1, 0, i + 1);
              yv = gsl_matrix_subcolumn(B, i, 0, i + 1);
              gsl_blas_drot(&xv.vector, &yv.vector, cs, sn);

              /* apply to A(1:n, i-1:i) */
              xv = gsl_matrix_column(A, i - 1);
              yv = gsl_matrix_column(A, i);
              gsl_blas_drot(&xv.vector, &yv.vector, cs, sn);

              if (V)
                {
                  /* accumulate V: V -> V G */
                  xv = gsl_matrix_column(V, i - 1);
                  yv = gsl_matrix_column(V, i);
                  gsl_blas_drot(&xv.vector, &yv.vector, cs, sn);
                }
            }
        }

      return GSL_SUCCESS;
    }
} /* gsl_linalg_hesstri_decomp() */