int gsl_eigen_hermv (gsl_matrix_complex * A, gsl_vector * eval, gsl_matrix_complex * evec, gsl_eigen_hermv_workspace * w) { if (A->size1 != A->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR); } else if (eval->size != A->size1) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else if (evec->size1 != A->size1 || evec->size2 != A->size1) { GSL_ERROR ("eigenvector matrix must match matrix size", GSL_EBADLEN); } else { const size_t N = A->size1; double *const d = w->d; double *const sd = w->sd; size_t a, b; /* handle special case */ if (N == 1) { gsl_complex A00 = gsl_matrix_complex_get (A, 0, 0); gsl_vector_set (eval, 0, GSL_REAL(A00)); gsl_matrix_complex_set (evec, 0, 0, GSL_COMPLEX_ONE); return GSL_SUCCESS; } /* Transform the matrix into a symmetric tridiagonal form */ { gsl_vector_view d_vec = gsl_vector_view_array (d, N); gsl_vector_view sd_vec = gsl_vector_view_array (sd, N - 1); gsl_vector_complex_view tau_vec = gsl_vector_complex_view_array (w->tau, N-1); gsl_linalg_hermtd_decomp (A, &tau_vec.vector); gsl_linalg_hermtd_unpack (A, &tau_vec.vector, evec, &d_vec.vector, &sd_vec.vector); } /* Make an initial pass through the tridiagonal decomposition to remove off-diagonal elements which are effectively zero */ chop_small_elements (N, d, sd); /* Progressively reduce the matrix until it is diagonal */ b = N - 1; while (b > 0) { if (sd[b - 1] == 0.0 || isnan(sd[b - 1])) { b--; continue; } /* Find the largest unreduced block (a,b) starting from b and working backwards */ a = b - 1; while (a > 0) { if (sd[a - 1] == 0.0) { break; } a--; } { size_t i; const size_t n_block = b - a + 1; double *d_block = d + a; double *sd_block = sd + a; double * const gc = w->gc; double * const gs = w->gs; /* apply QR reduction with implicit deflation to the unreduced block */ qrstep (n_block, d_block, sd_block, gc, gs); /* Apply Givens rotation Gij(c,s) to matrix Q, Q <- Q G */ for (i = 0; i < n_block - 1; i++) { const double c = gc[i], s = gs[i]; size_t k; for (k = 0; k < N; k++) { gsl_complex qki = gsl_matrix_complex_get (evec, k, a + i); gsl_complex qkj = gsl_matrix_complex_get (evec, k, a + i + 1); /* qki <= qki * c - qkj * s */ /* qkj <= qki * s + qkj * c */ gsl_complex x1 = gsl_complex_mul_real(qki, c); gsl_complex y1 = gsl_complex_mul_real(qkj, -s); gsl_complex x2 = gsl_complex_mul_real(qki, s); gsl_complex y2 = gsl_complex_mul_real(qkj, c); gsl_complex qqki = gsl_complex_add(x1, y1); gsl_complex qqkj = gsl_complex_add(x2, y2); gsl_matrix_complex_set (evec, k, a + i, qqki); gsl_matrix_complex_set (evec, k, a + i + 1, qqkj); } } /* remove any small off-diagonal elements */ chop_small_elements (n_block, d_block, sd_block); } } { gsl_vector_view d_vec = gsl_vector_view_array (d, N); gsl_vector_memcpy (eval, &d_vec.vector); } return GSL_SUCCESS; } }
/** * C++ version of gsl_linalg_hermtd_unpack(). * @param A A matrix * @param tau A vector * @param U A unitary matrix * @param diag A vector of diagonal elements * @param sudiag The vector of subdiagonal elements * @return Error code on failure */ inline int hermtd_unpack( matrix_complex const& A, vector_complex const& tau, matrix_complex& U, vector& diag, vector& sudiag ){ return gsl_linalg_hermtd_unpack( A.get(), tau.get(), U.get(), diag.get(), sudiag.get() ); }