示例#1
0
文件: fMRI_Slice.cpp 项目: rdevon/DBN
void DataSet::loadstim2(){
   name = "fMRI_stim";
   type = FMRI_STIM;
   dims[3] = 220;
   dims[0] = 3;
   dims[1] = 1;
   dims[2] = 1;
   train = gsl_matrix_float_calloc(dims[3], dims[0]*dims[1]);
   std::cout << "Loading stimulus" << std::endl;
   
   for (int i = 0; i < 220; ++i) {
      if (i%55 < 15)
         gsl_matrix_float_set(train, i, 0, 1);
      else if ((i - 20)%55 < 15 && i >= 20)
         gsl_matrix_float_set(train, i, 1, 1);
      else
         gsl_matrix_float_set(train, i, 2, 1);
   }
}
示例#2
0
文件: vncm.c 项目: Rollmops/lipsia
VAttrList
VNCM(VAttrList list,VImage mask,VShort minval,VShort first,VShort length,VFloat threshold)
{
  VAttrList out_list=NULL;
  VAttrListPosn posn;
  VImage src[NSLICES],map=NULL;
  VImage dest=NULL;
  size_t b,r,c,i,j,i1,n,m,nt,last,ntimesteps,nrows,ncols,nslices;
  gsl_matrix_float *mat=NULL;
  float *A=NULL,*ev=NULL;


  /*
  ** get image dimensions
  */
  i = ntimesteps = nrows = ncols = 0;
  for (VFirstAttr (list, & posn); VAttrExists (& posn); VNextAttr (& posn)) {
    if (VGetAttrRepn (& posn) != VImageRepn) continue;
    VGetAttrValue (& posn, NULL,VImageRepn, & src[i]);
    if (VPixelRepn(src[i]) != VShortRepn) continue;

    if (VImageNBands(src[i]) > ntimesteps) ntimesteps = VImageNBands(src[i]);
    if (VImageNRows(src[i])  > nrows)  nrows = VImageNRows(src[i]);
    if (VImageNColumns(src[i]) > ncols) ncols = VImageNColumns(src[i]);
    i++;
    if (i >= NSLICES) VError(" too many slices");
  }
  nslices = i;


  /* get time steps to include */
  if (length < 1) length = ntimesteps-2;
  last = first + length -1;
  if (last >= ntimesteps) last = ntimesteps-1;
  if (first < 0) first = 1;

  nt = last - first + 1;
  i1 = first+1;
  if (nt < 2) VError(" not enough timesteps, nt= %d",nt);
  fprintf(stderr,"# ntimesteps: %d, first= %d, last= %d, nt= %d\n",
	  (int)ntimesteps,(int)first,(int)last,(int)nt);


  /* count number of voxels */
  n = 0;
  for (b=0; b<nslices; b++) {
    if (VImageNRows(src[b]) < 2) continue;
    for (r=0; r<nrows; r++) {
      for (c=0; c<ncols; c++) {
	if (VPixel(src[b],i1,r,c,VShort) < minval) continue;
	if (VGetPixel(mask,b,r,c) < 0.5) continue;
	n++;
      }
    }
  }
  fprintf(stderr," nvoxels: %ld\n",(long)n);



  /*
  ** voxel addresses
  */
  map = VCreateImage(1,5,n,VFloatRepn);
  if (map == NULL) VError(" error allocating addr map");
  VFillImage(map,VAllBands,0);
  VPixel(map,0,3,0,VFloat) = nslices;
  VPixel(map,0,3,1,VFloat) = nrows;
  VPixel(map,0,3,2,VFloat) = ncols;

  i = 0;
  for (b=0; b<nslices; b++) {
    if (VImageNRows(src[b]) < 2) continue;
    for (r=0; r<nrows; r++) {
      for (c=0; c<ncols; c++) {
	if (VPixel(src[b],i1,r,c,VShort) < minval) continue;
	if (VGetPixel(mask,b,r,c) < 0.5) continue;

	VPixel(map,0,0,i,VFloat) = b;
	VPixel(map,0,1,i,VFloat) = r;
	VPixel(map,0,2,i,VFloat) = c;
	i++;
      }
    }
  }


  /*
  ** avoid casting to float, copy data to matrix
  */
  mat = gsl_matrix_float_calloc(n,nt);
  for (i=0; i<n; i++) {

    b = VPixel(map,0,0,i,VFloat);
    r = VPixel(map,0,1,i,VFloat);
    c = VPixel(map,0,2,i,VFloat);

    float *ptr = gsl_matrix_float_ptr(mat,i,0);
    int k;
    j = 0;
    for (k=first; k<=last; k++) {
      if (j >= mat->size2) VError(" j= %d %d",j,mat->size2);
      if (k >= VImageNBands(src[b])) VError(" k= %d %d",k, VImageNBands(src[b]));
      *ptr++ = (float) VPixel(src[b],k,r,c,VShort);
      j++;
    }
  }


  /*
  ** compute similarity matrix
  */
  m = (n*(n+1))/2;
  fprintf(stderr," matrix computation, n= %ld...\n",(long)n);
  A = (float *) calloc(m,sizeof(float));
  if (!A) VError(" err allocating correlation matrix");
  memset(A,0,m*sizeof(float));
  size_t progress=0;

#pragma omp parallel for shared(progress) private(j) schedule(guided) firstprivate(mat,A)
  for (i=0; i<n; i++) {
    if (i%100 == 0) fprintf(stderr," %d00\r",(int)(++progress));

    const float *arr1 = gsl_matrix_float_const_ptr(mat,i,0);
    for (j=0; j<i; j++) {

      const float *arr2 = gsl_matrix_float_const_ptr(mat,j,0);
      const double v = Correlation(arr1,arr2,nt);
      const size_t k=j+i*(i+1)/2;
      if (k >= m) VError(" illegal addr k= %d, m= %d",k,m);
      A[k] = (float)v;
    }
  }
  fprintf(stderr," matrix done.\n");
  gsl_matrix_float_free(mat);
 

  /*
  ** eigenvector centrality
  */
  ev = (float *) VCalloc(n,sizeof(float));
  DegreeCentrality(A,ev,n,threshold);
  dest = WriteOutput(src[0],map,nslices,nrows,ncols,ev,n);
  VSetAttr(VImageAttrList(dest),"name",NULL,VStringRepn,"DegreeCM");

  out_list = VCreateAttrList();
  VAppendAttr(out_list,"image",NULL,VImageRepn,dest);
  return out_list;
}
示例#3
0
float *
VCorrMatrix(VAttrList list,VImage map,VShort first,VShort length)
{
  VAttrListPosn posn;
  VImage src[NSLICES];
  size_t b,r,c,i,j,i1,n,m,nt,last,ntimesteps,nrows,ncols,nslices;
  gsl_matrix_float *mat=NULL;
  float *A=NULL;

  /*
  ** get image dimensions
  */
  i = ntimesteps = nrows = ncols = 0;
  for (VFirstAttr (list, & posn); VAttrExists (& posn); VNextAttr (& posn)) {
    if (VGetAttrRepn (& posn) != VImageRepn) continue;
    VGetAttrValue (& posn, NULL,VImageRepn, & src[i]);
    if (VPixelRepn(src[i]) != VShortRepn) continue;

    if (VImageNBands(src[i]) > ntimesteps) ntimesteps = VImageNBands(src[i]);
    if (VImageNRows(src[i])  > nrows)  nrows = VImageNRows(src[i]);
    if (VImageNColumns(src[i]) > ncols) ncols = VImageNColumns(src[i]);
    i++;
    if (i >= NSLICES) VError(" too many slices");
  }
  nslices = i;


  /* get time steps to include */
  if (length < 1) length = ntimesteps-2;
  last = first + length -1;
  if (last >= ntimesteps) last = ntimesteps-1;
  if (first < 0) first = 1;

  nt = last - first + 1;
  i1 = first+1;
  if (nt < 2) VError(" not enough timesteps, nt= %d",nt);

  /* number of voxels */
  n = VImageNColumns(map);

  fprintf(stderr," ntimesteps: %d, first= %d, last= %d, nt= %d, nvoxels: %ld\n",
	  (int)ntimesteps,(int)first,(int)last,(int)nt,(long)n);


  /*
  ** avoid casting to float, copy data to matrix
  */
  mat = gsl_matrix_float_calloc(n,nt);
  if (!mat) VError(" err allocating mat");
  for (i=0; i<n; i++) {

    b = VPixel(map,0,0,i,VShort);
    r = VPixel(map,0,1,i,VShort);
    c = VPixel(map,0,2,i,VShort);

    float *ptr = gsl_matrix_float_ptr(mat,i,0);
    int k;
    j = 0;
    for (k=first; k<=last; k++) {
      if (j >= mat->size2) VError(" j= %d %d",j,mat->size2);
      if (k >= VImageNBands(src[b])) VError(" k= %d %d",k, VImageNBands(src[b]));
      *ptr++ = (float) VPixel(src[b],k,r,c,VShort);
      j++;
    }
  }


  /*
  ** compute similarity matrix
  */
  m = (n*(n+1))/2;
  fprintf(stderr," compute correlation matrix...\n");
  A = (float *) VCalloc(m,sizeof(float));
  if (!A) VError(" err allocating correlation matrix");
  memset(A,0,m*sizeof(float));
  size_t progress=0;

#pragma omp parallel for shared(progress) private(j) schedule(guided) firstprivate(mat,A)
 
  for (i=0; i<n; i++) {
    if (i%100 == 0) fprintf(stderr," %d00\r",(int)(++progress));

    const float *arr1 = gsl_matrix_float_const_ptr(mat,i,0);
    for (j=0; j<i; j++) {
      const float *arr2 = gsl_matrix_float_const_ptr(mat,j,0);
      const double v = Correlation(arr1,arr2,nt);
      const size_t k=j+i*(i+1)/2;
      if (k >= m) VError(" illegal addr k= %d, m= %d",k,m);
      A[k] = v;
    }
  }
  fprintf(stderr," matrix done.\n");
  gsl_matrix_float_free(mat);
  return A;
}
示例#4
0
文件: vsimmat.c 项目: Rollmops/lipsia
VImage
SimilarityMatrix(VAttrList list, VImage mask, VShort minval, VShort fisher) {
    VAttrListPosn posn;
    VImage src[NSLICES], dest = NULL, map = NULL;
    int b, r, c, i, j, n, ntimesteps, nrows, ncols, nslices;
    double u, x, y, smin, smax, tiny = 1.0e-6;
    gsl_matrix_float *mat = NULL;
    /*
    ** get image dimensions
    */
    i = ntimesteps = nrows = ncols = 0;
    for(VFirstAttr(list, & posn); VAttrExists(& posn); VNextAttr(& posn)) {
        if(VGetAttrRepn(& posn) != VImageRepn)
            continue;
        VGetAttrValue(& posn, NULL, VImageRepn, & src[i]);
        if(VPixelRepn(src[i]) != VShortRepn)
            continue;
        if(VImageNBands(src[i]) > ntimesteps)
            ntimesteps = VImageNBands(src[i]);
        if(VImageNRows(src[i])  > nrows)
            nrows = VImageNRows(src[i]);
        if(VImageNColumns(src[i]) > ncols)
            ncols = VImageNColumns(src[i]);
        i++;
        if(i >= NSLICES)
            VError(" too many slices");
    }
    nslices = i;
    n = 0;
    for(b = 0; b < nslices; b++) {
        if(VImageNRows(src[b]) < 2)
            continue;
        for(r = 0; r < nrows; r++) {
            for(c = 0; c < ncols; c++) {
                if(VPixel(src[b], 0, r, c, VShort) < minval)
                    continue;
                if(VGetPixel(mask, b, r, c) < 0.1)
                    continue;
                n++;
            }
        }
    }
    fprintf(stderr, " n: %d\n", n);
    /*
    ** voxel addresses
    */
    map = VCreateImage(1, 5, n, VFloatRepn);
    VFillImage(map, VAllBands, 0);
    VPixel(map, 0, 3, 0, VFloat) = nslices;
    VPixel(map, 0, 3, 1, VFloat) = nrows;
    VPixel(map, 0, 3, 2, VFloat) = ncols;
    i = 0;
    for(b = 0; b < nslices; b++) {
        if(VImageNRows(src[b]) < 2)
            continue;
        for(r = 0; r < nrows; r++) {
            for(c = 0; c < ncols; c++) {
                if(VPixel(src[b], 0, r, c, VShort) < minval)
                    continue;
                if(VGetPixel(mask, b, r, c) < 0.1)
                    continue;
                VPixel(map, 0, 0, i, VFloat) = b;
                VPixel(map, 0, 1, i, VFloat) = r;
                VPixel(map, 0, 2, i, VFloat) = c;
                i++;
            }
        }
    }
    /* ini output image */
    if(n < 8000)
        dest = VCreateImage(1, n, n, VFloatRepn);
    else if(n >= 8000 && n < 10000)
        dest = VCreateImage(1, n, n, VShortRepn);
    else
        dest = VCreateImage(1, n, n, VSByteRepn);
    VFillImage(dest, VAllBands, 0);
    smin = VPixelMinValue(dest);
    smax = VPixelMaxValue(dest);
    /*
    ** avoid casting to float, copy data to matrix
    */
    mat = gsl_matrix_float_calloc(n, ntimesteps);
    for(i = 0; i < n; i++) {
        b = VPixel(map, 0, 0, i, VFloat);
        r = VPixel(map, 0, 1, i, VFloat);
        c = VPixel(map, 0, 2, i, VFloat);
        float *ptr = gsl_matrix_float_ptr(mat, i, 0);
        int k;
        j = 0;
        for(k = 0; k < ntimesteps; k++) {
            if(j >= mat->size2)
                VError(" j= %d %d", j, mat->size2);
            if(k >= VImageNBands(src[b]))
                VError(" k= %d %d", k, VImageNBands(src[b]));
            *ptr++ = (float) VPixel(src[b], k, r, c, VShort);
            j++;
        }
    }
    /*
    ** main process loop
    */
    for(i = 0; i < n; i++) {
        if(i % 50 == 0)
            fprintf(stderr, " i: %4d\r", i);
        const float *arr1 = gsl_matrix_float_const_ptr(mat, i, 0);
        for(j = 0; j <= i; j++) {
            const float *arr2 = gsl_matrix_float_const_ptr(mat, j, 0);
            u = Correlation(arr1, arr2, ntimesteps);
            /* Fisher r-to-z transform */
            if(fisher) {
                x = 1 + u;
                y = 1 - u;
                if(x < tiny)
                    x = tiny;
                if(y < tiny)
                    y = tiny;
                u = 0.5 * log(x / y);
            }
            if(VPixelRepn(dest) != VFloatRepn) {
                u *= smax;
                if(u < smin)
                    u = smin;
                if(u > smax)
                    u = smax;
            }
            VSetPixel(dest, 0, i, j, u);
            VSetPixel(dest, 0, j, i, u);
        }
    }
    VCopyImageAttrs(src[0], dest);
    VSetAttr(VImageAttrList(dest), "similarity_metric", NULL, VStringRepn, "corr_pearson");
    VSetAttr(VImageAttrList(dest), "name", NULL, VStringRepn, "similarity_matrix");
    VSetAttr(VImageAttrList(dest), "map", NULL, VImageRepn, map);
    return dest;
}