示例#1
0
      /**
       * The destructor only deletes the pointers if count reaches zero.
       */
      ~fdfsolver(){
	if( count == 0 or --*count == 0 ){
	  // could have allocated null pointer
	  if( ccgsl_pointer != 0 ) gsl_multifit_fdfsolver_free( ccgsl_pointer );
	  delete count;
	}
      }
示例#2
0
文件: magcal.c 项目: pa345/lib
void
magcal_free(magcal_workspace *w)
{
  if (w->Ex)
    free(w->Ex);

  if (w->Ey)
    free(w->Ey);

  if (w->Ez)
    free(w->Ez);

  if (w->F)
    free(w->F);

  if (w->fdf_s)
    gsl_multifit_fdfsolver_free(w->fdf_s);

  if (w->fdf_ridge)
    gsl_multifit_fdfridge_free(w->fdf_ridge);

  if (w->covar)
    gsl_matrix_free(w->covar);

  free(w);
}
示例#3
0
文件: magcal.c 项目: pa345/lib
static int
magcal_init(const satdata_mag *data, magcal_workspace *w)
{
  int s = 0;
  size_t i;
  size_t n = 0;

  for (i = 0; i < data->n; ++i)
    {
      /* don't store flagged data */
      if (data->flags[i])
        continue;

      /* don't process high latitude data */
      if (fabs(data->latitude[i]) > MAGCAL_MAX_LATITUDE)
        continue;

      w->Ex[n] = SATDATA_VEC_X(data->B_VFM, i);
      w->Ey[n] = SATDATA_VEC_Y(data->B_VFM, i);
      w->Ez[n] = SATDATA_VEC_Z(data->B_VFM, i);

      w->F[n] = data->F[i];

      ++n;
    }

  if (n < 200)
    {
      fprintf(stderr, "magcal_init: insufficient data points for calibration: %zu\n",
              n);
      return -1;
    }

  if (n != w->n)
    {
      gsl_multifit_fdfsolver_free(w->fdf_s);
      gsl_multifit_fdfridge_free(w->fdf_ridge);
      w->fdf_s = gsl_multifit_fdfsolver_alloc(w->fdf_type, n, w->p);
      w->fdf_ridge = gsl_multifit_fdfridge_alloc(w->fdf_type, n, w->p);
      w->n = n;
    }

#if MAGCAL_SCALE
  w->B_s = GSL_MAX(gsl_stats_sd(w->Ex, 1, n),
                   GSL_MAX(gsl_stats_sd(w->Ey, 1, n),
                           gsl_stats_sd(w->Ez, 1, n)));
#endif

  /* center and scale data arrays */
  for (i = 0; i < n; ++i)
    {
      w->Ex[i] /= w->B_s;
      w->Ey[i] /= w->B_s;
      w->Ez[i] /= w->B_s;
      w->F[i] /= w->B_s;
    }

  return s;
} /* magcal_init() */
示例#4
0
      /**
       * The assignment operator. This copies elementwise.
       * @param v The fdfsolver to copy
       */
      fdfsolver& operator=( fdfsolver const& v ){
	// first, possibly delete anything pointed to by this
	if( count == 0 or --*count == 0 ){
	  if( ccgsl_pointer != 0 ) gsl_multifit_fdfsolver_free( ccgsl_pointer );
	  delete count;
	} // Then copy
	ccgsl_pointer = v.ccgsl_pointer; count = v.count; if( count != 0 ) ++*count; return *this;
      }
Vector MultiSolver::NLLeastSquareSolver(MultiSolverInput *input)
{
	/**/condition.analyzer->solverSolving.startTimer();	// ---- ---- T5 start
	const gsl_multifit_fdfsolver_type *T;
	gsl_multifit_fdfsolver *s;
	gsl_multifit_function_fdf f;
	
	double x_init[3] = {0.0, 0.0, 150.0};
//	x_init[0] = input->initLocation.x;
//	x_init[1] = input->initLocation.y;
//	x_init[2] = input->initLocation.z;
	
	gsl_vector_view x = gsl_vector_view_array(x_init, 3);

	int n = (int)input->data.size();

	// sort restriction..
//	n = 3;

	int p = 3;

	f.f = &ms_f;
	f.df = &ms_df;
	f.fdf = &ms_fdf;
	f.n = n;
	f.p = p;	
	f.params = input;

	T = gsl_multifit_fdfsolver_lmsder;
	s = gsl_multifit_fdfsolver_alloc(T, n, p);
	gsl_multifit_fdfsolver_set(s, &f, &x.vector);

	gsl_vector *gradt = gsl_vector_alloc(p);

	int iter = 0;
	int status;
	do
	{
		iter ++;
		status = gsl_multifit_fdfsolver_iterate(s);
		if (status) break;
///		status = gsl_multifit_test_delta(s->dx, s->x, 1e-4, 1e-4);
		gsl_multifit_gradient(s->J, s->f, gradt);
		status = gsl_multifit_test_gradient(gradt, 1e-6);
	}
	while (status == GSL_CONTINUE && iter < 500);

	

	Vector point = Vector(gsl_vector_get(s->x, 0), gsl_vector_get(s->x, 1), gsl_vector_get(s->x, 2));

	gsl_vector_free(gradt);
	gsl_multifit_fdfsolver_free(s);


	/**/condition.analyzer->solverSolving.stopTimer();	// ---- ---- T5 end
	return point;	
}
示例#6
0
void
test_lmder (gsl_multifit_function_fdf * f, double x0[], 
            double * X, double F[], double * cov)
{
  const gsl_multifit_fdfsolver_type *T;
  gsl_multifit_fdfsolver *s;

  const size_t n = f->n;
  const size_t p = f->p;

  int status;
  size_t iter = 0, i;
  
  gsl_vector_view x = gsl_vector_view_array (x0, p);

  T = gsl_multifit_fdfsolver_lmsder;
  s = gsl_multifit_fdfsolver_alloc (T, n, p);
  gsl_multifit_fdfsolver_set (s, f, &x.vector);

  do
    {
      status = gsl_multifit_fdfsolver_iterate (s);

      for (i = 0 ; i < p; i++)
        {
          gsl_test_rel (gsl_vector_get (s->x, i), X[p*iter+i], 1e-5, 
                        "lmsder, iter=%u, x%u", iter, i);
        }

      gsl_test_rel (gsl_blas_dnrm2 (s->f), F[iter], 1e-5, 
                    "lmsder, iter=%u, f", iter);

      iter++;
    }
  while (iter < 20);
  
  {
    size_t i, j;
    gsl_matrix * covar = gsl_matrix_alloc (4, 4);
    gsl_multifit_covar (s->J, 0.0, covar);

    for (i = 0; i < 4; i++) 
      {
        for (j = 0; j < 4; j++)
          {
            gsl_test_rel (gsl_matrix_get(covar,i,j), cov[i*p + j], 1e-7, 
                          "gsl_multifit_covar cov(%d,%d)", i, j) ;
          }
      }

    gsl_matrix_free (covar);
  }

  gsl_multifit_fdfsolver_free (s);

}
示例#7
0
static void
ncm_fit_gsl_ls_finalize (GObject *object)
{
  NcmFitGSLLS *fit_gsl_ls = NCM_FIT_GSL_LS (object);

  gsl_multifit_fdfsolver_free (fit_gsl_ls->ls);

  /* Chain up : end */
  G_OBJECT_CLASS (ncm_fit_gsl_ls_parent_class)->finalize (object);
}
示例#8
0
      /**
       * The default constructor creates a new fdfsolver with n elements.
       * @param T The fdfsolver type.
       * @param n The number of elements in the fdfsolver.
       * @param p The number of predictor variables
       */
      explicit fdfsolver( type const* T, size_t const n, size_t const p ){
	ccgsl_pointer = gsl_multifit_fdfsolver_alloc( T, n, p );
	// just plausibly we could allocate fdfsolver but not count
	try { count = new size_t; } catch( std::bad_alloc& e ){
	  // try to tidy up before rethrowing
	  gsl_multifit_fdfsolver_free( ccgsl_pointer );
	  throw e;
	}
	*count = 1; // initially there is just one reference to ccgsl_pointer
      }
示例#9
0
void
gsl_multifit_fdfridge_free(gsl_multifit_fdfridge *work)
{
  if (work->s)
    gsl_multifit_fdfsolver_free(work->s);

  if (work->wts)
    gsl_vector_free(work->wts);

  free(work);
}
示例#10
0
int NonLinearLSQ::curvefit() {

  size_t n(nSize());
  size_t p(nParms());

  //  Initialize the solver function information
  _nlsqPointer d = { this };
  gsl_multifit_function_fdf mf;
  mf.f      = &f;
  mf.df     = &df;
  mf.fdf    = &fdf;
  mf.n      =  n;
  mf.p      = p;
  mf.params =  &d;

  const gsl_multifit_fdfsolver_type *T = gsl_multifit_fdfsolver_lmsder;
  gsl_multifit_fdfsolver *s = gsl_multifit_fdfsolver_alloc(T, n, p);

  _fitParms = guess();
  gsl_vector *x = NlsqTogsl(_fitParms);
  gsl_matrix *covar = gsl_matrix_alloc(p, p);
  gsl_multifit_fdfsolver_set(s, &mf, x);

  _nIters = 0;
  checkIteration(_nIters, gslToNlsq(s->x), NLVector(p,999.0),
                  gsl_blas_dnrm2(s->f), GSL_CONTINUE);


  do {
    _nIters++;

    _status = gsl_multifit_fdfsolver_iterate(s);
    _fitParms = gslToNlsq(s->x);

    gsl_multifit_covar(s->J, 0.0, covar);
    _uncert = getUncertainty(covar);

    _status = checkIteration(_nIters, _fitParms, _uncert, gsl_blas_dnrm2(s->f),
                             _status);
    if ( _status  ) { break; }
    if(!doContinue()) { break; }

    _status = gsl_multifit_test_delta(s->dx, s->x, absErr(), relErr());
  } while ((_status == GSL_CONTINUE) && (_nIters < _maxIters));

  // Clean up
  gsl_multifit_fdfsolver_free(s);
  gsl_matrix_free(covar);

  return (_status);
}
示例#11
0
static void
_ncm_fit_gsl_ls_reset (NcmFit *fit)
{
  /* Chain up : start */
  NCM_FIT_CLASS (ncm_fit_gsl_ls_parent_class)->reset (fit);
  {
    NcmFitGSLLS *fit_gsl_ls = NCM_FIT_GSL_LS (fit);
    if (fit_gsl_ls->f.p != fit->fstate->fparam_len || fit_gsl_ls->f.n != fit->fstate->data_len)
    {
      gsl_multifit_fdfsolver_free (fit_gsl_ls->ls);

      fit_gsl_ls->f.p = fit->fstate->fparam_len;
      fit_gsl_ls->f.n = fit->fstate->data_len;
      fit_gsl_ls->ls  = gsl_multifit_fdfsolver_alloc (fit_gsl_ls->T,
                                                      fit_gsl_ls->f.n,
                                                      fit_gsl_ls->f.p);
    }
  }
}
示例#12
0
void MLFitterGSL::initfitter(){
    //do first whatever the fitter wants to do here
    Fitter::initfitter();

  #ifdef FITTER_DEBUG
  std::cout <<"mlfitter_gsl::initfitter called\n";
  #endif

  //createmodelinfo(); //update number of free parameters etc if a model has changed
  const int n=modelptr->getnpoints();
  try{
    //delete old solver and create new one
    if (solver!=0) gsl_multifit_fdfsolver_free (solver);
    const gsl_multifit_fdfsolver_type * T = gsl_multifit_fdfsolver_lmsder; //Scaled Levenberg Marquardt
    solver= gsl_multifit_fdfsolver_alloc (T,n,modelptr->getnroffreeparameters());

    //reallocate memory for parameter vector x and covariance matrix covar
    if (initialparameters!=0) gsl_vector_free (initialparameters);
    if (covar!=0) gsl_matrix_free (covar);

    initialparameters=gsl_vector_calloc (modelptr->getnroffreeparameters()); //allocate space for vector x, containing param values
    covar=gsl_matrix_calloc (modelptr->getnroffreeparameters(), modelptr->getnroffreeparameters());

    //init the link with the function to be fitted
    initfdf();

    //load the current parameters in the x vector
    initparameters();

    //reinit the solver
    gsl_multifit_fdfsolver_set(solver,&f,initialparameters);
  }
  catch(...){
    //problems with memory? -> kill this
    Saysomething mysay(0,"Error","Unable to allocate memory, exit MLFitterGSL",true);
    delete(this);
  }
}
示例#13
0
static int gauss_fit(dist_t *dist, int ngauss, double *params)
{
    data_t *dat = &dist->dat;
    dat->ngauss = ngauss;

    gsl_multifit_function_fdf mfunc;
    mfunc.f   = &func_f;
    mfunc.df  = &func_df;
    mfunc.fdf = &func_set;
    mfunc.n   = dat->nvals;
    mfunc.p   = ngauss*3;      // number of fitting parameters
    mfunc.params = dat;

    const gsl_multifit_fdfsolver_type *solver_type;
    gsl_multifit_fdfsolver *solver;
    gsl_vector_view vview = gsl_vector_view_array(params, mfunc.p);
    solver_type = gsl_multifit_fdfsolver_lmsder;
    solver = gsl_multifit_fdfsolver_alloc(solver_type, dat->nvals, mfunc.p);
    gsl_multifit_fdfsolver_set(solver, &mfunc, &vview.vector);

    int i, status;
    size_t iter = 0;
    do
    {
        status = gsl_multifit_fdfsolver_iterate(solver);
        if ( status ) break;
        status = gsl_multifit_test_delta(solver->dx, solver->x, 1e-4, 1e-4);
    }
    while (status == GSL_CONTINUE && iter++ < 500);

    for (i=0; i<mfunc.p; i++)
        params[i] = gsl_vector_get(solver->x, i);

    gsl_multifit_fdfsolver_free(solver);
    return iter>500 ? -1 : 0;
}
/*******************************************************************************
 * fit_gaussian
 * Fit data to a guassian and return the results. Ideally, this should give the
 * same results as scipy.optimize.curve_fit.
 * Input:
 *      hist:           Histogram to fit the gaussian to
 * Output:
 *      chisq:          Chi^2 of the histogram
 *      ndf:            Number of degrees of freedom of the fit
 *      fit_params:     Fit parameters
 ******************************************************************************/
gsl_vector *fit_gaussian(gsl_histogram *hist,
        double *chisq, long *ndf, gsl_matrix *covar){
    double tol;
    double *hbin, *hrange, bin_width, xdata, min, max;
    double magnitude, mean, sigma;
    double error, ythr;
    int status;
    long gpars, nonzero, nbins;
    long i;
    gsl_vector *pars, *fit_params;
    gsl_multifit_fdfsolver *gfit;
    gsl_multifit_function_fdf gaus;
    const gsl_multifit_fdfsolver_type *ftype;

    /* Allowed relative error is what scipy uses */
    /* tol = 1.49012e-8; scipy least squares default */
    tol = 1e-14;

    /* get number of bins containing data */
    nbins = hist -> n;
    hbin = hist -> bin;
    hrange = hist -> range;
    nonzero = 0;
    for (i=0; i<nbins; i++){
        if (hbin[i]) nonzero++;
    }

    /* Set the function */
    gaus.f = &gaus_f;
    gaus.df = &gaus_df;
    gaus.fdf = &gaus_fdf;
    gaus.n = nonzero;
    gaus.p = 3;
    gaus.params = hist;

    /* Initialize the solver */
    gpars = 3;
    pars = gsl_vector_alloc(gpars);
    gsl_vector_set_all(pars, 1.0);
    ftype = gsl_multifit_fdfsolver_lmsder;
    gfit = gsl_multifit_fdfsolver_alloc(ftype, nonzero, gpars);
    gsl_multifit_fdfsolver_set(gfit, &gaus, pars);

    /* loop the solver and solve this thing */
    do {
        status = gsl_multifit_fdfsolver_iterate(gfit);
        status = gsl_multifit_test_delta(gfit -> dx, gfit -> x, 0, tol);
    } while (status == GSL_CONTINUE);

    magnitude = gsl_vector_get(gfit -> x, 0);
    mean = gsl_vector_get(gfit -> x, 1);
    /* The fitted sigma might be negative, but it is squared when computing the
     * gaussian, so taking the absolute value of sigma is ok */
    sigma = fabs(gsl_vector_get(gfit -> x, 2));

    /* Compute the chi^2 */
    min = hrange[0];
    max = hrange[nbins];
    bin_width = (max - min) / nbins;
    *chisq = 0;
    for (i = 0; i<nbins; i++){
        if (hbin[i]){
            xdata = hrange[i] + bin_width/2.0;
            error = sqrt(hbin[i]);
            ythr = gaussian(xdata, magnitude, mean, sigma);
            *chisq += pow((hbin[i] - ythr)/error, 2);
        }
    }
    *ndf = nonzero - gpars;

    /* Copy results to return vector */
    fit_params = gsl_vector_alloc(gpars);
    gsl_vector_memcpy(fit_params, gfit -> x);

    /* Compute the covariance matrix */
    gsl_multifit_covar(gfit -> J, 0.0, covar);

    /* Free the solver's memory */
    gsl_vector_free(pars);
    gsl_multifit_fdfsolver_free(gfit);

    /* Return the results of the fit */
    return fit_params;
}
void PlaneDetector::solve()
{
	// prepare calculation data

	DetectionData baseData;

	// prepare gsl variables
	const gsl_multifit_fdfsolver_type *T;
	gsl_multifit_fdfsolver *s;

	int n = (int)data.size();
#ifdef VECTOR_SOLVER
	const int p = 4;
	double x_init[p] = {0.0, 0.0, 1.0, 0.0};
#endif
#ifdef ANGLE_SOLVER
	const int p = 3;
//	double x_init[p] = {0.0, 0.0, 0.0};
	double x_init[p] = {0.0, 90.0 / 180.0 * M_PI, 0.0};
#endif
#ifdef VECTOR2_SOLVER
	const int p = 6;
//	double x_init[p] = {1.0, 0.0, 0.0, 500.0, 0.0, 0.0};
	double x_init[p] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
#endif
#ifdef ANGLE2_SOLVER
	const int p = 5;
	double x_init[p] = {0.0, M_PI / 2.0 + 0.1, 000.0, 0.0, 0.0};
#endif

	gsl_multifit_function_fdf f;
	f.f = &pd_func_f;
	f.df = &pd_func_df;
	f.fdf = &pd_func_fdf;
	f.n = n;
	f.p = p;
	f.params = &data;
	gsl_vector_view x = gsl_vector_view_array(x_init, p);

	T = gsl_multifit_fdfsolver_lmsder;
	s = gsl_multifit_fdfsolver_alloc(T, n, p);
	gsl_multifit_fdfsolver_set(s, &f, &x.vector);

	gsl_vector *gradt = gsl_vector_alloc(p);

	int iter = 0;
	int status;
	do
	{
		iter ++;
		status = gsl_multifit_fdfsolver_iterate(s);
		if (status)
		{
//			printf ("error: %s\n", gsl_strerror (status));
			break;
		}
		gsl_multifit_gradient(s->J, s->f, gradt);
		status = gsl_multifit_test_gradient(gradt, 1e-6);
	} while (status == GSL_CONTINUE && iter < 10000);

#ifdef VECTOR_SOLVER
	vN = Vector(
			gsl_vector_get(s->x, 0),
			gsl_vector_get(s->x, 1),
			gsl_vector_get(s->x, 2)).getUnitVector();
	fD = gsl_vector_get(s->x, 3);
#endif
#ifdef ANGLE_SOLVER
	double theta = gsl_vector_get(s->x, 0);
	double pi = gsl_vector_get(s->x, 1);
	vN = Vector(sin(pi)*cos(theta), sin(pi)*sin(theta), cos(pi));
	double d = gsl_vector_get(s->x, 2);
	fD = - ((vN & vListener) + d);
#endif
#ifdef VECTOR2_SOLVER
	vN = Vector(
			gsl_vector_get(s->x, 0),
			gsl_vector_get(s->x, 1),
			gsl_vector_get(s->x, 2)).getUnitVector();
	Vector vX1 = Vector(
			gsl_vector_get(s->x, 3),
			gsl_vector_get(s->x, 4),
			gsl_vector_get(s->x, 5));
	fD = -(vN & vX1);
#endif
#ifdef ANGLE2_SOLVER
	double theta = gsl_vector_get(s->x, 0);
	double pi = gsl_vector_get(s->x, 1);
	vN = Vector(sin(pi)*cos(theta), sin(pi)*sin(theta), cos(pi));
	Vector vX1 = Vector(
			gsl_vector_get(s->x, 2),
			gsl_vector_get(s->x, 3),
			gsl_vector_get(s->x, 4));
	fD = -(vN & vX1);
#endif

#if 0
	for (double  pp = 0; pp < M_PI; pp += 0.1)
	{
		for (double tt = 0; tt < M_PI; tt += 0.1)
		{
			Vector vNN = Vector(sin(pp)*cos(tt), sin(pp)*sin(tt), cos(pp));
			printf("vN = ");
			vNN.print();
			double sum = 0;
			for (size_t i = 0; i < data.size(); i++)
			{
				sum += pow(data[i].getF(tt, pp, fD), 2);
			}
			printf(" , sum = %f\n", sum);
		}
	}
#endif


#if 0
	double sqrsum = 0;
	for (size_t i = 0; i < data.size(); i++)
	{
#ifdef VECTOR_SOLVER
		sqrsum += pow(data[i].getF(vN, fD), 2);
#endif
#ifdef ANGLE_SOLVER
		sqrsum += pow(data[i].getF(theta, pi, fD), 2);
#endif
#ifdef VECTOR2_SOLVER
		sqrsum += pow(data[i].getF(vN, fD), 2);
#endif
//		printf ("%f/", sqrsum);
	}
	vN.print();
	printf(" %f %f\n", fD, sqrt(sqrsum));	
#endif





//	for (size_t i = 0; i < data.size(); i++)
//		printf ("F_%d = %f\n", i, data[i].getF(vN));


	gsl_vector_free(gradt);
	gsl_multifit_fdfsolver_free(s);

	vP.clear();
	for (size_t i = 0; i < data.size(); i++)
	{
		vP.push_back(data[i].getP(vN));
	}
}
示例#16
0
/** Executes the algorithm
 *
 *  @throw runtime_error Thrown if algorithm cannot execute
 */
void Fit1D::exec() {

  // Custom initialization
  prepare();

  // check if derivative defined in derived class
  bool isDerivDefined = true;
  gsl_matrix *M = NULL;
  try {
    const std::vector<double> inTest(m_parameterNames.size(), 1.0);
    std::vector<double> outTest(m_parameterNames.size());
    const double xValuesTest = 0;
    JacobianImpl J;
    M = gsl_matrix_alloc(m_parameterNames.size(), 1);
    J.setJ(M);
    // note nData set to zero (last argument) hence this should avoid further
    // memory problems
    functionDeriv(&(inTest.front()), &J, &xValuesTest, 0);
  } catch (Exception::NotImplementedError &) {
    isDerivDefined = false;
  }
  gsl_matrix_free(M);

  // Try to retrieve optional properties
  int histNumber = getProperty("WorkspaceIndex");
  const int maxInterations = getProperty("MaxIterations");

  // Get the input workspace
  MatrixWorkspace_const_sptr localworkspace = getProperty("InputWorkspace");

  // number of histogram is equal to the number of spectra
  const size_t numberOfSpectra = localworkspace->getNumberHistograms();
  // Check that the index given is valid
  if (histNumber >= static_cast<int>(numberOfSpectra)) {
    g_log.warning("Invalid Workspace index given, using first Workspace");
    histNumber = 0;
  }

  // Retrieve the spectrum into a vector
  const MantidVec &XValues = localworkspace->readX(histNumber);
  const MantidVec &YValues = localworkspace->readY(histNumber);
  const MantidVec &YErrors = localworkspace->readE(histNumber);

  // Read in the fitting range data that we were sent
  double startX = getProperty("StartX");
  double endX = getProperty("EndX");
  // check if the values had been set, otherwise use defaults
  if (isEmpty(startX)) {
    startX = XValues.front();
    modifyStartOfRange(startX); // does nothing by default but derived class may
                                // provide a more intelligent value
  }
  if (isEmpty(endX)) {
    endX = XValues.back();
    modifyEndOfRange(endX); // does nothing by default but derived class may
                            // previde a more intelligent value
  }

  int m_minX;
  int m_maxX;

  // Check the validity of startX
  if (startX < XValues.front()) {
    g_log.warning("StartX out of range! Set to start of frame.");
    startX = XValues.front();
  }
  // Get the corresponding bin boundary that comes before (or coincides with)
  // this value
  for (m_minX = 0; XValues[m_minX + 1] < startX; ++m_minX) {
  }

  // Check the validity of endX and get the bin boundary that come after (or
  // coincides with) it
  if (endX >= XValues.back() || endX < startX) {
    g_log.warning("EndX out of range! Set to end of frame");
    endX = XValues.back();
    m_maxX = static_cast<int>(YValues.size());
  } else {
    for (m_maxX = m_minX; XValues[m_maxX] < endX; ++m_maxX) {
    }
  }

  afterDataRangedDetermined(m_minX, m_maxX);

  // create and populate GSL data container warn user if l_data.n < l_data.p
  // since as a rule of thumb this is required as a minimum to obtained
  // 'accurate'
  // fitting parameter values.

  FitData l_data(this, getProperty("Fix"));

  l_data.n =
      m_maxX -
      m_minX; // m_minX and m_maxX are array index markers. I.e. e.g. 0 & 19.
  if (l_data.n == 0) {
    g_log.error("The data set is empty.");
    throw std::runtime_error("The data set is empty.");
  }
  if (l_data.n < l_data.p) {
    g_log.error(
        "Number of data points less than number of parameters to be fitted.");
    throw std::runtime_error(
        "Number of data points less than number of parameters to be fitted.");
  }
  l_data.X = new double[l_data.n];
  l_data.sigmaData = new double[l_data.n];
  l_data.forSimplexLSwrap = new double[l_data.n];
  l_data.parameters = new double[nParams()];

  // check if histogram data in which case use mid points of histogram bins

  const bool isHistogram = localworkspace->isHistogramData();
  for (unsigned int i = 0; i < l_data.n; ++i) {
    if (isHistogram)
      l_data.X[i] =
          0.5 * (XValues[m_minX + i] +
                 XValues[m_minX + i + 1]); // take mid-point if histogram bin
    else
      l_data.X[i] = XValues[m_minX + i];
  }

  l_data.Y = &YValues[m_minX];

  // check that no error is negative or zero
  for (unsigned int i = 0; i < l_data.n; ++i) {
    if (YErrors[m_minX + i] <= 0.0) {
      l_data.sigmaData[i] = 1.0;
    } else
      l_data.sigmaData[i] = YErrors[m_minX + i];
  }

  // create array of fitted parameter. Take these to those input by the user.
  // However, for doing the
  // underlying fitting it might be more efficient to actually perform the
  // fitting on some of other
  // form of the fitted parameters. For instance, take the Gaussian sigma
  // parameter. In practice it
  // in fact more efficient to perform the fitting not on sigma but 1/sigma^2.
  // The methods
  // modifyInitialFittedParameters() and modifyFinalFittedParameters() are used
  // to allow for this;
  // by default these function do nothing.

  m_fittedParameter.clear();
  for (size_t i = 0; i < nParams(); i++) {
    m_fittedParameter.push_back(getProperty(m_parameterNames[i]));
  }
  modifyInitialFittedParameters(
      m_fittedParameter); // does nothing except if overwritten by derived class
  for (size_t i = 0; i < nParams(); i++) {
    l_data.parameters[i] = m_fittedParameter[i];
  }

  // set-up initial guess for fit parameters

  gsl_vector *initFuncArg;
  initFuncArg = gsl_vector_alloc(l_data.p);

  for (size_t i = 0, j = 0; i < nParams(); i++) {
    if (l_data.active[i])
      gsl_vector_set(initFuncArg, j++, m_fittedParameter[i]);
  }

  // set-up GSL container to be used with GSL simplex algorithm

  gsl_multimin_function gslSimplexContainer;
  gslSimplexContainer.n = l_data.p; // n here refers to number of parameters
  gslSimplexContainer.f = &gsl_costFunction;
  gslSimplexContainer.params = &l_data;

  // set-up GSL least squares container

  gsl_multifit_function_fdf f;
  f.f = &gsl_f;
  f.df = &gsl_df;
  f.fdf = &gsl_fdf;
  f.n = l_data.n;
  f.p = l_data.p;
  f.params = &l_data;

  // set-up remaining GSL machinery for least squared

  const gsl_multifit_fdfsolver_type *T = gsl_multifit_fdfsolver_lmsder;
  gsl_multifit_fdfsolver *s = NULL;
  if (isDerivDefined) {
    s = gsl_multifit_fdfsolver_alloc(T, l_data.n, l_data.p);
    gsl_multifit_fdfsolver_set(s, &f, initFuncArg);
  }

  // set-up remaining GSL machinery to use simplex algorithm

  const gsl_multimin_fminimizer_type *simplexType =
      gsl_multimin_fminimizer_nmsimplex;
  gsl_multimin_fminimizer *simplexMinimizer = NULL;
  gsl_vector *simplexStepSize = NULL;
  if (!isDerivDefined) {
    simplexMinimizer = gsl_multimin_fminimizer_alloc(simplexType, l_data.p);
    simplexStepSize = gsl_vector_alloc(l_data.p);
    gsl_vector_set_all(simplexStepSize,
                       1.0); // is this always a sensible starting step size?
    gsl_multimin_fminimizer_set(simplexMinimizer, &gslSimplexContainer,
                                initFuncArg, simplexStepSize);
  }

  // finally do the fitting

  int iter = 0;
  int status;
  double finalCostFuncVal;
  double dof = static_cast<double>(
      l_data.n - l_data.p); // dof stands for degrees of freedom

  // Standard least-squares used if derivative function defined otherwise
  // simplex
  Progress prog(this, 0.0, 1.0, maxInterations);
  if (isDerivDefined) {

    do {
      iter++;
      status = gsl_multifit_fdfsolver_iterate(s);

      if (status) // break if error
        break;

      status = gsl_multifit_test_delta(s->dx, s->x, 1e-4, 1e-4);
      prog.report();
    } while (status == GSL_CONTINUE && iter < maxInterations);

    double chi = gsl_blas_dnrm2(s->f);
    finalCostFuncVal = chi * chi / dof;

    // put final converged fitting values back into m_fittedParameter
    for (size_t i = 0, j = 0; i < nParams(); i++)
      if (l_data.active[i])
        m_fittedParameter[i] = gsl_vector_get(s->x, j++);
  } else {
    do {
      iter++;
      status = gsl_multimin_fminimizer_iterate(simplexMinimizer);

      if (status) // break if error
        break;

      double size = gsl_multimin_fminimizer_size(simplexMinimizer);
      status = gsl_multimin_test_size(size, 1e-2);
      prog.report();
    } while (status == GSL_CONTINUE && iter < maxInterations);

    finalCostFuncVal = simplexMinimizer->fval / dof;

    // put final converged fitting values back into m_fittedParameter
    for (unsigned int i = 0, j = 0; i < m_fittedParameter.size(); i++)
      if (l_data.active[i])
        m_fittedParameter[i] = gsl_vector_get(simplexMinimizer->x, j++);
  }

  modifyFinalFittedParameters(
      m_fittedParameter); // do nothing except if overwritten by derived class

  // Output summary to log file

  std::string reportOfFit = gsl_strerror(status);

  g_log.information() << "Iteration = " << iter << "\n"
                      << "Status = " << reportOfFit << "\n"
                      << "Chi^2/DoF = " << finalCostFuncVal << "\n";
  for (size_t i = 0; i < m_fittedParameter.size(); i++)
    g_log.information() << m_parameterNames[i] << " = " << m_fittedParameter[i]
                        << "  \n";

  // also output summary to properties

  setProperty("OutputStatus", reportOfFit);
  setProperty("OutputChi2overDoF", finalCostFuncVal);
  for (size_t i = 0; i < m_fittedParameter.size(); i++)
    setProperty(m_parameterNames[i], m_fittedParameter[i]);

  std::string output = getProperty("Output");
  if (!output.empty()) {
    // calculate covariance matrix if derivatives available

    gsl_matrix *covar(NULL);
    std::vector<double> standardDeviations;
    std::vector<double> sdExtended;
    if (isDerivDefined) {
      covar = gsl_matrix_alloc(l_data.p, l_data.p);
      gsl_multifit_covar(s->J, 0.0, covar);

      int iPNotFixed = 0;
      for (size_t i = 0; i < nParams(); i++) {
        sdExtended.push_back(1.0);
        if (l_data.active[i]) {
          sdExtended[i] = sqrt(gsl_matrix_get(covar, iPNotFixed, iPNotFixed));
          iPNotFixed++;
        }
      }
      modifyFinalFittedParameters(sdExtended);
      for (size_t i = 0; i < nParams(); i++)
        if (l_data.active[i])
          standardDeviations.push_back(sdExtended[i]);

      declareProperty(
          new WorkspaceProperty<API::ITableWorkspace>(
              "OutputNormalisedCovarianceMatrix", "", Direction::Output),
          "The name of the TableWorkspace in which to store the final "
          "covariance matrix");
      setPropertyValue("OutputNormalisedCovarianceMatrix",
                       output + "_NormalisedCovarianceMatrix");

      Mantid::API::ITableWorkspace_sptr m_covariance =
          Mantid::API::WorkspaceFactory::Instance().createTable(
              "TableWorkspace");
      m_covariance->addColumn("str", "Name");
      std::vector<std::string>
          paramThatAreFitted; // used for populating 1st "name" column
      for (size_t i = 0; i < nParams(); i++) {
        if (l_data.active[i]) {
          m_covariance->addColumn("double", m_parameterNames[i]);
          paramThatAreFitted.push_back(m_parameterNames[i]);
        }
      }

      for (size_t i = 0; i < l_data.p; i++) {

        Mantid::API::TableRow row = m_covariance->appendRow();
        row << paramThatAreFitted[i];
        for (size_t j = 0; j < l_data.p; j++) {
          if (j == i)
            row << 1.0;
          else {
            row << 100.0 * gsl_matrix_get(covar, i, j) /
                       sqrt(gsl_matrix_get(covar, i, i) *
                            gsl_matrix_get(covar, j, j));
          }
        }
      }

      setProperty("OutputNormalisedCovarianceMatrix", m_covariance);
    }

    declareProperty(new WorkspaceProperty<API::ITableWorkspace>(
                        "OutputParameters", "", Direction::Output),
                    "The name of the TableWorkspace in which to store the "
                    "final fit parameters");
    declareProperty(
        new WorkspaceProperty<MatrixWorkspace>("OutputWorkspace", "",
                                               Direction::Output),
        "Name of the output Workspace holding resulting simlated spectrum");

    setPropertyValue("OutputParameters", output + "_Parameters");
    setPropertyValue("OutputWorkspace", output + "_Workspace");

    // Save the final fit parameters in the output table workspace
    Mantid::API::ITableWorkspace_sptr m_result =
        Mantid::API::WorkspaceFactory::Instance().createTable("TableWorkspace");
    m_result->addColumn("str", "Name");
    m_result->addColumn("double", "Value");
    if (isDerivDefined)
      m_result->addColumn("double", "Error");
    Mantid::API::TableRow row = m_result->appendRow();
    row << "Chi^2/DoF" << finalCostFuncVal;

    for (size_t i = 0; i < nParams(); i++) {
      Mantid::API::TableRow row = m_result->appendRow();
      row << m_parameterNames[i] << m_fittedParameter[i];
      if (isDerivDefined && l_data.active[i]) {
        // perhaps want to scale standard deviations with sqrt(finalCostFuncVal)
        row << sdExtended[i];
      }
    }
    setProperty("OutputParameters", m_result);

    // Save the fitted and simulated spectra in the output workspace
    MatrixWorkspace_const_sptr inputWorkspace = getProperty("InputWorkspace");
    int iSpec = getProperty("WorkspaceIndex");
    const MantidVec &inputX = inputWorkspace->readX(iSpec);
    const MantidVec &inputY = inputWorkspace->readY(iSpec);

    int histN = isHistogram ? 1 : 0;
    Mantid::DataObjects::Workspace2D_sptr ws =
        boost::dynamic_pointer_cast<Mantid::DataObjects::Workspace2D>(
            Mantid::API::WorkspaceFactory::Instance().create(
                "Workspace2D", 3, l_data.n + histN, l_data.n));
    ws->setTitle("");
    ws->getAxis(0)->unit() =
        inputWorkspace->getAxis(0)
            ->unit(); //    UnitFactory::Instance().create("TOF");

    for (int i = 0; i < 3; i++)
      ws->dataX(i)
          .assign(inputX.begin() + m_minX, inputX.begin() + m_maxX + histN);

    ws->dataY(0).assign(inputY.begin() + m_minX, inputY.begin() + m_maxX);

    MantidVec &Y = ws->dataY(1);
    MantidVec &E = ws->dataY(2);

    double *lOut =
        new double[l_data.n]; // to capture output from call to function()
    modifyInitialFittedParameters(m_fittedParameter); // does nothing except if
                                                      // overwritten by derived
                                                      // class
    function(&m_fittedParameter[0], lOut, l_data.X, l_data.n);
    modifyInitialFittedParameters(m_fittedParameter); // reverse the effect of
    // modifyInitialFittedParameters - if any

    for (unsigned int i = 0; i < l_data.n; i++) {
      Y[i] = lOut[i];
      E[i] = l_data.Y[i] - Y[i];
    }

    delete[] lOut;

    setProperty("OutputWorkspace",
                boost::dynamic_pointer_cast<MatrixWorkspace>(ws));

    if (isDerivDefined)
      gsl_matrix_free(covar);
  }

  // clean up dynamically allocated gsl stuff

  if (isDerivDefined)
    gsl_multifit_fdfsolver_free(s);
  else {
    gsl_vector_free(simplexStepSize);
    gsl_multimin_fminimizer_free(simplexMinimizer);
  }

  delete[] l_data.X;
  delete[] l_data.sigmaData;
  delete[] l_data.forSimplexLSwrap;
  delete[] l_data.parameters;
  gsl_vector_free(initFuncArg);

  return;
}
示例#17
0
/* Removes the ballistic term from the beginning of the ACF,
 * just like in Omer's paper.
 */
extern void takeAwayBallistic(double *ct, double *t, int len, real tMax, int nexp, gmx_bool bDerivative)
{

  /* Use nonlinear regression with GSL instead.
   * Fit with 4 exponentials and one constant term,
   * subtract the fatest exponential. */

  int nData,i,status, iter;
  balData *BD;
  double *guess,              /* Initial guess. */
    *A,                       /* The fitted parameters. (A1, B1, A2, B2,... C) */
    a[2],
    ddt[2];
  gmx_bool sorted;
  size_t n;
  size_t p;

  nData = 0;
  do {
    nData++;
  } while (t[nData]<tMax+t[0] && nData<len);

  p = nexp*2+1;              /* Number of parameters. */

#ifdef HAVE_LIBGSL
  const gsl_multifit_fdfsolver_type *T
    = gsl_multifit_fdfsolver_lmsder;

  gsl_multifit_fdfsolver *s;              /* The solver itself. */
  gsl_multifit_function_fdf fitFunction;  /* The function to be fitted. */
  gsl_matrix *covar;  /* Covariance matrix for the parameters.
		       * We'll not use the result, though. */
  gsl_vector_view theParams;

  nData = 0;
  do {
    nData++;
  } while (t[nData]<tMax+t[0] && nData<len);

  guess = NULL;
  n = nData;

  snew(guess, p);
  snew(A, p);
  covar = gsl_matrix_alloc (p, p);

  /* Set up an initial gess for the parameters.
   * The solver is somewhat sensitive to the initial guess,
   * but this worked fine for a TIP3P box with -geminate dd
   * EDIT: In fact, this seems like a good starting pont for other watermodels too. */
  for (i=0; i<nexp; i++)
    {
      guess[i*2] = 0.1;
      guess[i*2+1] = -0.5 + (((double)i)/nexp - 0.5)*0.3;
    }
  guess[nexp * 2] = 0.01;

  theParams = gsl_vector_view_array(guess, p);

  snew(BD,1);
  BD->n     = n;
  BD->y     = ct;
  BD->tDelta = t[1]-t[0];
  BD->nexp = nexp;

  fitFunction.f      =  &balFunc_f;
  fitFunction.df     =  &balFunc_df;
  fitFunction.fdf    =  &balFunc_fdf;
  fitFunction.n      =  nData;
  fitFunction.p      =  p;
  fitFunction.params =  BD;

  s = gsl_multifit_fdfsolver_alloc (T, nData, p);
  if (s==NULL)
    gmx_fatal(FARGS, "Could not set up the nonlinear solver.");

  gsl_multifit_fdfsolver_set(s, &fitFunction, &theParams.vector);

  /* \=============================================/ */

  iter = 0;
  do
    {
      iter++;
      status = gsl_multifit_fdfsolver_iterate (s);
      
      if (status)
	break;
      status = gsl_multifit_test_delta (s->dx, s->x, 1e-4, 1e-4);
    }
  while (iter < 5000 && status == GSL_CONTINUE);

  if (iter == 5000)
    {
      fprintf(stderr, "The non-linear fitting did not converge in 5000 steps.\n"
	     "Check the quality of the fit!\n");
    }
  else
    {
      fprintf(stderr, "Non-linear fitting of ballistic term converged in %d steps.\n\n", (int)iter);
    }
  for (i=0; i<nexp; i++) {
    fprintf(stdout, "%c * exp(%c * t) + ", 'A'+(char)i*2, 'B'+(char)i*2);
  }

  fprintf(stdout, "%c\n", 'A'+(char)nexp*2);
  fprintf(stdout, "Here are the actual numbers for A-%c:\n", 'A'+nexp*2);

  for (i=0; i<nexp; i++)
    {
      A[i*2]  = gsl_vector_get(s->x, i*2);
      A[i*2+1] = gsl_vector_get(s->x, i*2+1);
      fprintf(stdout, " %g*exp(%g * x) +", A[i*2], A[i*2+1]);
    }
  A[i*2] = gsl_vector_get(s->x, i*2);          /* The last and constant term */
  fprintf(stdout, " %g\n", A[i*2]);

  fflush(stdout);

  /* Implement some check for parameter quality */
  for (i=0; i<nexp; i++)
    {
      if (A[i*2]<0 || A[i*2]>1) {
	fprintf(stderr, "WARNING: ----------------------------------\n"
	       " | A coefficient does not lie within [0,1].\n"
	       " | This may or may not be a problem.\n"
	       " | Double check the quality of the fit!\n");
      }
      if (A[i*2+1]>0) {
	fprintf(stderr, "WARNING: ----------------------------------\n"
	       " | One factor in the exponent is positive.\n"
	       " | This could be a problem if the coefficient\n"
	       " | is large. Double check the quality of the fit!\n");
      }
    }
  if (A[i*2]<0 || A[i*2]>1) {
    fprintf(stderr, "WARNING: ----------------------------------\n"
	   " | The constant term does not lie within [0,1].\n"
	   " | This may or may not be a problem.\n"
	   " | Double check the quality of the fit!\n");
  }

  /* Sort the terms */
  sorted = (nexp > 1) ?  FALSE : TRUE;
  while (!sorted)
    {
      sorted = TRUE;
      for (i=0;i<nexp-1;i++)
	{
	  ddt[0] = A[i*2] * A[i*2+1];
	  ddt[1] =A[i*2+2] * A[i*2+3];
	  
	  if ((bDerivative && (ddt[0]<0 && ddt[1]<0 && ddt[0]>ddt[1])) || /* Compare derivative at t=0... */
	      (!bDerivative && (A[i*2+1] > A[i*2+3])))                    /* Or just the coefficient in the exponent */
	    {
	      sorted = FALSE;
	      a[0] = A[i*2];  /* coefficient */
	      a[1] = A[i*2+1]; /* parameter in the exponent */
	      
	      A[i*2] = A[i*2+2];
	      A[i*2+1] = A[i*2+3];
	      
	      A[i*2+2] = a[0];
	      A[i*2+3] = a[1];
	    }
	}
    }

  /* Subtract the fastest component */
  fprintf(stdout, "Fastest component is %g * exp(%g * t)\n"
	 "Subtracting fastest component from ACF.\n", A[0], A[1]);

  for (i=0; i<len; i++) {
    ct[i] = (ct[i] - A[0] * exp(A[1] * i*BD->tDelta)) / (1-A[0]);
  }

  sfree(guess);
  sfree(A);

  gsl_multifit_fdfsolver_free(s);
  gsl_matrix_free(covar);
  fflush(stdout);

#else
  /* We have no gsl. */
  fprintf(stderr, "Sorry, can't take away ballistic component without gsl. "
	 "Recompile using --with-gsl.\n");
  return;
#endif /* HAVE_LIBGSL */

}
示例#18
0
/*
 * Gaussian parameters calculation y=A/sqrt(2*pi*sigma^2) exp(-(x-x_0)^2/2/sigma^2),
 * which approximates the points set pts
 * Parameters A_, sigma_, x0_ may be NULL (if you don't need any of them)
 */
void gauss_fit(Points *pts, double *C_, double *A_, double *sigma_, double *x0_){
	// VVVV lower parameters may be formed as a structure to change as function argument
	double
		epsabs   = 1e-8,// absolute error
		epsrel   = 1e-5,// relative error
		chi_max  = 0.01;// max chi value for iterations criteria
	int max_iter = 300; // limit iterations number of gsl_multifit_fdfsolver
	size_t N_MIN = 10;	// minimum points for approximation
	double x_init[4];
	// AAAA upper parameters may be formed as a structure to change as function argument
/* x_init, the best approximations:
 * x0 - not far from real (the nearest is the better)
 * sigma - not far from real (the nearest is the better)
 * A - not large ~10 (it has a weak effect)
 */
	const gsl_multifit_fdfsolver_type *T;
	gsl_multifit_fdfsolver *s;
	int status;
	#ifdef EBUG
	int appNo = 0;
	#endif
	int iter;
	size_t i, j, n = pts->n, oldn;
	const size_t p = 4;
	gsl_matrix *covar = gsl_matrix_alloc (p, p);
	#ifdef EBUG
	double t0;
	#endif
	double *x, *y, *dy, chi, C, A, sigma, x0;
	if(n < 1) return;
	x = malloc(n * sizeof(double));
	y = malloc(n * sizeof(double));
	dy = malloc(n * sizeof(double));
	struct data d = {n, x, y, dy};
	gsl_multifit_function_fdf f;
	gsl_vector_view xx = gsl_vector_view_array(x_init, p);
	const gsl_rng_type *type;
	gsl_rng *r;

	gsl_rng_env_setup();
	type = gsl_rng_default;
	r = gsl_rng_alloc (type);
	f.f = &gauss_f;
	f.df = &gauss_df;
	f.fdf = &gauss_fdf;
	f.n = n;
	f.p = p;
	f.params = &d;
	// fill data structure. Don't forget Okkam's razor!!!
	{
		Point *pt = pts->data;
		double *px = x, *py = y, *pdy = dy, sum = 0.;
		for(i = 0; i < n; i++, pt++){
			*pdy++ = 1.; // I have no idea what is it, so init by 1
			*px++  = pt->x;
			*py++  = pt->y;
			sum   += pt->y;
			//DBG("point %d: (%g, %g)", i, pt->x, pt->y);
		}
		// fill x_init: x0, sigma, C, A (it can be a funtion parameter)
		x_init[3] = (*(--px) + *x) / 2.;
		x_init[2] = fabs((*x - *px) / 4.);
		x_init[0] = sum/(double)n;
		x_init[1] = sum;
		DBG("\nInitial parameters: x0=%.1f, sigma=%.1f, A=%.1f, C=%.1f",
			x_init[3], x_init[2], x_init[1], x_init[0]);
	}
	T = gsl_multifit_fdfsolver_lmder; // or also gsl_multifit_fdfsolver_lmsder
	s = gsl_multifit_fdfsolver_alloc(T, n, p);
	#ifdef EBUG
	t0 = dtime();
	#endif
	do{
		double dof, tres, c;
		DBG("\n************ Approximation %d ******************\n", appNo++);
		iter = 0;
		gsl_multifit_fdfsolver_set(s, &f, &xx.vector);
		do{
			iter++;
			status = gsl_multifit_fdfsolver_iterate(s);
			if(status)
				break;
			status = gsl_multifit_test_delta(s->dx, s->x, epsabs, epsrel);
		}while(status == GSL_CONTINUE && iter < max_iter);
		DBG("time=%g\n", dtime()-t0);
		gsl_multifit_covar(s->J, 0.0, covar);
		chi = gsl_blas_dnrm2(s->f);
		dof = n - p;
		tres = chi;
		c = chi / sqrt(dof); // GSL_MAX_DBL(1., chi / sqrt(dof));
		C = FIT(0), A = FIT(1), sigma = FIT(2), x0 = FIT(3);
		DBG("Number of iteratons = %d\n", iter);
		DBG("chi = %g, chi/dof = %g\n", chi, chi / sqrt(dof));
		DBG("C      = %.5f +/- %.5f\n", C, c*ERR(0));
		DBG("A      = %.5f +/- %.5f\n", A, c*ERR(1));
		DBG("sigma = %.5f +/- %.5f\n", sigma, c*ERR(2));
		DBG("x0     = %.5f +/- %.5f\n", x0, c*ERR(3));
		j = 0;
		oldn = n;
		if(c < chi_max) break;
		// throw out bad (by chi) data
		for(i = 0; i < n; i++){
			if(fabs(FN(i)) < tres){
				if(i != j){
					x[j] = x[i];
					y[j] = y[i];
					dy[j] = dy[i];
				}
				j++; continue;
			}
		}
		if(j != n){
			DBG("Chi tresholding %g, %zd points of %zd\n", tres, j, n);
			n = j;
			d.n = n;
		}
	}while(chi > chi_max && n != oldn && n > N_MIN);
	if(C_) *C_ = C;
	if(A_) *A_ = A;
	if(sigma_) *sigma_ = sigma;
	if(x0_) *x0_ = x0;
	//printf ("status = %s\n", gsl_strerror (status));
	gsl_multifit_fdfsolver_free(s);
	gsl_matrix_free(covar);
	gsl_rng_free(r);
	free(x); free(y); free(dy);
}
示例#19
0
文件: fitModel.C 项目: anhi/ball
		void FitModel::train()
		{	
			if (descriptor_matrix_.cols() == 0)
			{
				throw Exception::InconsistentUsage(__FILE__, __LINE__, "Data must be read into the model before training!"); 
			}
			if (allEquations_.empty())
			{
				cout<<"ERROR: No equations specified! Use method setEquations first."<<endl; 
				return;
			}
				
			training_result_.resize(descriptor_matrix_.cols(), Y_.cols());
			
			for (c = 0; c < (unsigned int)Y_.cols(); c++)
			{	
 				fitY = new Eigen::MatrixXd(Y_.rows(), 1);
				for (int n = 0; n < Y_.rows(); n++)
				{
					(*fitY)(n, 0) = Y_(n, c);
				}
				
				fitX = &descriptor_matrix_;
				equation = &allEquations_[c];
				
				if (allDiffEquations_.size() < c)
				{
					diffEquations = &allDiffEquations_[c]; 
				}
				else
				{
					diffEquations = NULL; 
				}
					
				const gsl_multifit_fdfsolver_type* T = gsl_multifit_fdfsolver_lmsder; 
				gsl_multifit_fdfsolver* s = gsl_multifit_fdfsolver_alloc(T, fitX->rows(), fitX->cols()); 
				
				const size_t n = descriptor_matrix_.rows();
				const size_t p = descriptor_matrix_.cols();
				gsl_multifit_function_fdf fdf; 
						
				fdf = make_fdf(&setF, &setDf, &setFdf, n, p, 0);
				
				double* g = new double[initial_guess_.size()];
				for (unsigned int m = 0; m < initial_guess_.size(); m++)
				{
					g[m] = initial_guess_[m];
				}
				
				gsl_vector_view ini = gsl_vector_view_array (g, p);
				
				gsl_multifit_fdfsolver_set(s, &fdf, &ini.vector); 
			
				int status;
				
				for (unsigned int i = 0; i < 50; i++)
				{
					status = gsl_multifit_fdfsolver_iterate(s); 
				}
				
				// save the predicted coefficients
				for (unsigned int m = 0; m < s->x->size; m++)
				{
					training_result_(m, c) = gsl_vector_get(s->x, m);
				}
				
				delete fitY;
				delete [] g;
				gsl_multifit_fdfsolver_free(s); 
			}
			cout <<training_result_<<endl;
		}
示例#20
0
double fit_n(set_const* Init, double n0){
		const gsl_multifit_fdfsolver_type *T;
		gsl_multifit_fdfsolver *s;
		int status;
		unsigned int i, iter = 0;
		const size_t n = 11;
		const size_t p = 5;
		double k = n0/0.16;
		gsl_matrix *covar = gsl_matrix_alloc (p, p);
		double y[11] = {4.45, 6.45 , 9.65, 13.29, 17.94, 22.92, 27.49, 38.82, 54.95, 75.13, 99.75}; 
		double t[11] = {k*0.02,k*0.04, k*0.08,k*0.12,k*0.16,k*0.2,k*0.24, k*0.32, k*0.4,k*0.48, k*0.56};
		struct data d = { n, y, t, Init};
		gsl_multifit_function_fdf f;
		double x_init[5] = {Init->C_s,Init->C_o, Init->b,Init->c, Init->C_r};

		//double x_init[6]  = {11.56279437,7.49931859,0.00871711,0.00267620,0.86859184,0.5};
		//double x_init[4] = { sqrt(130.746),sqrt(120.7244),1.0,10.0};
		gsl_vector_view x = gsl_vector_view_array (x_init, p);
		const gsl_rng_type * type;
		gsl_rng * r;

		gsl_rng_env_setup();

		type = gsl_rng_default;
		r = gsl_rng_alloc (type);

		f.f = &func_fit_n;
		f.df = NULL;
		f.fdf = NULL;
		f.n = n;
		f.p = p;
		f.params = &d;

		/* This is the data to be fitted */

		/*for (i = 0; i < n; i++)
		{
			double t = i;
			y[i] = 1.0 + 5 * exp (-0.1 * t) 
				+ gsl_ran_gaussian (r, 0.1);
			sigma[i] = 0.1;
			printf ("data: %u %g %g\n", i, y[i], sigma[i]);
		};*/

		T = gsl_multifit_fdfsolver_lmsder;
		
		s = gsl_multifit_fdfsolver_alloc (T, n, p);

		gsl_multifit_fdfsolver_set (s, &f, &x.vector);
	
		print_state (iter, s);

		do
		{
			iter++;
			status = gsl_multifit_fdfsolver_iterate (s);

			//printf ("status = %s\n", gsl_strerror (status));

			print_state (iter, s);

			if (status)
				break;

			status = gsl_multifit_test_delta (s->dx, s->x,
				1e-15, 0.0);
		}
		while (status == GSL_CONTINUE && iter < 2000);

		gsl_multifit_covar (s->J, 0.0, covar);

#define FIT(i) gsl_vector_get(s->x, i)
#define ERR(i) sqrt(gsl_matrix_get(covar,i,i))


		cond(Init, FIT(0), FIT(1), FIT(2), FIT(3), FIT(4));

		{ 
			double chi = gsl_blas_dnrm2(s->f);
			double dof = n - p;
			double c = GSL_MAX_DBL(1, chi / sqrt(dof)); 
			//double c = 1.0;
			/*printf("chisq/dof = %g\n",  pow(chi, 2.0) / dof);

			printf ("Cs      = %.5f +/- %.5f\n", Init->C_s, c*ERR(0));
			printf ("Co = %.5f +/- %.5f\n", Init->C_o, c*ERR(1));
			printf ("b      = %.5f +/- %.5f\n", Init->c, c*ERR(2));
			printf ("c      = %.5f +/- %.5f\n", Init->b, c*ERR(3));
			printf ("Cr      = %.5f +/- %.5f\n", Init->C_r, c*ERR(4));*/
		}
		
	//	printf ("status = %s\n", gsl_strerror (status));
		double z = 0.65;

		
		gsl_matrix_free (covar);
		gsl_rng_free (r);

		double yi = 0;
		/*for (int i = 0; i < 11; i++){
		double yi = EoS::t_E(t[i],0, Init)/(D*t[i]) - m_n ;
		printf("n = %.3f, %.3f  %.3f  %.3f \n",
		t[i],
		yi,
		y[i],
		yi-y[i]);

		}*/
	
		/*return *(new set_const("APR_fit return constant set",FIT(0), FIT(1), 10.0, FIT(2),abs(FIT(3)), z, 
			[](double f){return (1-f);},
			[](double f){return 1.0;},
			[=](double f){return eta_o(f);},
			[](double f){return 1.0;}));*/
		double rr = gsl_blas_dnrm2(s->x);
		gsl_multifit_fdfsolver_free (s);
		return rr;
	}
示例#21
0
void pv_step2(int exists, double ** seeds, int seeds_size, double ** bg, struct data * d, int n_param)
{
    //variables generales del programa
    int i, j;
    double H, eta;
    double * shift_eta = vector_double_alloc((*d).numrings);
    //variables del solver
    int status = 0;
    const gsl_multifit_fdfsolver_type * T;
    gsl_multifit_fdfsolver * s;
    gsl_multifit_function_fdf pv; //funcion a fitear
    //gsl_matrix * covar = gsl_matrix_alloc (n_param, n_param);//matriz covariante
    double * x_init = vector_double_alloc(n_param);

    //printf("Inicializando los parametros\n");
    j = 0;
    for(i = 2; i < seeds_size; i += 4)
    {
        x_init[j] = seeds[1][i]; j++; //theta_0
        x_init[j] = seeds[1][i + 1]; j++; //Intensity
        x_init[j] = seeds[1][i + 2]; j++; //Shift_H
    }
    for(i = 0; i < (*d).n_bg; i++)
    {
        x_init[j] = bg[1][i]; j++;
    }
    gsl_vector_view x = gsl_vector_view_array (x_init, n_param); //inicializo el vector con los datos a fitear

    //Estructura con los parametros fijos del fiteo
    H = seeds[1][0];
    eta = seeds[exists][1];
    j = 0;
    for(i = 2; i < seeds_size; i += 4)
    {
        shift_eta[j] = seeds[exists][i + 3]; j++;
    }
    data_s2 d2 = {*d, H, eta, shift_eta};

    //inicializo la funcion pseudo-voigt
    pv.f = &pv_f_step2; //definicion de la funcion
    pv.df = NULL; //al apuntar la funcion con el jacobiano de la funcion a NULL, hago que la derivada de la funcion se calcule por el metodo de diferencias finitas
    pv.fdf = NULL; //idem anterior
    pv.n = (*d).n; //numero de puntos experimentales
    pv.p = n_param; //variables a fitear (debe cumplir <= pv.n)
    pv.params = &d2; //parametros fijos
 
    //inicializo el solver
    T = gsl_multifit_fdfsolver_lmsder;
    s = gsl_multifit_fdfsolver_alloc (T, (*d).n, n_param);
    gsl_multifit_fdfsolver_set (s, &pv, &x.vector);
    solver_iterator(&status, s, T);
    
    //printf("Salida de los resultados del paso 2\n");
    j = 0;
    for(i = 2; i < seeds_size; i += 4)
    {
        seeds[1][i] = gsl_vector_get(s -> x, j); j++; //theta_0
        seeds[1][i + 1] = gsl_vector_get(s -> x, j); j++; //Intensity
        seeds[1][i + 2] = gsl_vector_get(s -> x, j); j++; //Shift_H
    }
    for(i = 0; i < (*d).n_bg; i++)
    {
        bg[1][i] = gsl_vector_get(s -> x, j); j++;
    }
    free(x_init);
    gsl_multifit_fdfsolver_free (s);
        //printf("Final del paso 2\n");
}
示例#22
0
double *Fit::fitGslMultifit(int &iterations, int &status) {
  double *result = new double[d_p];

  // declare input data
  struct FitData data = {static_cast<size_t>(d_n),
                         static_cast<size_t>(d_p),
                         d_x,
                         d_y,
                         d_y_errors,
                         this};
  gsl_multifit_function_fdf f;
  f.f = d_f;
  f.df = d_df;
  f.fdf = d_fdf;
  f.n = d_n;
  f.p = d_p;
  f.params = &data;

  // initialize solver
  const gsl_multifit_fdfsolver_type *T;
  switch (d_solver) {
    case ScaledLevenbergMarquardt:
      T = gsl_multifit_fdfsolver_lmsder;
      break;
    case UnscaledLevenbergMarquardt:
      T = gsl_multifit_fdfsolver_lmder;
      break;
    default:
      break;
  }
  gsl_multifit_fdfsolver *s = gsl_multifit_fdfsolver_alloc(T, d_n, d_p);
  gsl_multifit_fdfsolver_set(s, &f, d_param_init);

  // iterate solver algorithm
  for (iterations = 0; iterations < d_max_iterations; iterations++) {
    status = gsl_multifit_fdfsolver_iterate(s);
    if (status) break;

    status = gsl_multifit_test_delta(s->dx, s->x, d_tolerance, d_tolerance);
    if (status != GSL_CONTINUE) break;
  }

  // grab results
  for (int i = 0; i < d_p; i++) result[i] = gsl_vector_get(s->x, i);
  gsl_blas_ddot(s->f, s->f, &chi_2);
#if GSL_MAJOR_VERSION < 2
  gsl_multifit_covar(s->J, 0.0, covar);
#else
  {
    gsl_matrix J;
    gsl_multifit_fdfsolver_jac(s, &J);
    gsl_multifit_covar(&J, 0.0, covar);
  }
#endif
  if (d_y_error_source == UnknownErrors) {
    // multiply covar by variance of residuals, which is used as an estimate for
    // the
    // statistical errors (this relies on the Y errors being set to 1.0, so that
    // s->f is properly normalized)
    gsl_matrix_scale(covar, chi_2 / (d_n - d_p));
  }

  // free memory allocated for fitting
  gsl_multifit_fdfsolver_free(s);

  return result;
}
示例#23
0
int
main (void)
{
  const gsl_multifit_fdfsolver_type *T;
  gsl_multifit_fdfsolver *s;
  int status;
  unsigned int i, iter = 0;
  const size_t n = N;
  const size_t p = 3;

  gsl_matrix *covar = gsl_matrix_alloc (p, p);
  double y[N], sigma[N];
  struct data d = { n, y, sigma};
  gsl_multifit_function_fdf f;
  double x_init[3] = { 1.0, 0.0, 0.0 };
  gsl_vector_view x = gsl_vector_view_array (x_init, p);
  const gsl_rng_type * type;
  gsl_rng * r;

  gsl_rng_env_setup();

  type = gsl_rng_default;
  r = gsl_rng_alloc (type);

  f.f = &expb_f;
  f.df = &expb_df;
  f.fdf = &expb_fdf;
  f.n = n;
  f.p = p;
  f.params = &d;

  /* This is the data to be fitted */

  for (i = 0; i < n; i++)
    {
      double t = i;
      y[i] = 1.0 + 5 * exp (-0.1 * t) 
                 + gsl_ran_gaussian (r, 0.1);
      sigma[i] = 0.1;
      printf ("data: %u %g %g\n", i, y[i], sigma[i]);
    };

  T = gsl_multifit_fdfsolver_lmsder;
  s = gsl_multifit_fdfsolver_alloc (T, n, p);
  gsl_multifit_fdfsolver_set (s, &f, &x.vector);

  print_state (iter, s);

  do
    {
      iter++;
      status = gsl_multifit_fdfsolver_iterate (s);

      printf ("status = %s\n", gsl_strerror (status));

      print_state (iter, s);

      if (status)
        break;

      status = gsl_multifit_test_delta (s->dx, s->x,
                                        1e-4, 1e-4);
    }
  while (status == GSL_CONTINUE && iter < 500);

  gsl_multifit_covar (s->J, 0.0, covar);

#define FIT(i) gsl_vector_get(s->x, i)
#define ERR(i) sqrt(gsl_matrix_get(covar,i,i))

  { 
    double chi = gsl_blas_dnrm2(s->f);
    double dof = n - p;
    double c = GSL_MAX_DBL(1, chi / sqrt(dof)); 

    printf("chisq/dof = %g\n",  pow(chi, 2.0) / dof);

    printf ("A      = %.5f +/- %.5f\n", FIT(0), c*ERR(0));
    printf ("lambda = %.5f +/- %.5f\n", FIT(1), c*ERR(1));
    printf ("b      = %.5f +/- %.5f\n", FIT(2), c*ERR(2));
  }

  printf ("status = %s\n", gsl_strerror (status));

  gsl_multifit_fdfsolver_free (s);
  gsl_matrix_free (covar);
  gsl_rng_free (r);
  return 0;
}
示例#24
0
//------------------------------------------------------------------------------
// findCorrection () : Uses a GSL Levenberg-Marquardt algorithm to fit the lines
// in FittedLines to the wavenumbers in the user-specified calibration standard.
// The result is the optimal wavenumber correction factor for the uncalibrated
// data, which is stored in the class variable WaveCorrection. Information about
// the fit residuals are saved by calling calcDiffStats().
//
void ListCal::findCorrection () {

  // Prepare the GSL Solver and associated objects. A non-linear solver is used,
  // the precise type of which is determined by SOLVER_TYPE, defined in 
  // MgstFcn.h. 
  const size_t NumParameters = 1;
  const size_t NumLines = FittedLines.size ();
  
  double GuessArr [NumParameters];
  for (unsigned int i = 0; i < NumParameters; i ++) { GuessArr[i] = WaveCorrection; }

  const gsl_multifit_fdfsolver_type *SolverType;
  gsl_multifit_fdfsolver *Solver;  
  gsl_multifit_function_fdf FitFunction;
  gsl_matrix *Covariance = gsl_matrix_alloc (NumParameters, NumParameters);
  gsl_vector_view VectorView = gsl_vector_view_array (GuessArr, NumParameters);

  FitFunction.f = &fitFn;
  FitFunction.df = &derivFn;
  FitFunction.fdf = &fitAndDerivFns;
  FitFunction.n = NumLines;
  FitFunction.p = NumParameters;
  FitFunction.params = &FittedLines;
 
  SolverType = SOLVER_TYPE;
  Solver = gsl_multifit_fdfsolver_alloc(SolverType, NumLines, NumParameters);
  gsl_multifit_fdfsolver_set (Solver, &FitFunction, &VectorView.vector);

  // Perform the fitting, one iteration at a time until one of the following
  // conditions is met: The absolute and relative changes in the fit parameters
  // become smaller than SOLVER_TOL, or the max number of allowed iterations,
  // SOLVER_MAX_ITERATIONS, is reached.
  unsigned int Iteration = 0;
  int Status;
  do {
    Iteration ++;
    Status = gsl_multifit_fdfsolver_iterate (Solver);
    if (Status) break;
    Status = gsl_multifit_test_delta (Solver->dx, Solver->x, SOLVER_TOL, SOLVER_TOL);
  } while (Status == GSL_CONTINUE && Iteration < SOLVER_MAX_ITERATIONS);

  // Output all the fit parameters with their associated error.
  gsl_multifit_covar (Solver -> J, 0.0, Covariance);
#define FIT(i) gsl_vector_get (Solver -> x, i)
#define ERR(i) sqrt (gsl_matrix_get (Covariance, i, i))

  double chi = gsl_blas_dnrm2 (Solver -> f);
  double dof = NumLines - double(NumParameters);
  double c = chi / sqrt (dof);
  
  cout << "Correction factor: " << FIT(0) << " +/- " << c*ERR(0) << " ("
    << "reduced chi^2 = " << pow(chi, 2) / dof << ", "
    << "lines fitted = " << NumLines << ", c = " << c << ")" << endl;

  // Apply the wavenumber correction to all the lines loaded from the
  // uncalibrated spectrum
  WaveCorrection = FIT(0);
  WaveCorrectionError = c*ERR(0);
  calcDiffStats ();
  cout << "dSig/Sig Mean Residual: " << DiffMean / LC_DATA_SCALE 
    << ", StdDev: " << DiffStdDev / LC_DATA_SCALE
    << ", StdErr: " << DiffStdErr / LC_DATA_SCALE << endl;

  // Clean up the memory and exit
  gsl_multifit_fdfsolver_free (Solver);
  gsl_matrix_free (Covariance);
}
示例#25
0
    GammaDistributionFitter::GammaDistributionFitResult GammaDistributionFitter::fit(vector<DPosition<2> > & input)
    {
      const gsl_multifit_fdfsolver_type * T = NULL;
      gsl_multifit_fdfsolver * s = NULL;

      int status = 0;
      size_t iter = 0;

      const size_t p = 2;

      gsl_multifit_function_fdf f;
      double x_init[2] = { init_param_.b, init_param_.p };
      gsl_vector_view x = gsl_vector_view_array(x_init, p);
      const gsl_rng_type * type = NULL;
      gsl_rng * r = NULL;

      gsl_rng_env_setup();

      type = gsl_rng_default;
      r = gsl_rng_alloc(type);

      f.f = &gammaDistributionFitterf_;
      f.df = &gammaDistributionFitterdf_;
      f.fdf = &gammaDistributionFitterfdf_;
      f.n = input.size();
      f.p = p;
      f.params = &input;

      T = gsl_multifit_fdfsolver_lmsder;
      s = gsl_multifit_fdfsolver_alloc(T, input.size(), p);
      gsl_multifit_fdfsolver_set(s, &f, &x.vector);

#ifdef GAMMA_DISTRIBUTION_FITTER_VERBOSE
      printState_(iter, s);
#endif

      do
      {
        ++iter;
        status = gsl_multifit_fdfsolver_iterate(s);

#ifdef GAMMA_DISTRIBUTION_FITTER_VERBOSE
        printf("status = %s\n", gsl_strerror(status));
        printState_(iter, s);
#endif

        if (status)
        {
          break;
        }

        status = gsl_multifit_test_delta(s->dx, s->x, 1e-4, 1e-4);
#ifdef GAMMA_DISTRIBUTION_FITTER_VERBOSE
        printf("Status = '%s'\n", gsl_strerror(status));
#endif
      }
      while (status == GSL_CONTINUE && iter < 1000);

#ifdef GAMMA_DISTRIBUTION_FITTER_VERBOSE
      printf("Final status = '%s'\n", gsl_strerror(status));
#endif

      if (status != GSL_SUCCESS)
      {
        gsl_rng_free(r);
        gsl_multifit_fdfsolver_free(s);

        throw Exception::UnableToFit(__FILE__, __LINE__, __PRETTY_FUNCTION__, "UnableToFit-GammaDistributionFitter", "Could not fit the gamma distribution to the data");
      }

      // write the result in a GammaDistributionFitResult struct
      GammaDistributionFitResult result;
      result.b = gsl_vector_get(s->x, 0);
      result.p = gsl_vector_get(s->x, 1);

      // build a formula with the fitted parameters for gnuplot
      stringstream formula;
      formula << "f(x)=" << "(" << result.b << " ** " << result.p << ") / gamma(" << result.p << ") * x ** (" << result.p << " - 1) * exp(- " << result.b << " * x)";
      gnuplot_formula_ = formula.str();

#ifdef GAMMA_DISTRIBUTION_FITTER_VERBOSE
      cout << gnuplot_formula_ << endl;
#endif

      gsl_rng_free(r);
      gsl_multifit_fdfsolver_free(s);

      return result;
    }
示例#26
0
int InterpolaVPR_GSL::interpola_VPR(const float* vpr, int hvprmax, int livmin)
{
    LOG_CATEGORY("radar.vpr");
    static const unsigned N = 10;
    const gsl_multifit_fdfsolver_type *T;
    gsl_multifit_fdfsolver *s;
    int status;
    unsigned int i;
    const size_t n = N;
    const size_t p = 5;
    char file_vprint[512];
    gsl_matrix *covar = gsl_matrix_alloc (p, p);
    double a[5];
    struct data d(N);
    gsl_multifit_function_fdf f;
    double x_init[5] = { 4, 0.2, 3. , 1.4, -0.4 };
    gsl_vector_view x = gsl_vector_view_array (x_init, p);

    //////////////////////////////////////////////////////////////////////////////
    int ier_int=0;
    double xint,yint;
    /* punti interessanti per inizializzare parametri*/
    int  in1=(int)((hvprmax-TCK_VPR/2)/TCK_VPR); //indice del massimo
    int  in2=(int)((hvprmax+HALF_BB)/TCK_VPR); //indice del massimo + 500 m
    int  in3=in2+1;
    int  in4=in2+5; //indice del massimo + 1000 m
    if (in4 > NMAXLAYER-1) {
        ier_int=1;
        return ier_int;
    }

    B=vpr[in1]-vpr[in2];
    E=hvprmax/1000.;
    G=0.25;
    C=vpr[in2-1];
    F=vpr[in4]<vpr[in3]?(vpr[in4]-vpr[in3])/((in4-in3)*TCK_VPR/1000.):0.;
    // fprintf(stderr, "const unsigned NMAXLAYER=%d;\n", NMAXLAYER);
    // fprintf(stderr, "float vpr[] = {");
    // for (unsigned i = 0; i < NMAXLAYER; ++i)
    //     fprintf(stderr, "%s%f", i==0?"":",", (double)vpr[i]);
    // fprintf(stderr, "};\n");

    x_init[0]= a[0]=B;
    x_init[1]= a[1]=E;
    x_init[2]= a[2]=G;
    x_init[3]= a[3]=C;
    x_init[4]= a[4]=F;


    /////////////////////////////////////////////////////////////////////////////////////////////////////////

    f.f = &expb_f;
    f.df = &expb_df;
    f.fdf = &expb_fdf;
    f.n = n;
    f.p = p;
    f.params = &d;

    /* This is the data to be fitted */

    for (i = 0; i < n; i++)
    {
        d.t[i]= ((hvprmax-1000.)>livmin)? (i*TCK_VPR+(hvprmax-800)-TCK_VPR)/1000. : (livmin+i*TCK_VPR)/1000.;
        d.y[i]= ((hvprmax-1000.)>livmin)? vpr[i+(int)(((hvprmax-800)-TCK_VPR)/TCK_VPR)] : vpr[i+(int)(livmin/TCK_VPR)];
        d.sigma[i] = 0.5;
    };

    T = gsl_multifit_fdfsolver_lmsder;
    s = gsl_multifit_fdfsolver_alloc (T, n, p);
    gsl_multifit_fdfsolver_set (s, &f, &x.vector);

    //print_state (0, s);
    bool found = false;
    for (unsigned iter = 0; !found && iter < 500; ++iter)
    {
        //fprintf(stderr, "Iter %d\n", iter);
        //d.print();
        int status = gsl_multifit_fdfsolver_iterate (s);
        if (status != 0)
        {
            LOG_ERROR("gsl_multifit_fdfsolver_iterate: %s", gsl_strerror(status));
            return 1;
        }

        //print_state (iter, s);

        status = gsl_multifit_test_delta (s->dx, s->x,
                1e-4, 1e-4);
        switch (status)
        {
            case GSL_SUCCESS: found = true; break;
            case GSL_CONTINUE: break;
            default:
                LOG_ERROR("gsl_multifit_test_delta: %s", gsl_strerror(status));
                return 1;
        }
    }

#if GSL_MAJOR_VERSION == 2
    // Use of GSL 2.0 taken from https://sft.its.cern.ch/jira/browse/ROOT-7776
    gsl_matrix* J = gsl_matrix_alloc(s->fdf->n, s->fdf->p);
    gsl_multifit_fdfsolver_jac(s, J);
    gsl_multifit_covar(J, 0.0, covar);
#else
    gsl_multifit_covar(s->J, 0.0, covar);
#endif

#define FIT(i) gsl_vector_get(s->x, i)
#define ERR(i) sqrt(gsl_matrix_get(covar,i,i))

    { 
        double chi = gsl_blas_dnrm2(s->f);
        double dof = n - p;
        double c = GSL_MAX_DBL(1, chi / sqrt(dof)); 

        // printf("chisq/dof = %g\n",  pow(chi, 2.0) / dof);

        // printf ("B      = %.5f +/- %.5f\n", FIT(0), c*ERR(0));
        // printf ("E = %.5f +/- %.5f\n", FIT(1), c*ERR(1));
        // printf ("G     = %.5f +/- %.5f\n", FIT(2), c*ERR(2));
        // printf ("C = %.5f +/- %.5f\n", FIT(3), c*ERR(3));
        // printf ("F     = %.5f +/- %.5f\n", FIT(4), c*ERR(4));
    }

    B = a[0] = FIT(0);
    E = a[1] = FIT(1);
    G = a[2] = FIT(2);
    C = a[3] = FIT(3);
    F = a[4] = FIT(4);

    gsl_multifit_fdfsolver_free (s);
    gsl_matrix_free (covar);

    /////////////////////////////////////////////////////////

    if (testfit(a) == 1)
        return 1;

    for (i=1; i<=N; i++)
    {
        xint=(i*TCK_VPR-TCK_VPR/2)/1000.;
        yint= lineargauss(xint, a);
        vpr_int[i-1] = yint;
    }

    return 0;
}
示例#27
0
void MultiFitter::CleanUp()
{
	if(s!=NULL) { gsl_multifit_fdfsolver_free (s); s=NULL; }
	if(sf!=NULL) { gsl_multifit_fsolver_free (sf); sf=NULL; }
}
示例#28
0
void ImageTile::FitBackground()
{

	// Chose to use the Levenberg-Marquardt solver with scaling
	const gsl_multifit_fdfsolver_type * T = gsl_multifit_fdfsolver_lmsder;

	// Construct solver
	gsl_multifit_fdfsolver *solver = gsl_multifit_fdfsolver_alloc (T, _channelCount * _scanCount, _timeOrder + _freqOrder + 1);
	if(solver == 0) throw std::exception();

	// Initialize function information structure
	gsl_multifit_function_fdf functionInfo;

	/*if(_useMPF) {
		functionInfo.f = &BaselineFunctionMPF;
		functionInfo.df = &BaselineDerivativeMPF;
		functionInfo.fdf = &BaselineCombinedMPF;
		// chose 256 bits precision for intermediate values in the evaluation of the function and its derivative
		mpf_set_default_prec (256); 
	} else {*/
		functionInfo.f = &BaselineFunction;
		functionInfo.df = &BaselineDerivative;
		functionInfo.fdf = &BaselineCombined;
	//}
	functionInfo.n = _channelCount * _scanCount;
	functionInfo.p = _timeOrder + _freqOrder + 1;
	functionInfo.params = this;

	// Initialize initial value of parameters
	//gsl_vector x;
	double x_init[_timeOrder + _freqOrder + 1];
	for(int i = 0;i < _timeOrder + _freqOrder + 1;++i)
		x_init[i] = _baselineConsts[i];
	gsl_vector_view x_view = gsl_vector_view_array (x_init, _timeOrder + _freqOrder + 1);
	
	gsl_multifit_fdfsolver_set (solver, &functionInfo, &x_view.vector);

	// Start iterating
	int status, iter=0;
	do {
		iter++;
		status = gsl_multifit_fdfsolver_iterate(solver);
		//PrintState(iter, solver);

		if (status && status != GSL_CONTINUE) {
			// std::cout << "Error: status = " << gsl_strerror (status) << std::endl;
			break;
		}

		status = gsl_multifit_test_delta(solver->dx, solver->x, 0, 0);
	} while (status == GSL_CONTINUE && iter < 250);
	
	// Save coefficients
	for(int i = 0;i<_freqOrder + _timeOrder + 1;++i)
		this->_baselineConsts[i] = gsl_vector_get(solver->x, i);

	//PrintState(iter, solver);

	// Clean up
	gsl_multifit_fdfsolver_free(solver);
}
示例#29
0
int
main (void)
{
  const gsl_multifit_fdfsolver_type *T = gsl_multifit_fdfsolver_lmsder;
  gsl_multifit_fdfsolver *s;
  int status, info;
  size_t i;
  const size_t n = N;
  const size_t p = 3;

  gsl_matrix *J = gsl_matrix_alloc(n, p);
  gsl_matrix *covar = gsl_matrix_alloc (p, p);
  double y[N], weights[N];
  struct data d = { n, y };
  gsl_multifit_function_fdf f;
  double x_init[3] = { 1.0, 0.0, 0.0 };
  gsl_vector_view x = gsl_vector_view_array (x_init, p);
  gsl_vector_view w = gsl_vector_view_array(weights, n);
  const gsl_rng_type * type;
  gsl_rng * r;
  gsl_vector *res_f;
  double chi, chi0;

  const double xtol = 1e-8;
  const double gtol = 1e-8;
  const double ftol = 0.0;

  gsl_rng_env_setup();

  type = gsl_rng_default;
  r = gsl_rng_alloc (type);

  f.f = &expb_f;
  f.df = &expb_df;   /* set to NULL for finite-difference Jacobian */
  f.n = n;
  f.p = p;
  f.params = &d;

  /* This is the data to be fitted */

  for (i = 0; i < n; i++)
    {
      double t = i;
      double yi = 1.0 + 5 * exp (-0.1 * t);
      double si = 0.1 * yi;
      double dy = gsl_ran_gaussian(r, si);

      weights[i] = 1.0 / (si * si);
      y[i] = yi + dy;
      printf ("data: %zu %g %g\n", i, y[i], si);
    };

  s = gsl_multifit_fdfsolver_alloc (T, n, p);

  /* initialize solver with starting point and weights */
  gsl_multifit_fdfsolver_wset (s, &f, &x.vector, &w.vector);

  /* compute initial residual norm */
  res_f = gsl_multifit_fdfsolver_residual(s);
  chi0 = gsl_blas_dnrm2(res_f);

  /* solve the system with a maximum of 20 iterations */
  status = gsl_multifit_fdfsolver_driver(s, 20, xtol, gtol, ftol, &info);

  gsl_multifit_fdfsolver_jac(s, J);
  gsl_multifit_covar (J, 0.0, covar);

  /* compute final residual norm */
  chi = gsl_blas_dnrm2(res_f);

#define FIT(i) gsl_vector_get(s->x, i)
#define ERR(i) sqrt(gsl_matrix_get(covar,i,i))

  fprintf(stderr, "summary from method '%s'\n",
          gsl_multifit_fdfsolver_name(s));
  fprintf(stderr, "number of iterations: %zu\n",
          gsl_multifit_fdfsolver_niter(s));
  fprintf(stderr, "function evaluations: %zu\n", f.nevalf);
  fprintf(stderr, "Jacobian evaluations: %zu\n", f.nevaldf);
  fprintf(stderr, "reason for stopping: %s\n",
          (info == 1) ? "small step size" : "small gradient");
  fprintf(stderr, "initial |f(x)| = %g\n", chi0);
  fprintf(stderr, "final   |f(x)| = %g\n", chi);

  { 
    double dof = n - p;
    double c = GSL_MAX_DBL(1, chi / sqrt(dof)); 

    fprintf(stderr, "chisq/dof = %g\n",  pow(chi, 2.0) / dof);

    fprintf (stderr, "A      = %.5f +/- %.5f\n", FIT(0), c*ERR(0));
    fprintf (stderr, "lambda = %.5f +/- %.5f\n", FIT(1), c*ERR(1));
    fprintf (stderr, "b      = %.5f +/- %.5f\n", FIT(2), c*ERR(2));
  }

  fprintf (stderr, "status = %s\n", gsl_strerror (status));

  gsl_multifit_fdfsolver_free (s);
  gsl_matrix_free (covar);
  gsl_matrix_free (J);
  gsl_rng_free (r);
  return 0;
}
示例#30
0
//Fitting. Allow fitting multiple q curves simultaneously to decrease the chance of converging to local minimum.
void ddm::fitting()
{
    int cnum_fit=num_fit;
    int ctimeWindow=timeWindow;
    //Find the truncation time if time window is set
    for (int itert=0; itert<num_fit; ++itert)
    {
        if (tau[itert]>ctimeWindow)
        {
            cnum_fit=itert;
            break;
        }
    }
    
    //Local variables
    int cqsize=qsize-qIncreList[num_qCurve-1];  //number of fitting result
    int cnum_qCurve=num_qCurve;
    int ctnum_fit=cnum_fit*num_qCurve;
    int cnumOfPara=numOfPara+2*num_qCurve;  //Total number of parameters
    
    fittedPara=gsl_matrix_alloc(cqsize, cnumOfPara);
    //To store the fitting result and error.
    fitErr=gsl_matrix_alloc(cqsize, cnumOfPara);
    status = new int[cqsize];		//Record the status of fitting.
    
    //Using Levenberg-Marquardt algorithm as implemented in the scaled lmder routine in minpack. Jacobian is given.
    const gsl_multifit_fdfsolver_type *solverType = gsl_multifit_fdfsolver_lmsder;
    
    int progress=0;		//Indicator of progress.
    
    //Objects to do numerical inverse Laplace transformation
#ifdef ISFRTD
    NILT NILT1(OMP_NUM_THREADS), NILT2(OMP_NUM_THREADS), NILT3(OMP_NUM_THREADS), NILT4(OMP_NUM_THREADS);
#endif
    
#ifdef ISFRTDP
    NILT NILT1(OMP_NUM_THREADS), NILT2(OMP_NUM_THREADS), NILT3(OMP_NUM_THREADS), NILT4(OMP_NUM_THREADS), NILT5(OMP_NUM_THREADS);
#endif
    
#ifdef ISFRTDPTT
    NILT NILT1(OMP_NUM_THREADS), NILT2(OMP_NUM_THREADS), NILT3(OMP_NUM_THREADS), NILT4(OMP_NUM_THREADS), NILT5(OMP_NUM_THREADS), NILT6(OMP_NUM_THREADS);
#endif
    
#ifdef ISFRTDPfix
    NILT NILT1(OMP_NUM_THREADS), NILT2(OMP_NUM_THREADS);
    
    const long double vbar=vbarGuess;
    const long double sigma=sigmaGuess;
    
    const long double vbsigma2=vbar/sigma/sigma;
    const long double vb2sigma2=vbsigma2*vbar;
    const long double logvbsigma2=log(vbsigma2);
    const long double logfactor=vb2sigma2*logvbsigma2-gsl_sf_lngamma(vb2sigma2);
    const long double cpsiz1=logvbsigma2-gsl_sf_psi(vb2sigma2);
    const long double vb2sigma3=vb2sigma2/sigma;
#endif
    
#ifdef ISFRTDPTTfix
    NILT NILT1(OMP_NUM_THREADS), NILT2(OMP_NUM_THREADS), NILT3(OMP_NUM_THREADS);
    
    const long double vbar=vbarGuess;
    const long double sigma=sigmaGuess;
    
    const long double vbsigma2=vbar/sigma/sigma;
    const long double vb2sigma2=vbsigma2*vbar;
    const long double logvbsigma2=log(vbsigma2);
    const long double logfactor=vb2sigma2*logvbsigma2-gsl_sf_lngamma(vb2sigma2);
    const long double cpsiz1=logvbsigma2-gsl_sf_psi(vb2sigma2);
    const long double vb2sigma3=vb2sigma2/sigma;
#endif
    
#pragma omp parallel for
    for (int iterq=0; iterq<cqsize; ++iterq)
    {
        //Data array which is going to present to the fitting algorithm
        double* datafit=new double[ctnum_fit];
        double* qList=new double[cnum_qCurve];
        double* time=new double[ctnum_fit];
        //Truncate the data, and put multiple curves into one array
        for (int iterqc=0; iterqc<cnum_qCurve; ++iterqc)
        {
            for (int iterf = 0; iterf < cnum_fit; ++iterf)
            {
                datafit[iterf+iterqc*cnum_fit]=(gsl_matrix_get(datag, iterq+qIncreList[iterqc], iterf));		//Fitting in log scale.
                time[iterf+iterqc*cnum_fit]=tau[iterf];
            }
            qList[iterqc]=qabs[iterq+qIncreList[iterqc]];
        }
        
        gsl_multifit_function_fdf fitfun;		//Pointer of function to fit.
        dataStruct sdata;		//GSL data structure
        
        //Data is passed to ISFfun by sdata
        sdata.data=datafit;
        sdata.tau=time;
        sdata.q=qList;
        sdata.num_fit=cnum_fit;
        sdata.num_qCurve=cnum_qCurve;
        
#ifdef ISFRTD
        sdata.ISFILT=&NILT1;
        sdata.dvISFILT=&NILT2;
        sdata.dDISFILT=&NILT3;
        sdata.dlambdaISFILT=&NILT4;
#endif
        
#ifdef ISFRTDP
        sdata.ISFILT=&NILT1;
        sdata.dvbarISFILT=&NILT2;
        sdata.dsigmaISFILT=&NILT3;
        sdata.dDISFILT=&NILT4;
        sdata.dlambdaISFILT=&NILT5;
#endif
        
#ifdef ISFRTDPTT
        sdata.ISFILT=&NILT1;
        sdata.dvbarISFILT=&NILT2;
        sdata.dsigmaISFILT=&NILT3;
        sdata.dDISFILT=&NILT4;
        sdata.dlambdaISFILT=&NILT5;
        sdata.dTTISFILT=&NILT6;
#endif
        
#ifdef ISFRTDPfix
        sdata.alpha=alphaGuess;
        sdata.D=DGuess;
        sdata.vbar=vbar;
        sdata.sigma=sigma;
        
        sdata.vbsigma2=vbsigma2;
        sdata.logfactor=logfactor;
        sdata.vb2sigma2=vb2sigma2;
        sdata.cpsiz1=cpsiz1;
        sdata.vb2sigma3=vb2sigma3;
        sdata.ISFILT=&NILT1;
        sdata.dlambdaISFILT=&NILT2;
#endif
        
#ifdef ISFRTDPTTfix
        sdata.alpha=alphaGuess;
        sdata.D=DGuess;
        sdata.vbar=vbar;
        sdata.sigma=sigma;
        
        sdata.vbsigma2=vbsigma2;
        sdata.logfactor=logfactor;
        sdata.vb2sigma2=vb2sigma2;
        sdata.cpsiz1=cpsiz1;
        sdata.vb2sigma3=vb2sigma3;
        sdata.ISFILT=&NILT1;
        sdata.dlambdaISFILT=&NILT2;
        sdata.dTTISFILT=&NILT3;
#endif
        
        //API
        fitfun.f=&ISFfun;
#ifdef NoJacobian
        fitfun.df=0;
        fitfun.fdf=0;
#else
        fitfun.df=&dISFfun;
        fitfun.fdf=&fdISFfun;
#endif
        fitfun.n=ctnum_fit;
        fitfun.p=cnumOfPara;
        fitfun.params=&sdata;
        
        //Initialization of the parameters
        double* localinipara=new double[cnumOfPara];
        for (int iterp=0; iterp<numOfPara; ++iterp)
        {
            localinipara[iterp]=inipara[iterp];
        }
        //Estimation of A(q) and B(q)
        for (int iterqc=0; iterqc<num_qCurve; ++iterqc)
        {
            localinipara[numOfPara+1+2*iterqc] = gsl_matrix_get(datag, iterq+qIncreList[iterqc], 0);
            localinipara[numOfPara+2*iterqc] = gsl_matrix_get(datag, iterq+qIncreList[iterqc], num_fit-1)-localinipara[numOfPara+1+2*iterqc];
        }
        //Initiallization of the solver
        gsl_vector_view para=gsl_vector_view_array(localinipara, cnumOfPara);
        gsl_multifit_fdfsolver* solver = gsl_multifit_fdfsolver_alloc(solverType, ctnum_fit, cnumOfPara);
        gsl_multifit_fdfsolver_set(solver, &fitfun, &para.vector);
        int iter=0;
        //gsl_vector* g=gsl_vector_alloc(numOfPara);
        
        //For debugging and monitering the iterations
//        cout << qList[0] << ' ' << qList[1] << '\n';
//        for (int iterpara=0; iterpara<cnumOfPara; ++iterpara)
//        {
//            cout << gsl_vector_get(solver->x, iterpara) << '\n';
//        }
//        cout << '\n';
        
        int cstatus=GSL_CONTINUE;   //Current status
        do
        {
            gsl_multifit_fdfsolver_iterate(solver);		//Iterate one step.
            cstatus = norm0_rel_test(solver->dx, solver->x, 1e-7, 1e-7);  //Test the exiting criteria
            
            //For debugging and monitering the iterations
//            for (int iterpara=0; iterpara<cnumOfPara; ++iterpara)
//            {
//                cout << gsl_vector_get(solver->x, iterpara) << '\n';
//            }
//            cout << '\n';
            
            //If to use other exiting criteria
            //gsl_multifit_gradient(solver->J,solver->f, g);
            //status[iterq-1]=gsl_multifit_test_gradient(g, 1e-5);
            //			status[iterq - 1] = covar_rel_test(solver->J, solver->x, 1e-4);
            
            ++iter;
            //Number of iterations exceed certain limitation
            if (iter>maxIter)
            {
                cstatus=GSL_EMAXITER;
            }
        } while (cstatus == GSL_CONTINUE);
        status[iterq]=cstatus;
        //gsl_vector_free(g);
        
        //Estimating the error.
        gsl_matrix* covar=gsl_matrix_alloc(cnumOfPara, cnumOfPara);
        gsl_multifit_covar(solver->J, 0.0, covar);
        for (int iterpara=0; iterpara<cnumOfPara; ++iterpara)	//Record result.
        {
            gsl_matrix_set(fittedPara, iterq, iterpara, gsl_vector_get(solver->x, iterpara) );
            gsl_matrix_set(fitErr, iterq, iterpara, sqrt(gsl_matrix_get(covar, iterpara, iterpara)) );    //Not presice in log scale
        }
        gsl_matrix_free(covar);
        gsl_multifit_fdfsolver_free(solver);
        
        //Output to standard I/O
        progress+=1;
        cout << "Fitted q=" << qabs[iterq] << " at iter=" << iter << ", " << 100.0*progress / qsize << "% completed from thread No." << omp_get_thread_num() << ", "<< gsl_strerror(status[iterq]) << "." << '\n';
        for (int iterpara=0; iterpara<cnumOfPara; ++iterpara)
        {
            cout << gsl_matrix_get(fittedPara, iterq, iterpara) << '\n';
        }
        cout << '\n';
        delete [] datafit;
        delete [] qList;
        delete [] localinipara;
        delete [] time;
    }
}