int gsl_sf_hyperg_2F1_conj_renorm_e(const double aR, const double aI, const double c, const double x, gsl_sf_result * result ) { const double rintc = floor(c + 0.5); const double rinta = floor(aR + 0.5); const int a_neg_integer = ( aR < 0.0 && fabs(aR-rinta) < locEPS && aI == 0.0); const int c_neg_integer = ( c < 0.0 && fabs(c - rintc) < locEPS ); if(c_neg_integer) { if(a_neg_integer && aR > c+0.1) { /* 2F1 terminates early */ result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { /* 2F1 does not terminate early enough, so something survives */ /* [Abramowitz+Stegun, 15.1.2] */ gsl_sf_result g1, g2; gsl_sf_result g3; gsl_sf_result a1, a2; int stat = 0; stat += gsl_sf_lngamma_complex_e(aR-c+1, aI, &g1, &a1); stat += gsl_sf_lngamma_complex_e(aR, aI, &g2, &a2); stat += gsl_sf_lngamma_e(-c+2.0, &g3); if(stat != 0) { DOMAIN_ERROR(result); } else { gsl_sf_result F; int stat_F = gsl_sf_hyperg_2F1_conj_e(aR-c+1, aI, -c+2, x, &F); double ln_pre_val = 2.0*(g1.val - g2.val) - g3.val; double ln_pre_err = 2.0 * (g1.err + g2.err) + g3.err; int stat_e = gsl_sf_exp_mult_err_e(ln_pre_val, ln_pre_err, F.val, F.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_F); } } } else { /* generic c */ gsl_sf_result F; gsl_sf_result lng; double sgn; int stat_g = gsl_sf_lngamma_sgn_e(c, &lng, &sgn); int stat_F = gsl_sf_hyperg_2F1_conj_e(aR, aI, c, x, &F); int stat_e = gsl_sf_exp_mult_err_e(-lng.val, lng.err, sgn*F.val, F.err, result); return GSL_ERROR_SELECT_3(stat_e, stat_F, stat_g); } }
static VALUE rb_gsl_sf_lngamma_sgn_e(VALUE obj, VALUE x) { gsl_sf_result *rslt = NULL; VALUE v; int status; double sgn; Need_Float(x); v = Data_Make_Struct(cgsl_sf_result, gsl_sf_result, 0, free, rslt); status = gsl_sf_lngamma_sgn_e(NUM2DBL(x), rslt, &sgn); return rb_ary_new3(2, v, rb_float_new(sgn)); }
static VALUE rb_gsl_sf_lngamma_sgn_e(VALUE obj, VALUE x) { gsl_sf_result *rslt = NULL; VALUE v; // local variable "status" declared and set, but never used //int status; double sgn; Need_Float(x); v = Data_Make_Struct(cgsl_sf_result, gsl_sf_result, 0, free, rslt); /*status =*/ gsl_sf_lngamma_sgn_e(NUM2DBL(x), rslt, &sgn); return rb_ary_new3(2, v, rb_float_new(sgn)); }
int gsl_sf_hyperg_2F1_renorm_e(const double a, const double b, const double c, const double x, gsl_sf_result * result ) { const double rinta = floor(a + 0.5); const double rintb = floor(b + 0.5); const double rintc = floor(c + 0.5); const int a_neg_integer = ( a < 0.0 && fabs(a - rinta) < locEPS ); const int b_neg_integer = ( b < 0.0 && fabs(b - rintb) < locEPS ); const int c_neg_integer = ( c < 0.0 && fabs(c - rintc) < locEPS ); if(c_neg_integer) { if((a_neg_integer && a > c+0.1) || (b_neg_integer && b > c+0.1)) { /* 2F1 terminates early */ result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { /* 2F1 does not terminate early enough, so something survives */ /* [Abramowitz+Stegun, 15.1.2] */ gsl_sf_result g1, g2, g3, g4, g5; double s1, s2, s3, s4, s5; int stat = 0; stat += gsl_sf_lngamma_sgn_e(a-c+1, &g1, &s1); stat += gsl_sf_lngamma_sgn_e(b-c+1, &g2, &s2); stat += gsl_sf_lngamma_sgn_e(a, &g3, &s3); stat += gsl_sf_lngamma_sgn_e(b, &g4, &s4); stat += gsl_sf_lngamma_sgn_e(-c+2, &g5, &s5); if(stat != 0) { DOMAIN_ERROR(result); } else { gsl_sf_result F; int stat_F = gsl_sf_hyperg_2F1_e(a-c+1, b-c+1, -c+2, x, &F); double ln_pre_val = g1.val + g2.val - g3.val - g4.val - g5.val; double ln_pre_err = g1.err + g2.err + g3.err + g4.err + g5.err; double sg = s1 * s2 * s3 * s4 * s5; int stat_e = gsl_sf_exp_mult_err_e(ln_pre_val, ln_pre_err, sg * F.val, F.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_F); } } } else { /* generic c */ gsl_sf_result F; gsl_sf_result lng; double sgn; int stat_g = gsl_sf_lngamma_sgn_e(c, &lng, &sgn); int stat_F = gsl_sf_hyperg_2F1_e(a, b, c, x, &F); int stat_e = gsl_sf_exp_mult_err_e(-lng.val, lng.err, sgn*F.val, F.err, result); return GSL_ERROR_SELECT_3(stat_e, stat_F, stat_g); } }
CAMLprim value ml_gsl_sf_lngamma_sgn_e(value x) { gsl_sf_result res; double sgn; gsl_sf_lngamma_sgn_e(Double_val(x), &res, &sgn); { CAMLparam0(); CAMLlocal3(v,r,s); r=val_of_result(&res); s=copy_double(sgn); v=alloc_small(2, 0); Field(v, 0)=r; Field(v, 1)=s; CAMLreturn(v); } }
int gsl_sf_hyperg_0F1_e(double c, double x, gsl_sf_result * result) { const double rintc = floor(c + 0.5); const int c_neg_integer = (c < 0.0 && fabs(c - rintc) < locEPS); /* CHECK_POINTER(result) */ if(c == 0.0 || c_neg_integer) { DOMAIN_ERROR(result); } else if(x < 0.0) { gsl_sf_result Jcm1; gsl_sf_result lg_c; double sgn; int stat_g = gsl_sf_lngamma_sgn_e(c, &lg_c, &sgn); int stat_J = hyperg_0F1_bessel_J(c-1.0, 2.0*sqrt(-x), &Jcm1); if(stat_g != GSL_SUCCESS) { result->val = 0.0; result->err = 0.0; return stat_g; } else if(Jcm1.val == 0.0) { result->val = 0.0; result->err = 0.0; return stat_J; } else { const double tl = log(-x)*0.5*(1.0-c); double ln_pre_val = lg_c.val + tl; double ln_pre_err = lg_c.err + 2.0 * GSL_DBL_EPSILON * fabs(tl); return gsl_sf_exp_mult_err_e(ln_pre_val, ln_pre_err, sgn*Jcm1.val, Jcm1.err, result); } } else if(x == 0.0) { result->val = 1.0; result->err = 1.0; return GSL_SUCCESS; } else { gsl_sf_result Icm1; gsl_sf_result lg_c; double sgn; int stat_g = gsl_sf_lngamma_sgn_e(c, &lg_c, &sgn); int stat_I = hyperg_0F1_bessel_I(c-1.0, 2.0*sqrt(x), &Icm1); if(stat_g != GSL_SUCCESS) { result->val = 0.0; result->err = 0.0; return stat_g; } else if(Icm1.val == 0.0) { result->val = 0.0; result->err = 0.0; return stat_I; } else { const double tl = log(x)*0.5*(1.0-c); const double ln_pre_val = lg_c.val + tl; const double ln_pre_err = lg_c.err + 2.0 * GSL_DBL_EPSILON * fabs(tl); return gsl_sf_exp_mult_err_e(ln_pre_val, ln_pre_err, sgn*Icm1.val, Icm1.err, result); } } }
int gsl_sf_lnbeta_sgn_e(const double x, const double y, gsl_sf_result * result, double * sgn) { /* CHECK_POINTER(result) */ if(x == 0.0 || y == 0.0) { *sgn = 0.0; DOMAIN_ERROR(result); } else if (isnegint(x) || isnegint(y)) { *sgn = 0.0; DOMAIN_ERROR(result); /* not defined for negative integers */ } /* See if we can handle the postive case with min/max < 0.2 */ if (x > 0 && y > 0) { const double max = GSL_MAX(x,y); const double min = GSL_MIN(x,y); const double rat = min/max; if(rat < 0.2) { /* min << max, so be careful * with the subtraction */ double lnpre_val; double lnpre_err; double lnpow_val; double lnpow_err; double t1, t2, t3; gsl_sf_result lnopr; gsl_sf_result gsx, gsy, gsxy; gsl_sf_gammastar_e(x, &gsx); gsl_sf_gammastar_e(y, &gsy); gsl_sf_gammastar_e(x+y, &gsxy); gsl_sf_log_1plusx_e(rat, &lnopr); lnpre_val = log(gsx.val*gsy.val/gsxy.val * M_SQRT2*M_SQRTPI); lnpre_err = gsx.err/gsx.val + gsy.err/gsy.val + gsxy.err/gsxy.val; t1 = min*log(rat); t2 = 0.5*log(min); t3 = (x+y-0.5)*lnopr.val; lnpow_val = t1 - t2 - t3; lnpow_err = GSL_DBL_EPSILON * (fabs(t1) + fabs(t2) + fabs(t3)); lnpow_err += fabs(x+y-0.5) * lnopr.err; result->val = lnpre_val + lnpow_val; result->err = lnpre_err + lnpow_err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); *sgn = 1.0; return GSL_SUCCESS; } } /* General case - Fallback */ { gsl_sf_result lgx, lgy, lgxy; double sgx, sgy, sgxy, xy = x+y; int stat_gx = gsl_sf_lngamma_sgn_e(x, &lgx, &sgx); int stat_gy = gsl_sf_lngamma_sgn_e(y, &lgy, &sgy); int stat_gxy = gsl_sf_lngamma_sgn_e(xy, &lgxy, &sgxy); *sgn = sgx * sgy * sgxy; result->val = lgx.val + lgy.val - lgxy.val; result->err = lgx.err + lgy.err + lgxy.err; result->err += 2.0 * GSL_DBL_EPSILON * (fabs(lgx.val) + fabs(lgy.val) + fabs(lgxy.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_3(stat_gx, stat_gy, stat_gxy); } }
int gsl_sf_lnpoch_sgn_e(const double a, const double x, gsl_sf_result * result, double * sgn) { if(a == 0.0 || a+x == 0.0) { *sgn = 0.0; DOMAIN_ERROR(result); } else if(x == 0.0) { *sgn = 1.0; result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(a > 0.0 && a+x > 0.0) { *sgn = 1.0; return lnpoch_pos(a, x, result); } else if(a < 0.0 && a+x < 0.0) { /* Reduce to positive case using reflection. */ double sin_1 = sin(M_PI * (1.0 - a)); double sin_2 = sin(M_PI * (1.0 - a - x)); if(sin_1 == 0.0 || sin_2 == 0.0) { *sgn = 0.0; DOMAIN_ERROR(result); } else { gsl_sf_result lnp_pos; int stat_pp = lnpoch_pos(1.0-a, -x, &lnp_pos); double lnterm = log(fabs(sin_1/sin_2)); result->val = lnterm - lnp_pos.val; result->err = lnp_pos.err; result->err += 2.0 * GSL_DBL_EPSILON * (fabs(1.0-a) + fabs(1.0-a-x)) * fabs(lnterm); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); *sgn = GSL_SIGN(sin_1*sin_2); return stat_pp; } } else { /* Evaluate gamma ratio directly. */ gsl_sf_result lg_apn; gsl_sf_result lg_a; double s_apn, s_a; int stat_apn = gsl_sf_lngamma_sgn_e(a+x, &lg_apn, &s_apn); int stat_a = gsl_sf_lngamma_sgn_e(a, &lg_a, &s_a); if(stat_apn == GSL_SUCCESS && stat_a == GSL_SUCCESS) { result->val = lg_apn.val - lg_a.val; result->err = lg_apn.err + lg_a.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); *sgn = s_a * s_apn; return GSL_SUCCESS; } else if(stat_apn == GSL_EDOM || stat_a == GSL_EDOM){ *sgn = 0.0; DOMAIN_ERROR(result); } else { result->val = 0.0; result->err = 0.0; *sgn = 0.0; return GSL_FAILURE; } } }
int gsl_sf_hyperg_U_large_b_e(const double a, const double b, const double x, gsl_sf_result * result, double * ln_multiplier ) { double N = floor(b); /* b = N + eps */ double eps = b - N; if(fabs(eps) < GSL_SQRT_DBL_EPSILON) { double lnpre_val; double lnpre_err; gsl_sf_result M; if(b > 1.0) { double tmp = (1.0-b)*log(x); gsl_sf_result lg_bm1; gsl_sf_result lg_a; gsl_sf_lngamma_e(b-1.0, &lg_bm1); gsl_sf_lngamma_e(a, &lg_a); lnpre_val = tmp + x + lg_bm1.val - lg_a.val; lnpre_err = lg_bm1.err + lg_a.err + GSL_DBL_EPSILON * (fabs(x) + fabs(tmp)); gsl_sf_hyperg_1F1_large_b_e(1.0-a, 2.0-b, -x, &M); } else { gsl_sf_result lg_1mb; gsl_sf_result lg_1pamb; gsl_sf_lngamma_e(1.0-b, &lg_1mb); gsl_sf_lngamma_e(1.0+a-b, &lg_1pamb); lnpre_val = lg_1mb.val - lg_1pamb.val; lnpre_err = lg_1mb.err + lg_1pamb.err; gsl_sf_hyperg_1F1_large_b_e(a, b, x, &M); } if(lnpre_val > GSL_LOG_DBL_MAX-10.0) { result->val = M.val; result->err = M.err; *ln_multiplier = lnpre_val; GSL_ERROR ("overflow", GSL_EOVRFLW); } else { gsl_sf_result epre; int stat_e = gsl_sf_exp_err_e(lnpre_val, lnpre_err, &epre); result->val = epre.val * M.val; result->err = epre.val * M.err + epre.err * fabs(M.val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); *ln_multiplier = 0.0; return stat_e; } } else { double omb_lnx = (1.0-b)*log(x); gsl_sf_result lg_1mb; double sgn_1mb; gsl_sf_result lg_1pamb; double sgn_1pamb; gsl_sf_result lg_bm1; double sgn_bm1; gsl_sf_result lg_a; double sgn_a; gsl_sf_result M1, M2; double lnpre1_val, lnpre2_val; double lnpre1_err, lnpre2_err; double sgpre1, sgpre2; gsl_sf_hyperg_1F1_large_b_e( a, b, x, &M1); gsl_sf_hyperg_1F1_large_b_e(1.0-a, 2.0-b, x, &M2); gsl_sf_lngamma_sgn_e(1.0-b, &lg_1mb, &sgn_1mb); gsl_sf_lngamma_sgn_e(1.0+a-b, &lg_1pamb, &sgn_1pamb); gsl_sf_lngamma_sgn_e(b-1.0, &lg_bm1, &sgn_bm1); gsl_sf_lngamma_sgn_e(a, &lg_a, &sgn_a); lnpre1_val = lg_1mb.val - lg_1pamb.val; lnpre1_err = lg_1mb.err + lg_1pamb.err; lnpre2_val = lg_bm1.val - lg_a.val - omb_lnx - x; lnpre2_err = lg_bm1.err + lg_a.err + GSL_DBL_EPSILON * (fabs(omb_lnx)+fabs(x)); sgpre1 = sgn_1mb * sgn_1pamb; sgpre2 = sgn_bm1 * sgn_a; if(lnpre1_val > GSL_LOG_DBL_MAX-10.0 || lnpre2_val > GSL_LOG_DBL_MAX-10.0) { double max_lnpre_val = GSL_MAX(lnpre1_val,lnpre2_val); double max_lnpre_err = GSL_MAX(lnpre1_err,lnpre2_err); double lp1 = lnpre1_val - max_lnpre_val; double lp2 = lnpre2_val - max_lnpre_val; double t1 = sgpre1*exp(lp1); double t2 = sgpre2*exp(lp2); result->val = t1*M1.val + t2*M2.val; result->err = fabs(t1)*M1.err + fabs(t2)*M2.err; result->err += GSL_DBL_EPSILON * exp(max_lnpre_err) * (fabs(t1*M1.val) + fabs(t2*M2.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); *ln_multiplier = max_lnpre_val; GSL_ERROR ("overflow", GSL_EOVRFLW); } else { double t1 = sgpre1*exp(lnpre1_val); double t2 = sgpre2*exp(lnpre2_val); result->val = t1*M1.val + t2*M2.val; result->err = fabs(t1) * M1.err + fabs(t2)*M2.err; result->err += GSL_DBL_EPSILON * (exp(lnpre1_err)*fabs(t1*M1.val) + exp(lnpre2_err)*fabs(t2*M2.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); *ln_multiplier = 0.0; return GSL_SUCCESS; } } }
int gsl_sf_hyperg_2F1_e(double a, double b, const double c, const double x, gsl_sf_result * result) { const double d = c - a - b; const double rinta = floor(a + 0.5); const double rintb = floor(b + 0.5); const double rintc = floor(c + 0.5); const int a_neg_integer = ( a < 0.0 && fabs(a - rinta) < locEPS ); const int b_neg_integer = ( b < 0.0 && fabs(b - rintb) < locEPS ); const int c_neg_integer = ( c < 0.0 && fabs(c - rintc) < locEPS ); result->val = 0.0; result->err = 0.0; /* Handle x == 1.0 RJM */ if (fabs (x - 1.0) < locEPS && (c - a - b) > 0 && c != 0 && !c_neg_integer) { gsl_sf_result lngamc, lngamcab, lngamca, lngamcb; double lngamc_sgn, lngamca_sgn, lngamcb_sgn; int status; int stat1 = gsl_sf_lngamma_sgn_e (c, &lngamc, &lngamc_sgn); int stat2 = gsl_sf_lngamma_e (c - a - b, &lngamcab); int stat3 = gsl_sf_lngamma_sgn_e (c - a, &lngamca, &lngamca_sgn); int stat4 = gsl_sf_lngamma_sgn_e (c - b, &lngamcb, &lngamcb_sgn); if (stat1 != GSL_SUCCESS || stat2 != GSL_SUCCESS || stat3 != GSL_SUCCESS || stat4 != GSL_SUCCESS) { DOMAIN_ERROR (result); } status = gsl_sf_exp_err_e (lngamc.val + lngamcab.val - lngamca.val - lngamcb.val, lngamc.err + lngamcab.err + lngamca.err + lngamcb.err, result); result->val *= lngamc_sgn / (lngamca_sgn * lngamcb_sgn); return status; } if(x < -1.0 || 1.0 <= x) { DOMAIN_ERROR(result); } if(c_neg_integer) { /* If c is a negative integer, then either a or b must be a negative integer of smaller magnitude than c to ensure cancellation of the series. */ if(! (a_neg_integer && a > c + 0.1) && ! (b_neg_integer && b > c + 0.1)) { DOMAIN_ERROR(result); } } if(fabs(c-b) < locEPS || fabs(c-a) < locEPS) { return pow_omx(x, d, result); /* (1-x)^(c-a-b) */ } if(a >= 0.0 && b >= 0.0 && c >=0.0 && x >= 0.0 && x < 0.995) { /* Series has all positive definite * terms and x is not close to 1. */ return hyperg_2F1_series(a, b, c, x, result); } if(fabs(a) < 10.0 && fabs(b) < 10.0) { /* a and b are not too large, so we attempt * variations on the series summation. */ if(a_neg_integer) { return hyperg_2F1_series(rinta, b, c, x, result); } if(b_neg_integer) { return hyperg_2F1_series(a, rintb, c, x, result); } if(x < -0.25) { return hyperg_2F1_luke(a, b, c, x, result); } else if(x < 0.5) { return hyperg_2F1_series(a, b, c, x, result); } else { if(fabs(c) > 10.0) { return hyperg_2F1_series(a, b, c, x, result); } else { return hyperg_2F1_reflect(a, b, c, x, result); } } } else { /* Either a or b or both large. * Introduce some new variables ap,bp so that bp is * the larger in magnitude. */ double ap, bp; if(fabs(a) > fabs(b)) { bp = a; ap = b; } else { bp = b; ap = a; } if(x < 0.0) { /* What the hell, maybe Luke will converge. */ return hyperg_2F1_luke(a, b, c, x, result); } if(GSL_MAX_DBL(fabs(a),1.0)*fabs(bp)*fabs(x) < 2.0*fabs(c)) { /* If c is large enough or x is small enough, * we can attempt the series anyway. */ return hyperg_2F1_series(a, b, c, x, result); } if(fabs(bp*bp*x*x) < 0.001*fabs(bp) && fabs(a) < 10.0) { /* The famous but nearly worthless "large b" asymptotic. */ int stat = gsl_sf_hyperg_1F1_e(a, c, bp*x, result); result->err = 0.001 * fabs(result->val); return stat; } /* We give up. */ result->val = 0.0; result->err = 0.0; GSL_ERROR ("error", GSL_EUNIMPL); } }
/* Do the reflection described in [Moshier, p. 334]. * Assumes a,b,c != neg integer. */ static int hyperg_2F1_reflect(const double a, const double b, const double c, const double x, gsl_sf_result * result) { const double d = c - a - b; const int intd = floor(d+0.5); const int d_integer = ( fabs(d - intd) < locEPS ); if(d_integer) { const double ln_omx = log(1.0 - x); const double ad = fabs(d); int stat_F2 = GSL_SUCCESS; double sgn_2; gsl_sf_result F1; gsl_sf_result F2; double d1, d2; gsl_sf_result lng_c; gsl_sf_result lng_ad2; gsl_sf_result lng_bd2; int stat_c; int stat_ad2; int stat_bd2; if(d >= 0.0) { d1 = d; d2 = 0.0; } else { d1 = 0.0; d2 = d; } stat_ad2 = gsl_sf_lngamma_e(a+d2, &lng_ad2); stat_bd2 = gsl_sf_lngamma_e(b+d2, &lng_bd2); stat_c = gsl_sf_lngamma_e(c, &lng_c); /* Evaluate F1. */ if(ad < GSL_DBL_EPSILON) { /* d = 0 */ F1.val = 0.0; F1.err = 0.0; } else { gsl_sf_result lng_ad; gsl_sf_result lng_ad1; gsl_sf_result lng_bd1; int stat_ad = gsl_sf_lngamma_e(ad, &lng_ad); int stat_ad1 = gsl_sf_lngamma_e(a+d1, &lng_ad1); int stat_bd1 = gsl_sf_lngamma_e(b+d1, &lng_bd1); if(stat_ad1 == GSL_SUCCESS && stat_bd1 == GSL_SUCCESS && stat_ad == GSL_SUCCESS) { /* Gamma functions in the denominator are ok. * Proceed with evaluation. */ int i; double sum1 = 1.0; double term = 1.0; double ln_pre1_val = lng_ad.val + lng_c.val + d2*ln_omx - lng_ad1.val - lng_bd1.val; double ln_pre1_err = lng_ad.err + lng_c.err + lng_ad1.err + lng_bd1.err + GSL_DBL_EPSILON * fabs(ln_pre1_val); int stat_e; /* Do F1 sum. */ for(i=1; i<ad; i++) { int j = i-1; term *= (a + d2 + j) * (b + d2 + j) / (1.0 + d2 + j) / i * (1.0-x); sum1 += term; } stat_e = gsl_sf_exp_mult_err_e(ln_pre1_val, ln_pre1_err, sum1, GSL_DBL_EPSILON*fabs(sum1), &F1); if(stat_e == GSL_EOVRFLW) { OVERFLOW_ERROR(result); } } else { /* Gamma functions in the denominator were not ok. * So the F1 term is zero. */ F1.val = 0.0; F1.err = 0.0; } } /* end F1 evaluation */ /* Evaluate F2. */ if(stat_ad2 == GSL_SUCCESS && stat_bd2 == GSL_SUCCESS) { /* Gamma functions in the denominator are ok. * Proceed with evaluation. */ const int maxiter = 2000; double psi_1 = -M_EULER; gsl_sf_result psi_1pd; gsl_sf_result psi_apd1; gsl_sf_result psi_bpd1; int stat_1pd = gsl_sf_psi_e(1.0 + ad, &psi_1pd); int stat_apd1 = gsl_sf_psi_e(a + d1, &psi_apd1); int stat_bpd1 = gsl_sf_psi_e(b + d1, &psi_bpd1); int stat_dall = GSL_ERROR_SELECT_3(stat_1pd, stat_apd1, stat_bpd1); double psi_val = psi_1 + psi_1pd.val - psi_apd1.val - psi_bpd1.val - ln_omx; double psi_err = psi_1pd.err + psi_apd1.err + psi_bpd1.err + GSL_DBL_EPSILON*fabs(psi_val); double fact = 1.0; double sum2_val = psi_val; double sum2_err = psi_err; double ln_pre2_val = lng_c.val + d1*ln_omx - lng_ad2.val - lng_bd2.val; double ln_pre2_err = lng_c.err + lng_ad2.err + lng_bd2.err + GSL_DBL_EPSILON * fabs(ln_pre2_val); int stat_e; int j; /* Do F2 sum. */ for(j=1; j<maxiter; j++) { /* values for psi functions use recurrence; Abramowitz+Stegun 6.3.5 */ double term1 = 1.0/(double)j + 1.0/(ad+j); double term2 = 1.0/(a+d1+j-1.0) + 1.0/(b+d1+j-1.0); double delta = 0.0; psi_val += term1 - term2; psi_err += GSL_DBL_EPSILON * (fabs(term1) + fabs(term2)); fact *= (a+d1+j-1.0)*(b+d1+j-1.0)/((ad+j)*j) * (1.0-x); delta = fact * psi_val; sum2_val += delta; sum2_err += fabs(fact * psi_err) + GSL_DBL_EPSILON*fabs(delta); if(fabs(delta) < GSL_DBL_EPSILON * fabs(sum2_val)) break; } if(j == maxiter) stat_F2 = GSL_EMAXITER; if(sum2_val == 0.0) { F2.val = 0.0; F2.err = 0.0; } else { stat_e = gsl_sf_exp_mult_err_e(ln_pre2_val, ln_pre2_err, sum2_val, sum2_err, &F2); if(stat_e == GSL_EOVRFLW) { result->val = 0.0; result->err = 0.0; GSL_ERROR ("error", GSL_EOVRFLW); } } stat_F2 = GSL_ERROR_SELECT_2(stat_F2, stat_dall); } else { /* Gamma functions in the denominator not ok. * So the F2 term is zero. */ F2.val = 0.0; F2.err = 0.0; } /* end F2 evaluation */ sgn_2 = ( GSL_IS_ODD(intd) ? -1.0 : 1.0 ); result->val = F1.val + sgn_2 * F2.val; result->err = F1.err + F2. err; result->err += 2.0 * GSL_DBL_EPSILON * (fabs(F1.val) + fabs(F2.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_F2; } else { /* d not an integer */ gsl_sf_result pre1, pre2; double sgn1, sgn2; gsl_sf_result F1, F2; int status_F1, status_F2; /* These gamma functions appear in the denominator, so we * catch their harmless domain errors and set the terms to zero. */ gsl_sf_result ln_g1ca, ln_g1cb, ln_g2a, ln_g2b; double sgn_g1ca, sgn_g1cb, sgn_g2a, sgn_g2b; int stat_1ca = gsl_sf_lngamma_sgn_e(c-a, &ln_g1ca, &sgn_g1ca); int stat_1cb = gsl_sf_lngamma_sgn_e(c-b, &ln_g1cb, &sgn_g1cb); int stat_2a = gsl_sf_lngamma_sgn_e(a, &ln_g2a, &sgn_g2a); int stat_2b = gsl_sf_lngamma_sgn_e(b, &ln_g2b, &sgn_g2b); int ok1 = (stat_1ca == GSL_SUCCESS && stat_1cb == GSL_SUCCESS); int ok2 = (stat_2a == GSL_SUCCESS && stat_2b == GSL_SUCCESS); gsl_sf_result ln_gc, ln_gd, ln_gmd; double sgn_gc, sgn_gd, sgn_gmd; gsl_sf_lngamma_sgn_e( c, &ln_gc, &sgn_gc); gsl_sf_lngamma_sgn_e( d, &ln_gd, &sgn_gd); gsl_sf_lngamma_sgn_e(-d, &ln_gmd, &sgn_gmd); sgn1 = sgn_gc * sgn_gd * sgn_g1ca * sgn_g1cb; sgn2 = sgn_gc * sgn_gmd * sgn_g2a * sgn_g2b; if(ok1 && ok2) { double ln_pre1_val = ln_gc.val + ln_gd.val - ln_g1ca.val - ln_g1cb.val; double ln_pre2_val = ln_gc.val + ln_gmd.val - ln_g2a.val - ln_g2b.val + d*log(1.0-x); double ln_pre1_err = ln_gc.err + ln_gd.err + ln_g1ca.err + ln_g1cb.err; double ln_pre2_err = ln_gc.err + ln_gmd.err + ln_g2a.err + ln_g2b.err; if(ln_pre1_val < GSL_LOG_DBL_MAX && ln_pre2_val < GSL_LOG_DBL_MAX) { gsl_sf_exp_err_e(ln_pre1_val, ln_pre1_err, &pre1); gsl_sf_exp_err_e(ln_pre2_val, ln_pre2_err, &pre2); pre1.val *= sgn1; pre2.val *= sgn2; } else { OVERFLOW_ERROR(result); } } else if(ok1 && !ok2) { double ln_pre1_val = ln_gc.val + ln_gd.val - ln_g1ca.val - ln_g1cb.val; double ln_pre1_err = ln_gc.err + ln_gd.err + ln_g1ca.err + ln_g1cb.err; if(ln_pre1_val < GSL_LOG_DBL_MAX) { gsl_sf_exp_err_e(ln_pre1_val, ln_pre1_err, &pre1); pre1.val *= sgn1; pre2.val = 0.0; pre2.err = 0.0; } else { OVERFLOW_ERROR(result); } } else if(!ok1 && ok2) { double ln_pre2_val = ln_gc.val + ln_gmd.val - ln_g2a.val - ln_g2b.val + d*log(1.0-x); double ln_pre2_err = ln_gc.err + ln_gmd.err + ln_g2a.err + ln_g2b.err; if(ln_pre2_val < GSL_LOG_DBL_MAX) { pre1.val = 0.0; pre1.err = 0.0; gsl_sf_exp_err_e(ln_pre2_val, ln_pre2_err, &pre2); pre2.val *= sgn2; } else { OVERFLOW_ERROR(result); } } else { pre1.val = 0.0; pre2.val = 0.0; UNDERFLOW_ERROR(result); } status_F1 = hyperg_2F1_series( a, b, 1.0-d, 1.0-x, &F1); status_F2 = hyperg_2F1_series(c-a, c-b, 1.0+d, 1.0-x, &F2); result->val = pre1.val*F1.val + pre2.val*F2.val; result->err = fabs(pre1.val*F1.err) + fabs(pre2.val*F2.err); result->err += fabs(pre1.err*F1.val) + fabs(pre2.err*F2.val); result->err += 2.0 * GSL_DBL_EPSILON * (fabs(pre1.val*F1.val) + fabs(pre2.val*F2.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } }