示例#1
0
文件: mvas.C 项目: aocampor/UGentSUSY
// input: - Input file (result from TMVA)
//        - use of TMVA plotting TStyle
void mvas( TString fin = "TMVA.root", HistType htype = MVAType, Bool_t useTMVAStyle = kTRUE )
{
   // set style and remove existing canvas'
   TMVAGlob::Initialize( useTMVAStyle );

   // switches
   const Bool_t Save_Images     = kTRUE;

   // checks if file with name "fin" is already open, and if not opens one
   TFile* file = TMVAGlob::OpenFile( fin );  

   // define Canvas layout here!
   Int_t xPad = 1; // no of plots in x
   Int_t yPad = 1; // no of plots in y
   Int_t noPad = xPad * yPad ; 
   const Int_t width = 600;   // size of canvas

   // this defines how many canvases we need
   TCanvas *c = 0;

   // counter variables
   Int_t countCanvas = 0;

   // search for the right histograms in full list of keys
   TIter next(file->GetListOfKeys());
   TKey *key(0);   
   while ((key = (TKey*)next())) {

      if (!TString(key->GetName()).BeginsWith("Method_")) continue;
      if( ! gROOT->GetClass(key->GetClassName())->InheritsFrom("TDirectory") ) continue;

      TString methodName;
      TMVAGlob::GetMethodName(methodName,key);

      TDirectory* mDir = (TDirectory*)key->ReadObj();

      TIter keyIt(mDir->GetListOfKeys());
      TKey *titkey;
      while ((titkey = (TKey*)keyIt())) {
         if (!gROOT->GetClass(titkey->GetClassName())->InheritsFrom("TDirectory")) continue;

         TDirectory *titDir = (TDirectory *)titkey->ReadObj();
         TString methodTitle;
         TMVAGlob::GetMethodTitle(methodTitle,titDir);

         cout << "--- Found directory for method: " << methodName << "::" << methodTitle << flush;
         TString hname = "MVA_" + methodTitle;
         if      (htype == ProbaType  ) hname += "_Proba";
         else if (htype == RarityType ) hname += "_Rarity";
         TH1* sig = dynamic_cast<TH1*>(titDir->Get( hname + "_S" ));
         TH1* bgd = dynamic_cast<TH1*>(titDir->Get( hname + "_B" ));

         if (sig==0 || bgd==0) {
            if     (htype == MVAType)     
               cout << "mva distribution not available (this is normal for Cut classifier)" << endl;
            else if(htype == ProbaType)   
               cout << "probability distribution not available (this is normal for Cut classifier)" << endl;
            else if(htype == RarityType)  
               cout << "rarity distribution not available (this is normal for Cut classifier)" << endl;
            else if(htype == CompareType) 
               cout << "overtraining check not available (this is normal for Cut classifier)" << endl;
            else cout << endl;
         } 
         else {
            cout << endl;
            // chop off useless stuff
            sig->SetTitle( Form("TMVA response for classifier: %s", methodTitle.Data()) );
            if      (htype == ProbaType) 
               sig->SetTitle( Form("TMVA probability for classifier: %s", methodTitle.Data()) );
            else if (htype == RarityType) 
               sig->SetTitle( Form("TMVA Rarity for classifier: %s", methodTitle.Data()) );
            else if (htype == CompareType) 
               sig->SetTitle( Form("TMVA overtraining check for classifier: %s", methodTitle.Data()) );
         
            // create new canvas
            TString ctitle = ((htype == MVAType) ? 
                              Form("TMVA response %s",methodTitle.Data()) : 
                              (htype == ProbaType) ? 
                              Form("TMVA probability %s",methodTitle.Data()) :
                              (htype == CompareType) ? 
                              Form("TMVA comparison %s",methodTitle.Data()) :
                              Form("TMVA Rarity %s",methodTitle.Data()));
         
            TString cname = ((htype == MVAType) ? 
                             Form("output_%s",methodTitle.Data()) : 
                             (htype == ProbaType) ? 
                             Form("probability_%s",methodTitle.Data()) :
                             (htype == CompareType) ? 
                             Form("comparison_%s",methodTitle.Data()) :
                             Form("rarity_%s",methodTitle.Data()));

            c = new TCanvas( Form("canvas%d", countCanvas+1), ctitle, 
                             countCanvas*50+200, countCanvas*20, width, (Int_t)width*0.78 ); 
    
            // set the histogram style
            TMVAGlob::SetSignalAndBackgroundStyle( sig, bgd );
   
            // normalise both signal and background
            TMVAGlob::NormalizeHists( sig, bgd );
   
            // frame limits (choose judicuous x range)
            Float_t nrms = 4;
            cout << "--- Mean and RMS (S): " << sig->GetMean() << ", " << sig->GetRMS() << endl;
            cout << "--- Mean and RMS (B): " << bgd->GetMean() << ", " << bgd->GetRMS() << endl;
            Float_t xmin = TMath::Max( TMath::Min(sig->GetMean() - nrms*sig->GetRMS(), 
                                                  bgd->GetMean() - nrms*bgd->GetRMS() ),
                                       sig->GetXaxis()->GetXmin() );
            Float_t xmax = TMath::Min( TMath::Max(sig->GetMean() + nrms*sig->GetRMS(), 
                                                  bgd->GetMean() + nrms*bgd->GetRMS() ),
                                       sig->GetXaxis()->GetXmax() );
            Float_t ymin = 0;
            Float_t maxMult = (htype == CompareType) ? 1.3 : 1.2;
            Float_t ymax = TMath::Max( sig->GetMaximum(), bgd->GetMaximum() )*maxMult;
   
            // build a frame
            Int_t nb = 500;
            TString hFrameName(TString("frame") + methodTitle);
            TObject *o = gROOT->FindObject(hFrameName);
            if(o) delete o;
            TH2F* frame = new TH2F( hFrameName, sig->GetTitle(), 
                                    nb, xmin, xmax, nb, ymin, ymax );
            frame->GetXaxis()->SetTitle( methodTitle + ((htype == MVAType || htype == CompareType) ? " response" : "") );
            if      (htype == ProbaType  ) frame->GetXaxis()->SetTitle( "Signal probability" );
            else if (htype == RarityType ) frame->GetXaxis()->SetTitle( "Signal rarity" );
            frame->GetYaxis()->SetTitle("Normalized");
            TMVAGlob::SetFrameStyle( frame );
   
            // eventually: draw the frame
            frame->Draw();  
    
            c->GetPad(0)->SetLeftMargin( 0.105 );
            frame->GetYaxis()->SetTitleOffset( 1.2 );

            // Draw legend               
            TLegend *legend= new TLegend( c->GetLeftMargin(), 1 - c->GetTopMargin() - 0.12, 
                                          c->GetLeftMargin() + (htype == CompareType ? 0.40 : 0.3), 1 - c->GetTopMargin() );
            legend->SetFillStyle( 1 );
            legend->AddEntry(sig,TString("Signal")     + ((htype == CompareType) ? " (test sample)" : ""), "F");
            legend->AddEntry(bgd,TString("Background") + ((htype == CompareType) ? " (test sample)" : ""), "F");
            legend->SetBorderSize(1);
            legend->SetMargin( (htype == CompareType ? 0.2 : 0.3) );
            legend->Draw("same");

            // overlay signal and background histograms
            sig->Draw("samehist");
            bgd->Draw("samehist");
   
            if (htype == CompareType) {
               // if overtraining check, load additional histograms
               TH1* sigOv = 0;
               TH1* bgdOv = 0;

               TString ovname = hname += "_Train";
               sigOv = dynamic_cast<TH1*>(titDir->Get( ovname + "_S" ));
               bgdOv = dynamic_cast<TH1*>(titDir->Get( ovname + "_B" ));
      
               if (sigOv == 0 || bgdOv == 0) {
                  cout << "+++ Problem in \"mvas.C\": overtraining check histograms do not exist" << endl;
               }
               else {
                  cout << "--- Found comparison histograms for overtraining check" << endl;

                  TLegend *legend2= new TLegend( 1 - c->GetRightMargin() - 0.42, 1 - c->GetTopMargin() - 0.12,
                                                 1 - c->GetRightMargin(), 1 - c->GetTopMargin() );
                  legend2->SetFillStyle( 1 );
                  legend2->SetBorderSize(1);
                  legend2->AddEntry(sigOv,"Signal (training sample)","P");
                  legend2->AddEntry(bgdOv,"Background (training sample)","P");
                  legend2->SetMargin( 0.1 );
                  legend2->Draw("same");
               }
               Int_t col = sig->GetLineColor();
               sigOv->SetMarkerColor( col );
               sigOv->SetMarkerSize( 0.7 );
               sigOv->SetMarkerStyle( 20 );
               sigOv->SetLineWidth( 1 );
               sigOv->SetLineColor( col );
               sigOv->Draw("e1same");
      
               col = bgd->GetLineColor();
               bgdOv->SetMarkerColor( col );
               bgdOv->SetMarkerSize( 0.7 );
               bgdOv->SetMarkerStyle( 20 );
               bgdOv->SetLineWidth( 1 );
               bgdOv->SetLineColor( col );
               bgdOv->Draw("e1same");

               ymax = TMath::Max( ymax, TMath::Max( sigOv->GetMaximum(), bgdOv->GetMaximum() )*maxMult );
               frame->GetYaxis()->SetLimits( 0, ymax );
      
               // for better visibility, plot thinner lines
               sig->SetLineWidth( 1 );
               bgd->SetLineWidth( 1 );

               // perform K-S test
               cout << "--- Perform Kolmogorov-Smirnov tests" << endl;
               Double_t kolS = sig->KolmogorovTest( sigOv );
               Double_t kolB = bgd->KolmogorovTest( bgdOv );
               cout << "--- Goodness of signal (background) consistency: " << kolS << " (" << kolB << ")" << endl;

               TString probatext = Form( "Kolmogorov-Smirnov test: signal (background) probability = %5.3g (%5.3g)", kolS, kolB );
               TText* tt = new TText( 0.12, 0.74, probatext );
               tt->SetNDC(); tt->SetTextSize( 0.032 ); tt->AppendPad(); 
            }

            // redraw axes
            frame->Draw("sameaxis");

            // text for overflows
            Int_t    nbin = sig->GetNbinsX();
            Double_t dxu  = sig->GetBinWidth(0);
            Double_t dxo  = sig->GetBinWidth(nbin+1);
            TString uoflow = Form( "U/O-flow (S,B): (%.1f, %.1f)%% / (%.1f, %.1f)%%", 
                                   sig->GetBinContent(0)*dxu*100, bgd->GetBinContent(0)*dxu*100,
                                   sig->GetBinContent(nbin+1)*dxo*100, bgd->GetBinContent(nbin+1)*dxo*100 );
            TText* t = new TText( 0.975, 0.115, uoflow );
            t->SetNDC();
            t->SetTextSize( 0.030 );
            t->SetTextAngle( 90 );
            t->AppendPad();    
   
            // update canvas
            c->Update();

            // save canvas to file

            TMVAGlob::plot_logo(1.058);
            if (Save_Images) {
               if      (htype == MVAType)     TMVAGlob::imgconv( c, Form("plots/mva_%s",     methodTitle.Data()) );
               else if (htype == ProbaType)   TMVAGlob::imgconv( c, Form("plots/proba_%s",   methodTitle.Data()) ); 
               else if (htype == CompareType) TMVAGlob::imgconv( c, Form("plots/overtrain_%s", methodTitle.Data()) ); 
               else                           TMVAGlob::imgconv( c, Form("plots/rarity_%s",  methodTitle.Data()) ); 
            }
            countCanvas++;
         }
      }
   }
}
示例#2
0
void DrawMLPoutputMovie( TFile* file, const TString& methodType, const TString& methodTitle )
{
   gROOT->SetBatch( 1 );

   // define Canvas layout here!
   const Int_t width = 600;   // size of canvas

   // this defines how many canvases we need
   TCanvas* c = 0;

   Float_t nrms = 4;
   Float_t xmin = -1.2;
   Float_t xmax = 1.2;
   Float_t ymin = 0;
   Float_t ymax = 0;
   Float_t maxMult = 6.0;
   Int_t   countCanvas = 0;
   Bool_t  first = kTRUE;
            
   TString     dirname  = methodType + "/" + methodTitle + "/" + "EpochMonitoring";
   TDirectory *epochDir = (TDirectory*)file->Get( dirname );
   if (!epochDir) {
      cout << "Big troubles: could not find directory \"" << dirname << "\"" << endl;
      exit(1);
   }

   // now read all evolution histograms
   TIter keyItTit(epochDir->GetListOfKeys());
   TKey *titkeyTit;
   while ((titkeyTit = (TKey*)keyItTit())) {
      
      if (!gROOT->GetClass(titkeyTit->GetClassName())->InheritsFrom("TH1F")) continue;
      TString name = titkeyTit->GetName();
      
      if (!name.BeginsWith("convergencetest___")) continue;
      if (!name.Contains("_train_"))              continue; // only for training so far
      if (name.EndsWith( "_B"))                   continue;
      
      // must be signal histogram
      if (!name.EndsWith( "_S")) {
         cout << "Big troubles with histogram: " << name << " -> should end with _S" << endl;
         exit(1);
      }
      
      // create canvas
      countCanvas++;
      TString ctitle = Form("TMVA response %s",methodTitle.Data());
      c = new TCanvas( Form("canvas%d", countCanvas), ctitle, 0, 0, width, (Int_t)width*0.78 ); 
      
      TH1F* sig = (TH1F*)titkeyTit->ReadObj();
      sig->SetTitle( Form("TMVA response for classifier: %s", methodTitle.Data()) );
      
      TString dataType = (name.Contains("_train_") ? "(training sample)" : "(test sample)");
      
      // find background
      TString nbn = sig->GetName(); nbn[nbn.Length()-1] = 'B';            
      TH1F* bgd = dynamic_cast<TH1F*>(epochDir->Get( nbn ));
      if (bgd == 0) {
         cout << "Big troubles with histogram: " << bgd << " -> cannot find!" << endl;
         exit(1);
      }
      
      cout << "sig = " << sig->GetName() << endl;
      cout << "bgd = " << bgd->GetName() << endl;
      
      // set the histogram style
      TMVAGlob::SetSignalAndBackgroundStyle( sig, bgd );
      
      // normalise both signal and background
      TMVAGlob::NormalizeHists( sig, bgd );
      
      // set only first time, then same for all plots
      if (first) {
         if (xmin == 0 && xmax == 0) {
            xmin = TMath::Max( TMath::Min(sig->GetMean() - nrms*sig->GetRMS(), 
                                          bgd->GetMean() - nrms*bgd->GetRMS() ),
                               sig->GetXaxis()->GetXmin() );
            xmax = TMath::Min( TMath::Max(sig->GetMean() + nrms*sig->GetRMS(), 
                                          bgd->GetMean() + nrms*bgd->GetRMS() ),
                               sig->GetXaxis()->GetXmax() );
         }
         ymin = 0;
         ymax = TMath::Max( sig->GetMaximum(), bgd->GetMaximum() )*maxMult;
         first = kFALSE;
      }
      
      // build a frame
      Int_t nb = 100;
      TString hFrameName(TString("frame") + methodTitle);
      TObject *o = gROOT->FindObject(hFrameName);
      if(o) delete o;
      TH2F* frame = new TH2F( hFrameName, sig->GetTitle(), 
                              nb, xmin, xmax, nb, ymin, ymax );
      frame->GetXaxis()->SetTitle( methodTitle + " response" );
      frame->GetYaxis()->SetTitle("(1/N) dN^{ }/^{ }dx");
      TMVAGlob::SetFrameStyle( frame );
      
      // find epoch number (4th token)
      TObjArray* tokens = name.Tokenize("_");
      TString es = ((TObjString*)tokens->At(4))->GetString();
      if (!es.IsFloat()) {
         cout << "Big troubles in epoch parsing: \"" << es << "\" is not float" << endl;
         exit(1);
      }
      Int_t epoch = es.Atoi();
      
      // eventually: draw the frame
      frame->Draw();  
      
      c->GetPad(0)->SetLeftMargin( 0.105 );
      frame->GetYaxis()->SetTitleOffset( 1.2 );
      
      // Draw legend               
      TLegend *legend= new TLegend( c->GetLeftMargin(), 1 - c->GetTopMargin() - 0.12, 
                                    c->GetLeftMargin() + 0.5, 1 - c->GetTopMargin() );
      legend->SetFillStyle( 1 );
      legend->AddEntry(sig,TString("Signal ")     + dataType, "F");
      legend->AddEntry(bgd,TString("Background ") + dataType, "F");
      legend->SetBorderSize(1);
      legend->SetMargin( 0.15 );
      legend->Draw("same");
      
      TText* t = new TText();            
      t->SetTextSize( 0.04 );
      t->SetTextColor( 1 );
      t->SetTextAlign( 31 );
      t->DrawTextNDC( 1 - c->GetRightMargin(), 1 - c->GetTopMargin() + 0.015, Form( "Epoch: %i", epoch) );
      
      // overlay signal and background histograms
      sig->Draw("samehist");
      bgd->Draw("samehist");
      
      // save to file
      TString dirname  = "movieplots";
      TString foutname = dirname + "/" + name;
      foutname.Resize( foutname.Length()-2 );
      foutname.ReplaceAll("convergencetest___","");
      foutname += ".gif";
      
      cout << "storing file: " << foutname << endl;
      
      c->Update();
      c->Print(foutname);            
   }
}