示例#1
0
static void prvSetupHardware( void )
{
    /* Convert a Hz value to a KHz value, as required by the Init_FLL_Settle()
    function. */
    unsigned long ulCPU_Clock_KHz = ( configCPU_CLOCK_HZ / 1000UL );

    halBoardInit();

    LFXT_Start( XT1DRIVE_0 );
    Init_FLL_Settle( ( unsigned short ) ulCPU_Clock_KHz, 488 );

    halButtonsInit( BUTTON_ALL );
    halButtonsInterruptEnable( BUTTON_SELECT );

    /* Initialise the LCD, but note that the backlight is not used as the
    library function uses timer A0 to modulate the backlight, and this file
    defines	vApplicationSetupTimerInterrupt() to also use timer A0 to generate
    the tick interrupt.  If the backlight is required, then change either the
    halLCD library or vApplicationSetupTimerInterrupt() to use a different
    timer.  Timer A1 is used for the run time stats time base6. */
    halLcdInit();
    halLcdSetContrast( 100 );
    halLcdClearScreen();

    halLcdPrintLine( " www.FreeRTOS.org", 0,  OVERWRITE_TEXT );
}
示例#2
0
/***********************************************************************************
* @fn          main
*
* @brief       This is the main entry of the "Light Switch" application.
*              After the application modes are chosen the switch can
*              send toggle commands to a light device.
*
* @param       basicRfConfig - file scope variable. Basic RF configuration
*              data
*              appState - file scope variable. Holds application state
*
* @return      none
*/
void main(void)
{
    uint8 appMode = NONE;

    // Config basicRF
    basicRfConfig.panId = PAN_ID;
    basicRfConfig.channel = RF_CHANNEL;
    basicRfConfig.ackRequest = TRUE;
#ifdef SECURITY_CCM
    basicRfConfig.securityKey = key;
#endif

    // Initalise board peripherals
    halBoardInit();
 //   halJoystickInit();

    // Initalise hal_rf
    if(halRfInit()==FAILED) {
      HAL_ASSERT(FALSE);
    }

    // Indicate that device is powered
    halLedSet(2);//*****************by boo LED2(P1_1=1)
    halLedClear(1);//***************by boo LED1(P1_0=0)
    
    /************Select one and shield to another***********by boo*/
    appSwitch();        //½ÚµãΪ°´¼üS1       P0_4    
    // Role is undefined. This code should not be reached
    HAL_ASSERT(FALSE);
}
示例#3
0
static void prvSetupHardware( void )
{
	taskDISABLE_INTERRUPTS();
	
	/* Disable the watchdog. */
	WDTCTL = WDTPW + WDTHOLD;
  
	halBoardInit();

	LFXT_Start( XT1DRIVE_0 );
	hal430SetSystemClock( configCPU_CLOCK_HZ, configLFXT_CLOCK_HZ );

	hal430SetSubSystemMasterClock( );

	halButtonsInit( BUTTON_ALL );
	halButtonsInterruptEnable( BUTTON_SELECT );

	/* Initialise the LCD, but note that the backlight is not used as the
	library function uses timer A0 to modulate the backlight, and this file
	defines	vApplicationSetupTimerInterrupt() to also use timer A0 to generate
	the tick interrupt.  If the backlight is required, then change either the
	halLCD library or vApplicationSetupTimerInterrupt() to use a different
	timer.  Timer A1 is used for the run time stats time base6. */
	halLcdInit();
	halLcdSetContrast( 100 );
	halLcdClearScreen();
	
	halLcdPrintLine( " www.FreeRTOS.org", 0,  OVERWRITE_TEXT );
}
示例#4
0
/**************************************************************************************************
 * @fn          main
 *
 * @brief       This is the C-code entry function after powerup and compiler generated inits.
 *
 * input parameters
 *
 * None.
 *
 * output parameters
 *
 * None.
 *
 * @return      None.
 **************************************************************************************************
 */
void main(void)
{
  halBoardInit();

  // Initialize the Z-Accel and the Host/RPC executive functionality.
  zaccelInit();

#ifdef HOST_MT
  mtInit();
#endif

  appInit();

  for (;;)
  {
    /* Prioritize HAL events to maintain quasi-realtime performance on H/W related events.
     * After all HAL events are processed, service the ZACC events.
     */
    if (!appExecHal())
    {
      // If all HAL and Host events have been processed, it is ok to go to low power
      // for RFD/End devices.
      if (!appExecHost() && (appFlags & appLowPwrF))
      {
        HAL_LOW_POWER_MODE();
      }
    }
  }
}
示例#5
0
/***********************************************************************************
* @fn          main
*
* @brief       This is the main entry of the RF Modem application. It sets
*              distinct short addresses for the nodes, initalises and runs
*              receiver and sender tasks sequentially in an endless loop.
*
* @return      none
*/
void main(void)
{

    char *szTitle= "MRFI RF modem";
    appUartRxIdle = FALSE;

    // Initialise board peripherals
    halBoardInit();

    halUartInit(HAL_UART_BAUDRATE_38400, 0);

    // 100 ms RX idle timeout
    appConfigTimer(1000/UART_RX_IDLE_TIME);

    // Indicate that the application has been initialised
    halLcdClear();
    halLcdWriteLine(HAL_LCD_LINE_1, szTitle);
    halLedSet(1);

    // Select application role (Device 1, Device 2 or Loopback)
    appSelectRole();

    if (appRole != DEVICE_LOOPBACK) {
        // Initialize the MRFI RF link layer
        mrfiLinkInit(appLocalAddr,appRemoteAddr,MRFI_CHANNEL);
    }

    // Indicate that the modem is operating
    halLcdWriteLine(HAL_LCD_LINE_1, szTitle);

    // Initialise error counters
    nTxErr= nRxErr= 0;

    // Enable RX idle timeout interrupt
    halTimer32kIntEnable();

    //  Main processing loop
    while(TRUE) {

        // On-board device processing (UART etc.)
        HAL_PROCESS();

        if (appRole == DEVICE_LOOPBACK) {

            // Loopback processing
            appLoopbackTask();

        } else {

            // RF transmitter processing
            appRfSenderTask();

            // RF receiver processing
            appRfReceiverTask();
        }

    }
}
/***********************************************************************************
* @fn          main
*
* @brief       This is the main entry of the RF HID application. It sets
*              distinct short addresses for the nodes, initalises and runs
*              receiver and sender tasks sequentially in an endless loop.
*
* @return      none
*/
void main(void)
{

    // Initialise board peripherals
    halBoardInit();

    // Initialise USB
    usbHidInit();

    // Initialize MRFI
    mrfiLinkInit(DONGLE_ADDRESS,EB_ADDRESS,MRFI_CHANNEL);

    // Indicate that the device is initialised
    halLedSet(1);

    //  Main processing loop
    while (TRUE) {

        // Process USB standard requests
        usbHidProcessEvents();

        // Process incoming radio traffic from HID devices
        if (mrfiLinkDataRdy()) {

            uint8 numBytes;

            // Receive RF packet
            numBytes = mrfiLinkRecv(pRfData);

            // If reception successful, ACK it and send packet to host over USB
            if(numBytes>0) {

                if (pRfData[0]==KEYBOARD_DATA_ID && numBytes==KEYBOARD_DATA_SIZE) {
                    // Process keyboard data
                    usbHidProcessKeyboard(pRfData);
                    halLedToggle(1);
                }

                if (pRfData[0]==MOUSE_DATA_ID && numBytes==MOUSE_DATA_SIZE) {
                    // Process mouse data
                    usbHidProcessMouse(pRfData);
                    halLedToggle(1);
                }

            }

        }

    }

}
示例#7
0
文件: hid_demo.c 项目: 13hoop/limo
int main(void){

    // stop watchdog timer
    WDTCTL = WDTPW + WDTHOLD;

    //Initialize clock and peripherals 
    halBoardInit();  
    halBoardStartXT1();	
    halBoardSetSystemClock(SYSCLK_16MHZ);
    
    // Debug UART
    halUsbInit();

    // show off
    doLCD();
    
   // init LEDs
    LED_PORT_OUT |= LED_1 | LED_2;
    LED_PORT_DIR |= LED_1 | LED_2;
    
	/// GET STARTED ///
	btstack_memory_init();
    run_loop_init(RUN_LOOP_EMBEDDED);

    // init HCI
	hci_transport_t    * transport = hci_transport_h4_dma_instance();
	bt_control_t       * control   = bt_control_cc256x_instance();
    hci_uart_config_t  * config    = hci_uart_config_cc256x_instance();
    remote_device_db_t * remote_db = (remote_device_db_t *) &remote_device_db_memory;
	hci_init(transport, config, control, remote_db);

    // use eHCILL
    bt_control_cc256x_enable_ehcill(1);

    // init L2CAP
    l2cap_init();
    l2cap_register_packet_handler(packet_handler);
		
    // ready - enable irq used in h4 task
    __enable_interrupt();   
 	
    // turn on!
	hci_power_control(HCI_POWER_ON);
	
    // go!
    run_loop_execute();	
    
    return 0;
}
示例#8
0
static void prvSetupHardware(void) {
    /* Convert a Hz value to a KHz value, as required by the Init_FLL_Settle()
     function. */
    unsigned long ulCPU_Clock_KHz = (25000000UL / 1000UL );

    /* Disable the watchdog. */
    WDTCTL = WDTPW + 0x36;
    SFRIE1 |= WDTIE;

    /* select port pin functions */
    halBoardInit();

    LFXT_Start(XT1DRIVE_0); 								/* enable oszillator */
    Init_FLL_Settle((unsigned short) ulCPU_Clock_KHz, 488);	/* clock divisor */


}
示例#9
0
static void hw_setup(){
    // stop watchdog timer
    WDTCTL = WDTPW + WDTHOLD;

    //Initialize clock and peripherals 
    halBoardInit();  
    halBoardStartXT1(); 
    halBoardSetSystemClock(SYSCLK_16MHZ);
    
    // init debug UART
    halUsbInit();

    // init LEDs
    LED_PORT_OUT |= LED_1 | LED_2;
    LED_PORT_DIR |= LED_1 | LED_2;

    // ready - enable irq used in h4 task
    __enable_interrupt();  
}
示例#10
0
/***********************************************************************************
* @fn          main
*
* @brief
*
* @param
*
*
* @return      none
*/
void main (void)
{
    int8 minRssi, maxRssi, rssiOffset;
    int16 barValue;
    int16 txtValue;
    uint8 barHeight, n;

    appShowText=FALSE;
    barHeight=  3;
    txtChannel= 0;

    // Initalise board peripherals
    halBoardInit();

    // Initalise hal_rf
    if(halRfInit()==FAILED) {
      HAL_ASSERT(FALSE);
    }
    // Indicate that device is powered
    halLedSet(1);

    // Print Logo and splash screen on LCD
    utilPrintLogo("Spectrum Anl");
    halMcuWaitMs(3000);

    // Calculate RSSI offset and range (must be done after setting gain mode)
    halRfSetGain(HAL_RF_GAIN_HIGH);

    rssiOffset= halRfGetRssiOffset();
    minRssi=    MIN_RSSI_DBM + rssiOffset;
    maxRssi=    MAX_RSSI_DBM + rssiOffset;

    // Config IO interrupt
    appConfigIO();

    // Set chip in RX scan mode
    halSetRxScanMode();

    // Load bar graph symbols to LCD
    utilLoadBarGraph();

    while(1) {
    	uint8 sample;
    	
        // For each RSSI sample record
        for (sample = 0; sample < SAMPLE_COUNT; sample++) {
        	uint8 channel;
            // Sample channel 11-26
            for(channel = 0; channel < CHANNELS; channel++ ) {
                ppRssi[channel][sample] = halSampleED(channel+CHANNEL_11, SAMPLE_TIME);
            }

            // Update the display with the latest graph values
            for(channel = 0; channel < CHANNELS; channel++ ) {
			
                barValue = -128;
                for (n = 0; n < SAMPLE_COUNT; n++) {
                    barValue = MAX((int8) barValue, ppRssi[channel][n]);
                }
                barValue -= minRssi;

                // Saturate
                if (barValue < 0)
                    barValue = 0;
                if (barValue > ((int16) maxRssi - (int16) minRssi))
                    barValue = (int16) maxRssi - (int16) minRssi;
                // Scale
                barValue *= (barHeight == 2) ? (8 + 1 + 8) : (8 + 1 + 8 + 1 + 8);
                barValue /= maxRssi - minRssi;

                // Display the bar
                for (n = 0; n < barHeight; n++) {
                    utilDisplayBarGraph(n + 1, channel, (barHeight - 1 - n) * 9, barValue);
                }
            }
        }

        // Show RSSI in text form on display
        if(appShowText) {
            txtValue = -128;
            barHeight=2;
            // find peak value
            for (n = 0; n < SAMPLE_COUNT; n++) {
                txtValue = MAX((int8) txtValue, ppRssi[txtChannel][n]);
            }
            txtValue -= rssiOffset;
            utilLcdDisplayValue(3, (char*)channelText[txtChannel], txtValue, " dBm");
        }
        else
            barHeight=3;
    }
}
示例#11
0
// main
int main(void)
{
    // stop watchdog timer
    WDTCTL = WDTPW + WDTHOLD;

    //Initialize clock and peripherals 
    halBoardInit();  
    halBoardStartXT1();	
    halBoardSetSystemClock(SYSCLK_16MHZ);
    
    // init debug UART
    halUsbInit();

    // init LEDs
    LED_PORT_OUT |= LED_1 | LED_2;
    LED_PORT_DIR |= LED_1 | LED_2;
    
	/// GET STARTED with BTstack ///
	btstack_memory_init();
    run_loop_init(RUN_LOOP_EMBEDDED);
	
    // init HCI
	hci_transport_t    * transport = hci_transport_h4_dma_instance();
	bt_control_t       * control   = bt_control_cc256x_instance();
    hci_uart_config_t  * config    = hci_uart_config_cc256x_instance();
    remote_device_db_t * remote_db = (remote_device_db_t *) &remote_device_db_memory;
	hci_init(transport, config, control, remote_db);
	
    // use eHCILL
    bt_control_cc256x_enable_ehcill(1);
    
    // init L2CAP
    l2cap_init();
    l2cap_register_packet_handler(packet_handler);
    
    // init RFCOMM
    rfcomm_init();
    rfcomm_register_packet_handler(packet_handler);
    rfcomm_register_service_with_initial_credits_internal(NULL, rfcomm_channel_nr, 100, 1);  // reserved channel, mtu=100, 1 credit

    // init SDP, create record for SPP and register with SDP
    sdp_init();
	memset(spp_service_buffer, 0, sizeof(spp_service_buffer));
    service_record_item_t * service_record_item = (service_record_item_t *) spp_service_buffer;
    sdp_create_spp_service( (uint8_t*) &service_record_item->service_record, 1, "SPP Counter");
    printf("SDP service buffer size: %u\n\r", (uint16_t) (sizeof(service_record_item_t) + de_get_len((uint8_t*) &service_record_item->service_record)));
    sdp_register_service_internal(NULL, service_record_item);
    
    // set one-shot timer
    timer_source_t heartbeat;
    heartbeat.process = &heartbeat_handler;
    run_loop_set_timer(&heartbeat, HEARTBEAT_PERIOD_MS);
    run_loop_add_timer(&heartbeat);
    
    
    puts("SPP FlowControl Demo: simulates processing on received data...\n\r");

    // ready - enable irq used in h4 task
    __enable_interrupt();   

 	// turn on!
	hci_power_control(HCI_POWER_ON);

    // go!
    run_loop_execute();	
    
    // happy compiler!
    return 0;
}
示例#12
0
/***********************************************************************************
* @fn          main
*/
void main(void)
{
  // Initalise board peripherals
  halBoardInit();
  
  basicRfSetUp();
  
  // Initalise hal_rf
  if(halRfInit()==FAILED)
  {
    HAL_ASSERT(FALSE);
  }
  
  // Indicate that device is powered
  halLedSet(1);
  halMcuWaitMs(350);
  
  configureUSART0forUART_ALT1();
  uartStartRxForIsr();
  
  
  while(TRUE)
  {
    //----------------------
    // INITIALIZE
    //----------------------
    if(initFlag)
    {
      while(!start); //waiting for 'a' key from PC 
      //respond to PC -- going to try to start up WRS 
      start=0;
      pTxData[0] = INIT_COMM_CMD;
      basicRfReceiveOff();
      if(basicRfSendPacket(ROBOT_ADDR, pTxData, APP_PAYLOAD_LENGTH)==SUCCESS)
      {
        state=1;
      }
      basicRfReceiveOn();
      //wait for ACK from WRS
      
      pTxData[0] = INIT_COEF_CMD;
      basicRfReceiveOff();
      if(basicRfSendPacket(ROBOT_ADDR, pTxData, APP_PAYLOAD_LENGTH)==SUCCESS)
      {
        basicRfReceiveOn();
        
        //WAIT FOR COEFFICIENTS FROM WRS
        while(!basicRfPacketIsReady());//wait to receive acknowledgement
        
        if(basicRfReceive(pRxData, APP_PAYLOAD_LENGTH, NULL)>0) 
        {
          if(pRxData[0] == 'C') 
          {  
            //Pass to PC
            for (unsigned int uartTxIndex = 0; uartTxIndex<105; uartTxIndex++)
            {
              U0CSR &= ~0x02; //SET U0TX_BYTE to 0
              U0DBUF = pRxData[uartTxIndex];      
              while (!(U0CSR&0x02));
            }
          }    
        }
      }
      
      //finished sending coefficients to PC 
      
      basicRfReceiveOn();
      initFlag=0;
    }
    
    
    
    if(turnOnMotorFlag){
      if(basicRfSendPacket(ROBOT_ADDR, pTxData, APP_PAYLOAD_LENGTH)==SUCCESS)//send command to WRS
      {
        turnOnMotorFlag=0;
      }
    }
    
    if(sendInitFlag){
      if(basicRfSendPacket(ROBOT_ADDR, pTxData, APP_PAYLOAD_LENGTH)==SUCCESS)//send command to WRS
      {
        initFlag=1;
        sendInitFlag=0;
        //Pass to PC
        for (unsigned int uartTxIndex = 0; uartTxIndex<105; uartTxIndex++)
        {
          pRxData[0] == 'R';
          U0CSR &= ~0x02; //SET U0TX_BYTE to 0
          U0DBUF = pRxData[uartTxIndex];      
          while (!(U0CSR&0x02));
        }
      }
    }
    //Receive package from WRS
    if(basicRfPacketIsReady())
    { 
      
      if(basicRfReceive(pRxData, APP_PAYLOAD_LENGTH, myRSSI)>0) {
        getRSSI = basicRfGetRssi();
        pRxData[104]=getRSSI;
        if(pRxData[0] == 'D')//||(pRxData[0] == 'I'))
        {          
          //SEND DATA TO PC 
          for (unsigned int uartTxIndex = 0; uartTxIndex<105; uartTxIndex++)
          {
            U0CSR &= ~0x02; //SET U0TX_BYTE to 0
            U0DBUF = pRxData[uartTxIndex];      
            while (!(U0CSR&0x02));
          }
        }
      }
      
    }    
  }
}
示例#13
0
int main(void) {
    uint8_t  currState;
    uint8_t  targetState;
    uint16_t readbcLength;
    uint32_t nwkId;
    uint8_t  errorCheckInterval = 100;

    // Stop watchdog timer to prevent time out reset
    WDTCTL = WDTPW + WDTHOLD;

    // Initialize the MCU and board peripherals
    halBoardInit();
    halBoardStartXT1();	
    halBoardSetSystemClock(SYSCLK_16MHZ);
    halButtonsInit(BUTTON_ALL);
    halLcdInit();
    halLcdBackLightInit();
    halLcdSetContrast(90);
    halLcdSetBackLight(10);
    halLcdClearScreen();

    halLcdPrintLine("  CC85XX SLAVE   ", 0, OVERWRITE_TEXT );
    halLcdPrintLine("                 ", 1, OVERWRITE_TEXT );
    halLcdPrintLine("S1: Power toggle ", 2, OVERWRITE_TEXT );
    halLcdPrintLine("S2: Pairing start", 3, OVERWRITE_TEXT );
    uifLcdPrintJoystickInfo();

    // Wipe remote control information
    memset(&ehifRcSetDataParam, 0x00, sizeof(ehifRcSetDataParam));

    // Initialize EHIF IO
    ehifIoInit();

    // Reset into the application
    ehifSysResetPin(true);
    currState = CC85XX_STATE_ALONE;
    targetState = CC85XX_STATE_ACTIVE;

    // Get the last used network ID from CC85XX non-volatile storage
    initParam();
    ehifCmdParam.nvsGetData.index = 0;
    ehifCmdExecWithRead(EHIF_EXEC_ALL, EHIF_CMD_NVS_GET_DATA, 
                        sizeof(EHIF_CMD_NVS_GET_DATA_PARAM_T), &ehifCmdParam, 
                        sizeof(EHIF_CMD_NVS_GET_DATA_DATA_T), &ehifCmdData);
    nwkId = ehifCmdData.nvsGetData.data;

    // Handle illegal default network IDs that may occur first time after programming
    if ((nwkId == 0x00000000) || (nwkId == 0xFFFFFFFF)) {
        nwkId = 0xFFFFFFFE;
    }

    // Main loop
    while (1) {

        // Wait 10 ms
        EHIF_DELAY_MS(10);

        // Perform action according to edge-triggered button events (debouncing with 100 ms delay)
        switch (pollButtons()) {

        // POWER TOGGLE
        case BUTTON_S1:
            if (currState == CC85XX_STATE_OFF) {
                targetState = CC85XX_STATE_ACTIVE;
            } else {
                targetState = CC85XX_STATE_OFF;
            }
            break;

        // PAIRING TRIGGER
        case BUTTON_S2:
            if (currState != CC85XX_STATE_OFF) {
                targetState = CC85XX_STATE_PAIRING;
            }
            break;
        }

        // Run the state machine
        if (currState != targetState) {

            if (currState == CC85XX_STATE_OFF) {
                // HANDLE POWER ON

                // Ensure known state (power state 5)
                ehifSysResetPin(true);
                currState = CC85XX_STATE_ALONE;

            } else if (targetState == CC85XX_STATE_OFF) {
                // HANDLE POWER OFF

                // Ensure known state (power state 5)
                ehifSysResetPin(true);
                currState = CC85XX_STATE_ALONE;

                // Set power state 0
                ehifCmdParam.pmSetState.state = 0;
                ehifCmdExec(EHIF_CMD_PM_SET_STATE, sizeof(EHIF_CMD_PM_SET_STATE_PARAM_T), &ehifCmdParam);
                currState = CC85XX_STATE_OFF;

            } else if (targetState == CC85XX_STATE_PAIRING) {
                // HANDLE PAIRING

                // Let the last executed EHIF command complete, with 5 second timeout
                ehifWaitReadyMs(5000);

                // Disconnect if currently connected
                if (ehifGetStatus() & BV_EHIF_STAT_CONNECTED) {
                    initParam();
                    // All parameters should be zero
                    ehifCmdExec(EHIF_CMD_NWM_DO_JOIN, sizeof(EHIF_CMD_NWM_DO_JOIN_PARAM_T), &ehifCmdParam);
                }

                // Search for one protocol master with pairing signal enabled for 10 seconds
                initParam();
                ehifCmdParam.nwmDoScan.scanTo           = 1000;
                ehifCmdParam.nwmDoScan.scanMax          = 1;
                ehifCmdParam.nwmDoScan.reqPairingSignal = 1;
                ehifCmdParam.nwmDoScan.reqRssi          = -128;
                ehifCmdExecWithReadbc(EHIF_EXEC_CMD, EHIF_CMD_NWM_DO_SCAN, 
                                      sizeof(EHIF_CMD_NWM_DO_SCAN_PARAM_T), &ehifCmdParam, 
                                      NULL, NULL);

                // Fetch network information once ready
                ehifWaitReadyMs(12000);
                readbcLength = sizeof(ehifNwmDoScanData);
                ehifCmdExecWithReadbc(EHIF_EXEC_DATA, EHIF_CMD_NWM_DO_SCAN, 
                                      0, NULL, 
                                      &readbcLength, &ehifNwmDoScanData);

                // If found ...
                if (readbcLength == sizeof(EHIF_CMD_NWM_DO_SCAN_DATA_T)) {

                    // Update the network ID to be used next
                    nwkId = ehifNwmDoScanData.deviceId;

                    // Place the new network ID in CC85XX non-volatile storage
                    initParam();
                    ehifCmdParam.nvsSetData.index = 0;
                    ehifCmdParam.nvsSetData.data  = ehifNwmDoScanData.deviceId;
                    ehifCmdExec(EHIF_CMD_NVS_SET_DATA, sizeof(EHIF_CMD_NVS_SET_DATA_PARAM_T), &ehifCmdParam);
                }

                // Done
                currState = CC85XX_STATE_ALONE;
                targetState = CC85XX_STATE_ACTIVE;

            } else if (targetState == CC85XX_STATE_ACTIVE) {

                // We're disconnected. Proceed only if EHIF is ready, so that power toggle and pairing
                // buttons can still be operated
                uint16_t status = ehifGetStatus();
                if (status & BV_EHIF_STAT_CMD_REQ_RDY) {

                    // Perform join operation first and then activate audio channels. We're using remote
                    // volume control
                    if (!(status & BV_EHIF_STAT_CONNECTED)) {

                        // Enable disconnection notification to avoid unnecessary EHIF activity while active
                        initParam();
                        ehifCmdParam.ehcEvtClr.clearedEvents = BV_EHIF_EVT_NWK_CHG;
                        ehifCmdExec(EHIF_CMD_EHC_EVT_CLR, sizeof(EHIF_CMD_EHC_EVT_CLR_PARAM_T), &ehifCmdParam);
                        initParam();
                        ehifCmdParam.ehcEvtMask.irqGioLevel = 0;
                        ehifCmdParam.ehcEvtMask.eventFilter = BV_EHIF_EVT_NWK_CHG;
                        ehifCmdExec(EHIF_CMD_EHC_EVT_MASK, sizeof(EHIF_CMD_EHC_EVT_MASK_PARAM_T), &ehifCmdParam);

                        // Not connected: Start JOIN operation
                        initParam();
                        ehifCmdParam.nwmDoJoin.joinTo = 100;
                        ehifCmdParam.nwmDoJoin.deviceId = nwkId;
                        ehifCmdExec(EHIF_CMD_NWM_DO_JOIN, sizeof(EHIF_CMD_NWM_DO_JOIN_PARAM_T), &ehifCmdParam);

                    } else {
                        // Connected: Subscribe to audio channels (0xFF = unused)
                        memset(&ehifCmdParam, 0xFF, sizeof(EHIF_CMD_NWM_ACH_SET_USAGE_PARAM_T));
                        ehifCmdParam.nwmAchSetUsage.pAchUsage[0] = 0; // Front left  -> I2S LEFT
                        ehifCmdParam.nwmAchSetUsage.pAchUsage[1] = 1; // Front right -> I2S RIGHT
                        ehifCmdExec(EHIF_CMD_NWM_ACH_SET_USAGE, sizeof(EHIF_CMD_NWM_ACH_SET_USAGE_PARAM_T), &ehifCmdParam);
                        currState = CC85XX_STATE_ACTIVE;
                    }
                }
            }

        } else {

            // Only OFF and ACTIVE are permanent target states. SCAN is only a temporary target state.
            // In the OFF state we do nothing, so only need to handle the ACTIVE state.
            if (currState == CC85XX_STATE_ACTIVE) {

                // Detect network disconnection without generating noise on the SPI interface
                if (EHIF_INTERRUPT_IS_ACTIVE()) {
                    currState = CC85XX_STATE_ALONE;
                }

                // Perform error checking at 10 ms * 100 = 1 second intervals:
                // - No timeouts or SPI errors shall have occurred
                // - We should be connected unless disconnection has been signalized
                if (--errorCheckInterval == 0) {
                    errorCheckInterval = 100;
                    uint16_t status = ehifGetStatus();
                    if (ehifGetWaitReadyError() || (status & BV_EHIF_EVT_SPI_ERROR) ||
                        (!(status & BV_EHIF_STAT_CONNECTED) && !(status & BV_EHIF_EVT_NWK_CHG))) {

                        // The device is in an unknown state -> restart everything
                        ehifSysResetPin(true);
                        currState = CC85XX_STATE_ALONE;
                    }
                }

                // If the network connection is up and running...
                if (currState == CC85XX_STATE_ACTIVE) {

                    // Send remote control commands (mouse or play control, depending on which uif file
                    // is included in the build)
                    if (uifPollFunc(&ehifRcSetDataParam)) {
                        ehifCmdExec(EHIF_CMD_RC_SET_DATA, sizeof(EHIF_CMD_RC_SET_DATA_PARAM_T), &ehifRcSetDataParam);
                    }
                }
            }
        }
    }

} // main
示例#14
0
文件: main.c 项目: blueskycoco/d4
void main( void )
{
	unsigned int ucState=0xffff;
	unsigned char test[10];
	memset(test,'\0',10);
	int i=0;
	halBoardInit();
	hal430SetSystemClock();
	halButtonsInit();
	Init_Uart(115200);
	Init_Lcd();
	Msp430_ADC12_Init();
	Write_NByte((unsigned char *)eeprom,10,0);
	Read_NByte_Randomaddress(test,10,0);
	printf("main %s\r\n",test);
	 while(1)
	{
		if(flag==1)
		{
			//WDTCTL = WDTPW + WDTNMI + WDTTMSEL + WDTSSEL + WDTCNTCL;             // Start watchdog timer
			//IE1 |= WDTIE;                         // Enable WDT interrupt
			printf("we are in active state\r\n");
			//这里写自己的程序,把程序做在一个有限的循环里,这样做完之后就可以自动结束并关机。
			for(i=0;i<1000;i++){
			ucState = halButtonsPressed();
			
			if(ucState!=0xffff)
			{
			    i=0;
			    send_wave();
			    hal_buzzer(2);
			    Get_Power();
				//printf("%x is pressed\r\n",ucState);
				switch(ucState)
					{
					case BUTTON_MATL:
						printf("matl is pressed\r\n");
						break;
					case BUTTON_HARD:
						printf("hard is pressed\r\n");
						break;
					case BUTTON_DIREC:
						printf("direc is pressed\r\n");
						break;
					case BUTTON_TIMES:
						printf("times is pressed\r\n");
						break;						
					case BUTTON_SAVE:
						printf("save is pressed\r\n");
						break;
					case BUTTON_UP:
						printf("up is pressed\r\n");
						break;
					case BUTTON_DEL:
						printf("del is pressed\r\n");
						break;
					case BUTTON_AVE:
						printf("ave is pressed\r\n");
						break;
					case BUTTON_LEFT:
						printf("left is pressed\r\n");
						break;
					case BUTTON_MENU:
						printf("menu is pressed\r\n");
						break;
					case BUTTON_RIGHT:
						printf("right is pressed\r\n");
						break;
					case BUTTON_BACKLIGHT:
						printf("backlight is pressed\r\n");
						break;
					case BUTTON_ESC:
						printf("esc is pressed\r\n");
						break;
					case BUTTON_DOWN:
						printf("down is pressed\r\n");
						break;
					case BUTTON_ENTER:
						printf("enter is pressed\r\n");
						break;
					default:
						break;
					}
			}			
			//LPM3;
			Delay(100);
			}
			//如需定时,上边这个LPM3要被包括在那个有循环的循环体中,这样才能实现类似便携式仪表5分钟自动关机的效果。如果不使用定时也可以不要LPM3这句话。
			//WDTCTL = WDTPW + WDTHOLD + WDTNMI;             // Stop watchdog timer
			flag=0;
		}
		else
		{
			//如果周边设备在关机时有需要复位的或是关闭的在这里处理
			printf("we are in power off state\r\n");
		}
		hal_buzzer(0);
		printf("we going to LPM4\r\n");
		LPM4;
	}
}
示例#15
0
/***********************************************************************************
* @fn          main
*/
void main(void)
{
  // Initalise board peripherals
  halBoardInit();
  
  
  basicRfSetUp();
  
  // Initalise hal_rf
  if(halRfInit()==FAILED)
  {
    HAL_ASSERT(FALSE);
  }
  
  // Indicate that device is powered
  halLedSet(1);
  halMcuWaitMs(350);
  
  configureUSART0forUART_ALT1();
  uartStartRxForIsr();
  
  while(!start); //waiting for 'a' key from PC 
  //respond to PC -- going to try to start up WRS 
  
  pTxData[0] = INIT_COMM_CMD;
  basicRfReceiveOff();
  if(basicRfSendPacket(ROBOT_ADDR, pTxData, APP_PAYLOAD_LENGTH)==SUCCESS)
  {
    state=1;
  }
  basicRfReceiveOn();
  //wait for ACK from WRS
  
  pTxData[0] = INIT_COEF_CMD;
  basicRfReceiveOff();
  if(basicRfSendPacket(ROBOT_ADDR, pTxData, APP_PAYLOAD_LENGTH)==SUCCESS)
  {
    basicRfReceiveOn();
    
    state=2;//continuous?
    
    //WAIT FOR COEFFICIENTS FROM WRS
    while(!basicRfPacketIsReady());//wait to receive acknowledgement
    
    if(basicRfReceive(pRxData, APP_PAYLOAD_LENGTH, NULL)>0) 
    {
      if(pRxData[0] == 'C') 
      {  
        //Pass to PC
        for (unsigned int uartTxIndex = 0; uartTxIndex<105; uartTxIndex++)
        {
          U0CSR &= ~0x02; //SET U0TX_BYTE to 0
          U0DBUF = pRxData[uartTxIndex];      
          while (!(U0CSR&0x02));
        }
        // while(!ACK);//waiting for acknowledgement
      }    
    }
  }
  
  //finished sending coefficients to PC 
  
  basicRfReceiveOn();
  
  while(TRUE)
  {
    //Receive package from WRS
    if(basicRfPacketIsReady())
    { 
      
      if(basicRfReceive(pRxData, APP_PAYLOAD_LENGTH, myRSSI)>0) {
        getRSSI = basicRfGetRssi();
        pRxData[104]=getRSSI;
        if((pRxData[0] == 'P')||(pRxData[0] == 'A'))
        {          
          //SEND DATA TO PC 
          for (unsigned int uartTxIndex = 0; uartTxIndex<105; uartTxIndex++)
          {
            U0CSR &= ~0x02; //SET U0TX_BYTE to 0
            U0DBUF = pRxData[uartTxIndex];      
            while (!(U0CSR&0x02));
          }
        }
      }
      
    }
    
    //Receive CMD from PC 
    if(changePWMflag)//have this be set in interrupt 
    {
      //basicRfReceiveOff();
      
      if(basicRfSendPacket(ROBOT_ADDR, pTxData, APP_PAYLOAD_LENGTH)==SUCCESS)//send PWM info to WRS
      {
        
        changePWMflag=0;
      }
      //basicRfReceiveOn();
        
        //        while(changePWMflag)//Keep receiving until PWM acknowledge is sent
        //        {
        //          while(!basicRfPacketIsReady());//waiting for acknowledgement -- important here i think
        //          
        //          if(basicRfReceive(pRxData, APP_PAYLOAD_LENGTH, NULL)>0) 
        //          {
        //            if(pRxData[0] == 'Z')
        //            {
        //              //receive current duty cycle and send back to PC 
        //              for (unsigned int uartTxIndex = 0; uartTxIndex<105; uartTxIndex++)
        //              {
        //                U0CSR &= ~0x02; //SET U0TX_BYTE to 0
        //                U0DBUF = pRxData[uartTxIndex];      
        //                while (!(U0CSR&0x02));
        //              }
        //              changePWMflag = 0;
        //            }
        //            //else send pressure?
        //          }
        //        }
        //      }
      
    }
  }//END OF MAIN WHILE LOOP
}
示例#16
0
// main
int main(void)
{
    // stop watchdog timer
    WDTCTL = WDTPW + WDTHOLD;

    //Initialize clock and peripherals
    halBoardInit();
    halBoardStartXT1();
    halBoardSetSystemClock(SYSCLK_16MHZ);

    // init debug UART
    halUsbInit();

    // init LEDs
    P1OUT |= LED_1 | LED_2;
    P1DIR |= LED_1 | LED_2;

    /*//init linkLED
    P1OUT &= ~BIT0;
    P1DIR |= BIT0;*/

    //Setup Input Port 2
    initSwitch(2, BIT0);
    initSwitch(2, BIT1);
    initSwitch(2, BIT2);
    initSwitch(2, BIT3);

    //tie port3 and unused pins of port 2
    /*P3OUT = 0;
    P3DIR = 0xFF;
    P3SEL = 0;
    P2OUT &= 0x0F;
    P2DIR |= 0xF0;
    P2SEL &= 0x0F;*/


	/// GET STARTED with BTstack ///
	btstack_memory_init();
    run_loop_init(RUN_LOOP_EMBEDDED);

    // add gpio port 2 to run loop
    // default values
    port2_status = P2IN & 0x0F;

    data_source_t data_src_port2;
    data_src_port2.process = port2_poll;
    data_src_port2.fd = 0;
    run_loop_add_data_source(&data_src_port2);


    // init HCI
	hci_transport_t    * transport = hci_transport_h4_dma_instance();
	bt_control_t       * control   = bt_control_cc256x_instance();
    hci_uart_config_t  * config    = hci_uart_config_cc256x_instance();
    remote_device_db_t * remote_db = (remote_device_db_t *) &remote_device_db_memory;
	hci_init(transport, config, control, remote_db);

    // use eHCILL
    bt_control_cc256x_enable_ehcill(1);

    // init L2CAP
    l2cap_init();
    l2cap_register_packet_handler(bt_packet_handler);
    l2cap_register_service_internal(NULL, l2cap_packet_handler, 0x1001, L2CAP_MINIMAL_MTU);

    // ready - enable irq used in h4 task
    __enable_interrupt();

 	// turn on!
	if(hci_power_control(HCI_POWER_ON))
		printf("power on failed");

	//init i2c
	initi2c();

    // go!
    run_loop_execute();

    // happy compiler!
    return 0;
}