/* * do_IRQ handles IRQ's that have been installed without the * SA_INTERRUPT flag: it uses the full signal-handling return * and runs with other interrupts enabled. All relatively slow * IRQ's should use this format: notably the keyboard/timer * routines. */ asmlinkage void do_IRQ(int irq, struct pt_regs * regs) { struct irqaction *action; int do_random, cpu; cpu = smp_processor_id(); hardirq_enter(cpu); kstat.irqs[cpu][irq]++; action = *(irq + irq_action); if (action) { if (!(action->flags & SA_INTERRUPT)) __sti(); action = *(irq + irq_action); do_random = 0; do { do_random |= action->flags; action->handler(irq, action->dev_id, regs); action = action->next; } while (action); if (do_random & SA_SAMPLE_RANDOM) add_interrupt_randomness(irq); __cli(); } hardirq_exit(cpu); /* unmasking and bottom half handling is done magically for us. */ }
void TAUException(struct pt_regs * regs) { unsigned long cpu = smp_processor_id(); hardirq_enter(cpu); tau[cpu].interrupts++; TAUupdate(cpu); hardirq_exit(cpu); return; }
asmlinkage void i8259_do_irq(int irq, struct pt_regs *regs) { struct irqaction *action; int do_random, cpu; cpu = smp_processor_id(); hardirq_enter(cpu); if (irq >= 16) goto out; i8259_mask_and_ack_irq(irq); kstat.irqs[cpu][irq]++; action = *(irq + irq_action); if (!action) goto out; if (!(action->flags & SA_INTERRUPT)) __sti(); action = *(irq + irq_action); do_random = 0; do { do_random |= action->flags; action->handler(irq, action->dev_id, regs); action = action->next; } while (action); if (do_random & SA_SAMPLE_RANDOM) add_interrupt_randomness(irq); __cli(); unmask_irq (irq); out: hardirq_exit(cpu); }
/* * timer_interrupt - gets called when the decrementer overflows, * with interrupts disabled. * We set it up to overflow again in 1/HZ seconds. */ int timer_interrupt(struct pt_regs * regs) { int next_dec; unsigned long cpu = smp_processor_id(); unsigned jiffy_stamp = last_jiffy_stamp(cpu); extern void do_IRQ(struct pt_regs *); if (atomic_read(&ppc_n_lost_interrupts) != 0) do_IRQ(regs); hardirq_enter(cpu); while ((next_dec = tb_ticks_per_jiffy - tb_delta(&jiffy_stamp)) < 0) { jiffy_stamp += tb_ticks_per_jiffy; if (!user_mode(regs)) ppc_do_profile(instruction_pointer(regs)); if (unlikely(!heartbeat_count(cpu)--) && heartbeat_reset(cpu)) { ppc_md.heartbeat(); heartbeat_count(cpu) = heartbeat_reset(cpu); } if (cpu) continue; /* We are in an interrupt, no need to save/restore flags */ write_lock(&xtime_lock); tb_last_stamp = jiffy_stamp; do_timer(regs); /* * update the rtc when needed, this should be performed on the * right fraction of a second. Half or full second ? * Full second works on mk48t59 clocks, others need testing. * Note that this update is basically only used through * the adjtimex system calls. Setting the HW clock in * any other way is a /dev/rtc and userland business. * This is still wrong by -0.5/+1.5 jiffies because of the * timer interrupt resolution and possible delay, but here we * hit a quantization limit which can only be solved by higher * resolution timers and decoupling time management from timer * interrupts. This is also wrong on the clocks * which require being written at the half second boundary. * We should have an rtc call that only sets the minutes and * seconds like on Intel to avoid problems with non UTC clocks. */ if ( ppc_md.set_rtc_time && (time_status & STA_UNSYNC) == 0 && xtime.tv_sec - last_rtc_update >= 659 && abs(xtime.tv_usec - (1000000-1000000/HZ)) < 500000/HZ && jiffies - wall_jiffies == 1) { if (ppc_md.set_rtc_time(xtime.tv_sec+1 + time_offset) == 0) last_rtc_update = xtime.tv_sec+1; else /* Try again one minute later */ last_rtc_update += 60; } write_unlock(&xtime_lock); } if (!disarm_decr[cpu]) set_dec(next_dec); last_jiffy_stamp(cpu) = jiffy_stamp; #ifdef CONFIG_SMP smp_local_timer_interrupt(regs); #endif /* CONFIG_SMP */ hardirq_exit(cpu); if (softirq_pending(cpu)) do_softirq(); return 1; /* lets ret_from_int know we can do checks */ }