/* Check expired timers */ static uint32_t ktimers_check(void) { struct ktimer *t; struct ktimer t_previous; if (!ktimer_list) return -1; if (!ktimer_list->n) return -1; t = heap_first(ktimer_list); while ((t) && (t->expire_time < jiffies)) { if (t->handler) { t->handler(jiffies, t->arg); } heap_peek(ktimer_list, &t_previous); t = heap_first(ktimer_list); } return (t->expire_time - jiffies); }
void timer_check(void) { evquick_timer_instance t, *first; unsigned long long now = gettimeofdayms(); first = heap_first(ctx->timers); while(first && (first->expire <= now)) { heap_peek(ctx->timers, &t); if (!t.ev_timer) { first = heap_first(ctx->timers); continue; } if (t.ev_timer->flags & EVQUICK_EV_DISABLED) { /* Timer was disabled in the meanwhile. * Take no action, and destroy it. */ free(t.ev_timer); } else if (t.ev_timer->flags & EVQUICK_EV_RETRIGGER) { timer_trigger(t.ev_timer, now, now + t.ev_timer->interval); t.ev_timer->callback(t.ev_timer->arg); /* Don't free the timer, reuse for next instance * that has just been scheduled. */ } else { /* One shot, invoke callback, * then destroy the timer. */ t.ev_timer->callback(t.ev_timer->arg); free(t.ev_timer); } first = heap_first(ctx->timers); } if(first) { unsigned long long interval = first->expire - now; if (interval >= 1000) alarm((unsigned)(interval / 1000)); else ualarm((useconds_t) (1000 * (first->expire - now)), 0); } }
void* receive_data_messages_thread() { while(true) { pthread_mutex_lock(&data_message_queue_mutex); while(heap_is_empty(data_message_queue)) { debug(5, "wait for data message timeout"); pthread_cond_wait(&data_message_queue_cond, &data_message_queue_mutex); } bool wait = true; struct timespec timeout; struct data_message* message = *(struct data_message**) heap_first(data_message_queue); //while(wait && message->state != COMPLETE && message->receive_time + DATA_MESSAGE_TIMEOUT // TODO } }
static void timer_trigger(evquick_timer *t, unsigned long long now, unsigned long long expire) { evquick_timer_instance tev, *first; tev.ev_timer = t; tev.expire = expire; heap_insert(ctx->timers, &tev); first = heap_first(ctx->timers); if (first) { unsigned long long interval; if (now >= first->expire) { ualarm(1000, 0); return; } interval = first->expire - now; if (interval >= 1000) alarm((unsigned)(interval / 1000)); else ualarm((useconds_t)(1000 * (first->expire - now)), 0); } }
int RAND_poll(void) { MEMORYSTATUS m; HCRYPTPROV hProvider = 0; DWORD w; int good = 0; /* Determine the OS version we are on so we can turn off things * that do not work properly. */ OSVERSIONINFO osverinfo ; osverinfo.dwOSVersionInfoSize = sizeof(OSVERSIONINFO) ; GetVersionEx( &osverinfo ) ; #if defined(OPENSSL_SYS_WINCE) # if defined(_WIN32_WCE) && _WIN32_WCE>=300 /* Even though MSDN says _WIN32_WCE>=210, it doesn't seem to be available * in commonly available implementations prior 300... */ { BYTE buf[64]; /* poll the CryptoAPI PRNG */ /* The CryptoAPI returns sizeof(buf) bytes of randomness */ if (CryptAcquireContextW(&hProvider, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) { if (CryptGenRandom(hProvider, sizeof(buf), buf)) RAND_add(buf, sizeof(buf), sizeof(buf)); CryptReleaseContext(hProvider, 0); } } # endif #else /* OPENSSL_SYS_WINCE */ /* * None of below libraries are present on Windows CE, which is * why we #ifndef the whole section. This also excuses us from * handling the GetProcAddress issue. The trouble is that in * real Win32 API GetProcAddress is available in ANSI flavor * only. In WinCE on the other hand GetProcAddress is a macro * most commonly defined as GetProcAddressW, which accepts * Unicode argument. If we were to call GetProcAddress under * WinCE, I'd recommend to either redefine GetProcAddress as * GetProcAddressA (there seem to be one in common CE spec) or * implement own shim routine, which would accept ANSI argument * and expand it to Unicode. */ { /* load functions dynamically - not available on all systems */ HMODULE advapi = LoadLibrary(TEXT("ADVAPI32.DLL")); HMODULE kernel = LoadLibrary(TEXT("KERNEL32.DLL")); HMODULE user = NULL; HMODULE netapi = LoadLibrary(TEXT("NETAPI32.DLL")); CRYPTACQUIRECONTEXTW acquire = NULL; CRYPTGENRANDOM gen = NULL; CRYPTRELEASECONTEXT release = NULL; NETSTATGET netstatget = NULL; NETFREE netfree = NULL; BYTE buf[64]; if (netapi) { netstatget = (NETSTATGET) GetProcAddress(netapi,"NetStatisticsGet"); netfree = (NETFREE) GetProcAddress(netapi,"NetApiBufferFree"); } if (netstatget && netfree) { LPBYTE outbuf; /* NetStatisticsGet() is a Unicode only function * STAT_WORKSTATION_0 contains 45 fields and STAT_SERVER_0 * contains 17 fields. We treat each field as a source of * one byte of entropy. */ if (netstatget(NULL, L"LanmanWorkstation", 0, 0, &outbuf) == 0) { RAND_add(outbuf, sizeof(STAT_WORKSTATION_0), 45); netfree(outbuf); } if (netstatget(NULL, L"LanmanServer", 0, 0, &outbuf) == 0) { RAND_add(outbuf, sizeof(STAT_SERVER_0), 17); netfree(outbuf); } } if (netapi) FreeLibrary(netapi); /* It appears like this can cause an exception deep within ADVAPI32.DLL * at random times on Windows 2000. Reported by Jeffrey Altman. * Only use it on NT. */ /* Wolfgang Marczy <*****@*****.**> reports that * the RegQueryValueEx call below can hang on NT4.0 (SP6). * So we don't use this at all for now. */ #if 0 if ( osverinfo.dwPlatformId == VER_PLATFORM_WIN32_NT && osverinfo.dwMajorVersion < 5) { /* Read Performance Statistics from NT/2000 registry * The size of the performance data can vary from call * to call so we must guess the size of the buffer to use * and increase its size if we get an ERROR_MORE_DATA * return instead of ERROR_SUCCESS. */ LONG rc=ERROR_MORE_DATA; char * buf=NULL; DWORD bufsz=0; DWORD length; while (rc == ERROR_MORE_DATA) { buf = realloc(buf,bufsz+8192); if (!buf) break; bufsz += 8192; length = bufsz; rc = RegQueryValueEx(HKEY_PERFORMANCE_DATA, TEXT("Global"), NULL, NULL, buf, &length); } if (rc == ERROR_SUCCESS) { /* For entropy count assume only least significant * byte of each DWORD is random. */ RAND_add(&length, sizeof(length), 0); RAND_add(buf, length, length / 4.0); /* Close the Registry Key to allow Windows to cleanup/close * the open handle * Note: The 'HKEY_PERFORMANCE_DATA' key is implicitly opened * when the RegQueryValueEx above is done. However, if * it is not explicitly closed, it can cause disk * partition manipulation problems. */ RegCloseKey(HKEY_PERFORMANCE_DATA); } if (buf) free(buf); } #endif if (advapi) { /* * If it's available, then it's available in both ANSI * and UNICODE flavors even in Win9x, documentation says. * We favor Unicode... */ acquire = (CRYPTACQUIRECONTEXTW) GetProcAddress(advapi, "CryptAcquireContextW"); gen = (CRYPTGENRANDOM) GetProcAddress(advapi, "CryptGenRandom"); release = (CRYPTRELEASECONTEXT) GetProcAddress(advapi, "CryptReleaseContext"); } if (acquire && gen && release) { /* poll the CryptoAPI PRNG */ /* The CryptoAPI returns sizeof(buf) bytes of randomness */ if (acquire(&hProvider, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) { if (gen(hProvider, sizeof(buf), buf) != 0) { RAND_add(buf, sizeof(buf), 0); good = 1; #if 0 printf("randomness from PROV_RSA_FULL\n"); #endif } release(hProvider, 0); } /* poll the Pentium PRG with CryptoAPI */ if (acquire(&hProvider, 0, INTEL_DEF_PROV, PROV_INTEL_SEC, 0)) { if (gen(hProvider, sizeof(buf), buf) != 0) { RAND_add(buf, sizeof(buf), sizeof(buf)); good = 1; #if 0 printf("randomness from PROV_INTEL_SEC\n"); #endif } release(hProvider, 0); } } if (advapi) FreeLibrary(advapi); if ((osverinfo.dwPlatformId != VER_PLATFORM_WIN32_NT || !OPENSSL_isservice()) && (user = LoadLibrary(TEXT("USER32.DLL")))) { GETCURSORINFO cursor; GETFOREGROUNDWINDOW win; GETQUEUESTATUS queue; win = (GETFOREGROUNDWINDOW) GetProcAddress(user, "GetForegroundWindow"); cursor = (GETCURSORINFO) GetProcAddress(user, "GetCursorInfo"); queue = (GETQUEUESTATUS) GetProcAddress(user, "GetQueueStatus"); if (win) { /* window handle */ HWND h = win(); RAND_add(&h, sizeof(h), 0); } if (cursor) { /* unfortunately, its not safe to call GetCursorInfo() * on NT4 even though it exists in SP3 (or SP6) and * higher. */ if ( osverinfo.dwPlatformId == VER_PLATFORM_WIN32_NT && osverinfo.dwMajorVersion < 5) cursor = 0; } if (cursor) { /* cursor position */ /* assume 2 bytes of entropy */ CURSORINFO ci; ci.cbSize = sizeof(CURSORINFO); if (cursor(&ci)) RAND_add(&ci, ci.cbSize, 2); } if (queue) { /* message queue status */ /* assume 1 byte of entropy */ w = queue(QS_ALLEVENTS); RAND_add(&w, sizeof(w), 1); } FreeLibrary(user); } /* Toolhelp32 snapshot: enumerate processes, threads, modules and heap * http://msdn.microsoft.com/library/psdk/winbase/toolhelp_5pfd.htm * (Win 9x and 2000 only, not available on NT) * * This seeding method was proposed in Peter Gutmann, Software * Generation of Practically Strong Random Numbers, * http://www.usenix.org/publications/library/proceedings/sec98/gutmann.html * revised version at http://www.cryptoengines.com/~peter/06_random.pdf * (The assignment of entropy estimates below is arbitrary, but based * on Peter's analysis the full poll appears to be safe. Additional * interactive seeding is encouraged.) */ if (kernel) { CREATETOOLHELP32SNAPSHOT snap; CLOSETOOLHELP32SNAPSHOT close_snap; HANDLE handle; HEAP32FIRST heap_first; HEAP32NEXT heap_next; HEAP32LIST heaplist_first, heaplist_next; PROCESS32 process_first, process_next; THREAD32 thread_first, thread_next; MODULE32 module_first, module_next; HEAPLIST32 hlist; HEAPENTRY32 hentry; PROCESSENTRY32 p; THREADENTRY32 t; MODULEENTRY32 m; DWORD starttime = 0; snap = (CREATETOOLHELP32SNAPSHOT) GetProcAddress(kernel, "CreateToolhelp32Snapshot"); close_snap = (CLOSETOOLHELP32SNAPSHOT) GetProcAddress(kernel, "CloseToolhelp32Snapshot"); heap_first = (HEAP32FIRST) GetProcAddress(kernel, "Heap32First"); heap_next = (HEAP32NEXT) GetProcAddress(kernel, "Heap32Next"); heaplist_first = (HEAP32LIST) GetProcAddress(kernel, "Heap32ListFirst"); heaplist_next = (HEAP32LIST) GetProcAddress(kernel, "Heap32ListNext"); process_first = (PROCESS32) GetProcAddress(kernel, "Process32First"); process_next = (PROCESS32) GetProcAddress(kernel, "Process32Next"); thread_first = (THREAD32) GetProcAddress(kernel, "Thread32First"); thread_next = (THREAD32) GetProcAddress(kernel, "Thread32Next"); module_first = (MODULE32) GetProcAddress(kernel, "Module32First"); module_next = (MODULE32) GetProcAddress(kernel, "Module32Next"); if (snap && heap_first && heap_next && heaplist_first && heaplist_next && process_first && process_next && thread_first && thread_next && module_first && module_next && (handle = snap(TH32CS_SNAPALL,0)) != INVALID_HANDLE_VALUE) { /* heap list and heap walking */ /* HEAPLIST32 contains 3 fields that will change with * each entry. Consider each field a source of 1 byte * of entropy. * HEAPENTRY32 contains 5 fields that will change with * each entry. Consider each field a source of 1 byte * of entropy. */ ZeroMemory(&hlist, sizeof(HEAPLIST32)); hlist.dwSize = sizeof(HEAPLIST32); if (good) starttime = GetTickCount(); #ifdef _MSC_VER if (heaplist_first(handle, &hlist)) { /* following discussion on dev ML, exception on WinCE (or other Win platform) is theoretically of unknown origin; prevent infinite loop here when this theoretical case occurs; otherwise cope with the expected (MSDN documented) exception-throwing behaviour of Heap32Next() on WinCE. based on patch in original message by Tanguy Fautré (2009/03/02) Subject: RAND_poll() and CreateToolhelp32Snapshot() stability */ int ex_cnt_limit = 42; do { RAND_add(&hlist, hlist.dwSize, 3); __try { ZeroMemory(&hentry, sizeof(HEAPENTRY32)); hentry.dwSize = sizeof(HEAPENTRY32); if (heap_first(&hentry, hlist.th32ProcessID, hlist.th32HeapID)) { int entrycnt = 80; do RAND_add(&hentry, hentry.dwSize, 5); while (heap_next(&hentry) && (!good || (GetTickCount()-starttime)<MAXDELAY) && --entrycnt > 0); } } __except (EXCEPTION_EXECUTE_HANDLER) { /* ignore access violations when walking the heap list */ ex_cnt_limit--; } } while (heaplist_next(handle, &hlist) && (!good || (GetTickCount()-starttime)<MAXDELAY) && ex_cnt_limit > 0); } #else if (heaplist_first(handle, &hlist)) { do { RAND_add(&hlist, hlist.dwSize, 3); hentry.dwSize = sizeof(HEAPENTRY32); if (heap_first(&hentry, hlist.th32ProcessID, hlist.th32HeapID)) { int entrycnt = 80; do RAND_add(&hentry, hentry.dwSize, 5); while (heap_next(&hentry) && --entrycnt > 0); } } while (heaplist_next(handle, &hlist) && (!good || (GetTickCount()-starttime)<MAXDELAY)); } #endif /* process walking */ /* PROCESSENTRY32 contains 9 fields that will change * with each entry. Consider each field a source of * 1 byte of entropy. */ p.dwSize = sizeof(PROCESSENTRY32); if (good) starttime = GetTickCount(); if (process_first(handle, &p)) do RAND_add(&p, p.dwSize, 9); while (process_next(handle, &p) && (!good || (GetTickCount()-starttime)<MAXDELAY)); /* thread walking */ /* THREADENTRY32 contains 6 fields that will change * with each entry. Consider each field a source of * 1 byte of entropy. */ t.dwSize = sizeof(THREADENTRY32); if (good) starttime = GetTickCount(); if (thread_first(handle, &t)) do RAND_add(&t, t.dwSize, 6); while (thread_next(handle, &t) && (!good || (GetTickCount()-starttime)<MAXDELAY)); /* module walking */ /* MODULEENTRY32 contains 9 fields that will change * with each entry. Consider each field a source of * 1 byte of entropy. */ m.dwSize = sizeof(MODULEENTRY32); if (good) starttime = GetTickCount(); if (module_first(handle, &m)) do RAND_add(&m, m.dwSize, 9); while (module_next(handle, &m) && (!good || (GetTickCount()-starttime)<MAXDELAY)); if (close_snap) close_snap(handle); else CloseHandle(handle); } FreeLibrary(kernel); }
tcpalpha colap_primero(const colap c) { return heap_first(c); }
/* * xstats_update_class_statistics () - Updates the statistics for the objects * of a given class * return: * class_id(in): Identifier of the class * * Note: It first retrieves the whole catalog information about this class, * including all possible forms of disk representations for the instance * objects. Then, it performs a complete pass on the heap file of the * class, reading in all of the instance objects one by one and * calculating the ranges of numeric attribute values (ie. min. & max. * values for each numeric attribute). * * During this pass on the heap file, these values are maintained * separately for objects with the same representation. Each minimum and * maximum value is initialized when the first instance of the class * with the corresponding representation is encountered. These values are * continually updated as attribute values exceeding the known range are * encountered. At the end of this pass, these individual ranges for * each representation are uniformed in the last (the current) * representation, building the global range values for the attributes * of the class. Then, the btree statistical information is obtained for * each attribute that is indexed and stored in this final representation * structure. Finally, a new timestamp is obtained for these class * statistics and they are stored to disk within the catalog structure * for the last class representation. */ int xstats_update_class_statistics (THREAD_ENTRY * thread_p, OID * class_id_p) { CLS_INFO *cls_info_p = NULL; REPR_ID repr_id; DISK_REPR *disk_repr_p = NULL; DISK_ATTR *disk_attr_p = NULL; BTREE_STATS *btree_stats_p = NULL; HEAP_SCANCACHE hf_scan_cache, *hf_scan_cache_p = NULL; HEAP_CACHE_ATTRINFO hf_cache_attr_info, *hf_cache_attr_info_p = NULL; RECDES recdes; OID oid; SCAN_CODE scan_rc; DB_VALUE *db_value_p; DB_DATA *db_data_p; int i, j; cls_info_p = catalog_get_class_info (thread_p, class_id_p); if (cls_info_p == NULL) { goto error; } /* if class information was not obtained */ if (cls_info_p->hfid.vfid.fileid < 0 || cls_info_p->hfid.vfid.volid < 0) { /* The class does not have a heap file (i.e. it has no instances); so no statistics can be obtained for this class; just set 'tot_objects' field to 0 and return. */ cls_info_p->tot_objects = 0; if (catalog_add_class_info (thread_p, class_id_p, cls_info_p) != NO_ERROR) { goto error; } catalog_free_class_info (cls_info_p); return NO_ERROR; } if (catalog_get_last_representation_id (thread_p, class_id_p, &repr_id) != NO_ERROR) { goto error; } disk_repr_p = catalog_get_representation (thread_p, class_id_p, repr_id); if (disk_repr_p == NULL) { goto error; } cls_info_p->tot_pages = file_get_numpages (thread_p, &cls_info_p->hfid.vfid); cls_info_p->tot_objects = 0; disk_repr_p->num_objects = 0; /* scan whole object of the class and update the statistics */ if (heap_scancache_start (thread_p, &hf_scan_cache, &(cls_info_p->hfid), class_id_p, true, false, LOCKHINT_NONE) != NO_ERROR) { goto error; } hf_scan_cache_p = &hf_scan_cache; if (heap_attrinfo_start (thread_p, class_id_p, -1, NULL, &hf_cache_attr_info) != NO_ERROR) { goto error; } hf_cache_attr_info_p = &hf_cache_attr_info; /* Obtain minimum and maximum value of the instances for each attribute of the class and count the number of objects by scanning heap file */ recdes.area_size = -1; scan_rc = heap_first (thread_p, &(cls_info_p->hfid), class_id_p, &oid, &recdes, hf_scan_cache_p, PEEK); while (scan_rc == S_SUCCESS) { if (heap_attrinfo_read_dbvalues (thread_p, &oid, &recdes, hf_cache_attr_info_p) != NO_ERROR) { scan_rc = S_ERROR; break; } /* Consider attributes only whose type are fixed because min/max value statistics are useful only for those type when calculating the cost of query plan by query optimizer. Variable type attributes, for example VARCHAR(STRING), take constant number of selectivity. */ for (i = 0; i < disk_repr_p->n_fixed; i++) { disk_attr_p = &(disk_repr_p->fixed[i]); db_value_p = heap_attrinfo_access (disk_attr_p->id, hf_cache_attr_info_p); if (db_value_p != NULL && db_value_is_null (db_value_p) != true) { db_data_p = db_value_get_db_data (db_value_p); if (disk_repr_p->num_objects == 0) { /* first object */ disk_attr_p->min_value = *db_data_p; disk_attr_p->max_value = *db_data_p; } else { /* compare with previous values */ if (stats_compare_data (db_data_p, &disk_attr_p->min_value, disk_attr_p->type) < 0) { disk_attr_p->min_value = *db_data_p; } if (stats_compare_data (db_data_p, &disk_attr_p->max_value, disk_attr_p->type) > 0) { disk_attr_p->max_value = *db_data_p; } } } } cls_info_p->tot_objects++; disk_repr_p->num_objects++; scan_rc = heap_next (thread_p, &(cls_info_p->hfid), class_id_p, &oid, &recdes, hf_scan_cache_p, PEEK); } if (scan_rc == S_ERROR) { goto error; } heap_attrinfo_end (thread_p, hf_cache_attr_info_p); if (heap_scancache_end (thread_p, hf_scan_cache_p) != NO_ERROR) { goto error; } /* update the index statistics for each attribute */ for (i = 0; i < disk_repr_p->n_fixed + disk_repr_p->n_variable; i++) { if (i < disk_repr_p->n_fixed) { disk_attr_p = disk_repr_p->fixed + i; } else { disk_attr_p = disk_repr_p->variable + (i - disk_repr_p->n_fixed); } for (j = 0, btree_stats_p = disk_attr_p->bt_stats; j < disk_attr_p->n_btstats; j++, btree_stats_p++) { if (btree_get_stats (thread_p, &btree_stats_p->btid, btree_stats_p, true) != NO_ERROR) { goto error; } } } /* replace the current disk representation structure/information in the catalog with the newly computed statistics */ if (catalog_add_representation (thread_p, class_id_p, repr_id, disk_repr_p) != NO_ERROR) { goto error; } cls_info_p->time_stamp = stats_get_time_stamp (); if (catalog_add_class_info (thread_p, class_id_p, cls_info_p) != NO_ERROR) { goto error; } if (disk_repr_p) { catalog_free_representation (disk_repr_p); } if (cls_info_p) { catalog_free_class_info (cls_info_p); } return NO_ERROR; error: if (hf_cache_attr_info_p) { heap_attrinfo_end (thread_p, hf_cache_attr_info_p); } if (hf_scan_cache_p) { (void) heap_scancache_end (thread_p, hf_scan_cache_p); } if (disk_repr_p) { catalog_free_representation (disk_repr_p); } if (cls_info_p) { catalog_free_class_info (cls_info_p); } return er_errid (); }
int RAND_poll(void) { MEMORYSTATUS m; HCRYPTPROV hProvider = 0; BYTE buf[64]; DWORD w; HWND h; HMODULE advapi, kernel, user, netapi; CRYPTACQUIRECONTEXT acquire = 0; CRYPTGENRANDOM gen = 0; CRYPTRELEASECONTEXT release = 0; #if 1 /* There was previously a problem with NETSTATGET. Currently, this * section is still experimental, but if all goes well, this conditional * will be removed */ NETSTATGET netstatget = 0; NETFREE netfree = 0; #endif /* 1 */ /* Determine the OS version we are on so we can turn off things * that do not work properly. */ OSVERSIONINFO osverinfo ; osverinfo.dwOSVersionInfoSize = sizeof(OSVERSIONINFO) ; GetVersionEx( &osverinfo ) ; /* load functions dynamically - not available on all systems */ advapi = LoadLibrary("ADVAPI32.DLL"); kernel = LoadLibrary("KERNEL32.DLL"); user = LoadLibrary("USER32.DLL"); netapi = LoadLibrary("NETAPI32.DLL"); #if 1 /* There was previously a problem with NETSTATGET. Currently, this * section is still experimental, but if all goes well, this conditional * will be removed */ if (netapi) { netstatget = (NETSTATGET) GetProcAddress(netapi,"NetStatisticsGet"); netfree = (NETFREE) GetProcAddress(netapi,"NetApiBufferFree"); } if (netstatget && netfree) { LPBYTE outbuf; /* NetStatisticsGet() is a Unicode only function * STAT_WORKSTATION_0 contains 45 fields and STAT_SERVER_0 * contains 17 fields. We treat each field as a source of * one byte of entropy. */ if (netstatget(NULL, L"LanmanWorkstation", 0, 0, &outbuf) == 0) { RAND_add(outbuf, sizeof(STAT_WORKSTATION_0), 45); netfree(outbuf); } if (netstatget(NULL, L"LanmanServer", 0, 0, &outbuf) == 0) { RAND_add(outbuf, sizeof(STAT_SERVER_0), 17); netfree(outbuf); } } if (netapi) FreeLibrary(netapi); #endif /* 1 */ /* It appears like this can cause an exception deep within ADVAPI32.DLL * at random times on Windows 2000. Reported by Jeffrey Altman. * Only use it on NT. */ if ( osverinfo.dwPlatformId == VER_PLATFORM_WIN32_NT && osverinfo.dwMajorVersion < 5) { /* Read Performance Statistics from NT/2000 registry * The size of the performance data can vary from call * to call so we must guess the size of the buffer to use * and increase its size if we get an ERROR_MORE_DATA * return instead of ERROR_SUCCESS. */ LONG rc=ERROR_MORE_DATA; char * buf=NULL; DWORD bufsz=0; DWORD length; while (rc == ERROR_MORE_DATA) { buf = realloc(buf,bufsz+8192); if (!buf) break; bufsz += 8192; length = bufsz; rc = RegQueryValueEx(HKEY_PERFORMANCE_DATA, "Global", NULL, NULL, buf, &length); } if (rc == ERROR_SUCCESS) { /* For entropy count assume only least significant * byte of each DWORD is random. */ RAND_add(&length, sizeof(length), 0); RAND_add(buf, length, length / 4.0); } if (buf) free(buf); } if (advapi) { acquire = (CRYPTACQUIRECONTEXT) GetProcAddress(advapi, "CryptAcquireContextA"); gen = (CRYPTGENRANDOM) GetProcAddress(advapi, "CryptGenRandom"); release = (CRYPTRELEASECONTEXT) GetProcAddress(advapi, "CryptReleaseContext"); } if (acquire && gen && release) { /* poll the CryptoAPI PRNG */ /* The CryptoAPI returns sizeof(buf) bytes of randomness */ if (acquire(&hProvider, 0, 0, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) { if (gen(hProvider, sizeof(buf), buf) != 0) { RAND_add(buf, sizeof(buf), sizeof(buf)); #if 0 printf("randomness from PROV_RSA_FULL\n"); #endif } release(hProvider, 0); } /* poll the Pentium PRG with CryptoAPI */ if (acquire(&hProvider, 0, INTEL_DEF_PROV, PROV_INTEL_SEC, 0)) { if (gen(hProvider, sizeof(buf), buf) != 0) { RAND_add(buf, sizeof(buf), sizeof(buf)); #if 0 printf("randomness from PROV_INTEL_SEC\n"); #endif } release(hProvider, 0); } } if (advapi) FreeLibrary(advapi); /* timer data */ readtimer(); /* memory usage statistics */ GlobalMemoryStatus(&m); RAND_add(&m, sizeof(m), 1); /* process ID */ w = GetCurrentProcessId(); RAND_add(&w, sizeof(w), 1); if (user) { GETCURSORINFO cursor; GETFOREGROUNDWINDOW win; GETQUEUESTATUS queue; win = (GETFOREGROUNDWINDOW) GetProcAddress(user, "GetForegroundWindow"); cursor = (GETCURSORINFO) GetProcAddress(user, "GetCursorInfo"); queue = (GETQUEUESTATUS) GetProcAddress(user, "GetQueueStatus"); if (win) { /* window handle */ h = win(); RAND_add(&h, sizeof(h), 0); } if (cursor) { /* unfortunately, its not safe to call GetCursorInfo() * on NT4 even though it exists in SP3 (or SP6) and * higher. */ if ( osverinfo.dwPlatformId == VER_PLATFORM_WIN32_NT && osverinfo.dwMajorVersion < 5) cursor = 0; } if (cursor) { /* cursor position */ /* assume 2 bytes of entropy */ CURSORINFO ci; ci.cbSize = sizeof(CURSORINFO); if (cursor(&ci)) RAND_add(&ci, ci.cbSize, 2); } if (queue) { /* message queue status */ /* assume 1 byte of entropy */ w = queue(QS_ALLEVENTS); RAND_add(&w, sizeof(w), 1); } FreeLibrary(user); } /* Toolhelp32 snapshot: enumerate processes, threads, modules and heap * http://msdn.microsoft.com/library/psdk/winbase/toolhelp_5pfd.htm * (Win 9x and 2000 only, not available on NT) * * This seeding method was proposed in Peter Gutmann, Software * Generation of Practically Strong Random Numbers, * http://www.usenix.org/publications/library/proceedings/sec98/gutmann.html * revised version at http://www.cryptoengines.com/~peter/06_random.pdf * (The assignment of entropy estimates below is arbitrary, but based * on Peter's analysis the full poll appears to be safe. Additional * interactive seeding is encouraged.) */ if (kernel) { CREATETOOLHELP32SNAPSHOT snap; HANDLE handle; HEAP32FIRST heap_first; HEAP32NEXT heap_next; HEAP32LIST heaplist_first, heaplist_next; PROCESS32 process_first, process_next; THREAD32 thread_first, thread_next; MODULE32 module_first, module_next; HEAPLIST32 hlist; HEAPENTRY32 hentry; PROCESSENTRY32 p; THREADENTRY32 t; MODULEENTRY32 m; snap = (CREATETOOLHELP32SNAPSHOT) GetProcAddress(kernel, "CreateToolhelp32Snapshot"); heap_first = (HEAP32FIRST) GetProcAddress(kernel, "Heap32First"); heap_next = (HEAP32NEXT) GetProcAddress(kernel, "Heap32Next"); heaplist_first = (HEAP32LIST) GetProcAddress(kernel, "Heap32ListFirst"); heaplist_next = (HEAP32LIST) GetProcAddress(kernel, "Heap32ListNext"); process_first = (PROCESS32) GetProcAddress(kernel, "Process32First"); process_next = (PROCESS32) GetProcAddress(kernel, "Process32Next"); thread_first = (THREAD32) GetProcAddress(kernel, "Thread32First"); thread_next = (THREAD32) GetProcAddress(kernel, "Thread32Next"); module_first = (MODULE32) GetProcAddress(kernel, "Module32First"); module_next = (MODULE32) GetProcAddress(kernel, "Module32Next"); if (snap && heap_first && heap_next && heaplist_first && heaplist_next && process_first && process_next && thread_first && thread_next && module_first && module_next && (handle = snap(TH32CS_SNAPALL,0)) != NULL) { /* heap list and heap walking */ /* HEAPLIST32 contains 3 fields that will change with * each entry. Consider each field a source of 1 byte * of entropy. * HEAPENTRY32 contains 5 fields that will change with * each entry. Consider each field a source of 1 byte * of entropy. */ hlist.dwSize = sizeof(HEAPLIST32); if (heaplist_first(handle, &hlist)) do { RAND_add(&hlist, hlist.dwSize, 3); hentry.dwSize = sizeof(HEAPENTRY32); if (heap_first(&hentry, hlist.th32ProcessID, hlist.th32HeapID)) { int entrycnt = 50; do RAND_add(&hentry, hentry.dwSize, 5); while (heap_next(&hentry) && --entrycnt > 0); } } while (heaplist_next(handle, &hlist)); /* process walking */ /* PROCESSENTRY32 contains 9 fields that will change * with each entry. Consider each field a source of * 1 byte of entropy. */ p.dwSize = sizeof(PROCESSENTRY32); if (process_first(handle, &p)) do RAND_add(&p, p.dwSize, 9); while (process_next(handle, &p)); /* thread walking */ /* THREADENTRY32 contains 6 fields that will change * with each entry. Consider each field a source of * 1 byte of entropy. */ t.dwSize = sizeof(THREADENTRY32); if (thread_first(handle, &t)) do RAND_add(&t, t.dwSize, 6); while (thread_next(handle, &t)); /* module walking */ /* MODULEENTRY32 contains 9 fields that will change * with each entry. Consider each field a source of * 1 byte of entropy. */ m.dwSize = sizeof(MODULEENTRY32); if (module_first(handle, &m)) do RAND_add(&m, m.dwSize, 9); while (module_next(handle, &m)); CloseHandle(handle); } FreeLibrary(kernel); } #if 0 printf("Exiting RAND_poll\n"); #endif return(1); }
void evg_faults_insert(void) { struct evg_fault_t *fault; struct evg_compute_unit_t *compute_unit; for (;;) { linked_list_head(evg_fault_list); fault = linked_list_get(evg_fault_list); if (!fault || fault->cycle > evg_gpu->cycle) break; /* Insert fault depending on fault type */ switch (fault->type) { case evg_fault_ams: { struct evg_work_group_t *work_group; struct evg_wavefront_t *wavefront; struct evg_work_item_t *work_item; int work_group_id; /* in compute unit */ int wavefront_id; /* in compute unit */ int value; /* Initial debug */ evg_faults_debug("fault clk=%lld cu=%d type=\"ams\" stack=%d am=%d bit=%d ", evg_gpu->cycle, fault->compute_unit_id, fault->stack_id, fault->active_mask_id, fault->bit); assert(fault->cycle == evg_gpu->cycle); compute_unit = evg_gpu->compute_units[fault->compute_unit_id]; /* If compute unit is idle, dismiss */ if (!compute_unit->work_group_count) { evg_faults_debug("effect=\"cu_idle\""); goto end_loop; } /* Get work-group and wavefront. If wavefront ID exceeds current number, dismiss */ work_group_id = fault->stack_id / evg_gpu->ndrange->wavefronts_per_work_group; wavefront_id = fault->stack_id % evg_gpu->ndrange->wavefronts_per_work_group; if (work_group_id >= evg_gpu_max_work_groups_per_compute_unit || !compute_unit->work_groups[work_group_id]) { evg_faults_debug("effect=\"wf_idle\""); goto end_loop; } work_group = compute_unit->work_groups[work_group_id]; wavefront = work_group->wavefronts[wavefront_id]; /* If active_mask_id exceeds stack top, dismiss */ if (fault->active_mask_id > wavefront->stack_top) { evg_faults_debug("effect=\"am_idle\""); goto end_loop; } /* If 'bit' exceeds number of work-items in wavefront, dismiss */ if (fault->bit >= wavefront->work_item_count) { evg_faults_debug("effect=\"wi_idle\""); goto end_loop; } /* Fault caused an error, show affected software entities */ work_item = wavefront->work_items[fault->bit]; evg_faults_debug("effect=\"error\" wg=%d wf=%d wi=%d", work_group->id, wavefront->id, work_item->id); /* Inject fault */ value = bit_map_get(wavefront->active_stack, fault->active_mask_id * wavefront->work_item_count + fault->bit, 1); bit_map_set(wavefront->active_stack, fault->active_mask_id * wavefront->work_item_count + fault->bit, 1, !value); evg_fault_errors++; break; } case evg_fault_reg: { struct evg_opencl_kernel_t *kernel = evg_gpu->ndrange->kernel; int work_group_id_in_compute_unit; struct evg_work_group_t *work_group; struct evg_wavefront_t *wavefront; int num_registers_per_work_group; int work_item_id_in_compute_unit; int work_item_id_in_work_group; struct evg_work_item_t *work_item; struct linked_list_t *fetch_queue; struct evg_uop_t *inst_buffer; struct evg_uop_t *exec_buffer; struct heap_t *event_queue; struct evg_uop_t *uop; int lo_reg; /* Initial debug */ evg_faults_debug("fault clk=%lld cu=%d type=\"reg\" reg=%d bit=%d ", evg_gpu->cycle, fault->compute_unit_id, fault->reg_id, fault->bit); assert(fault->cycle == evg_gpu->cycle); compute_unit = evg_gpu->compute_units[fault->compute_unit_id]; /* If compute unit is idle, dismiss */ if (!compute_unit->work_group_count) { evg_faults_debug("effect=\"cu_idle\""); goto end_loop; } /* Get work-group */ num_registers_per_work_group = kernel->bin_file->enc_dict_entry_evergreen->num_gpr_used * kernel->local_size; work_group_id_in_compute_unit = fault->reg_id / num_registers_per_work_group; if (work_group_id_in_compute_unit >= evg_gpu_max_work_groups_per_compute_unit) { evg_faults_debug("effect=\"reg_idle\""); goto end_loop; } /* Get work-group (again) */ work_group = compute_unit->work_groups[work_group_id_in_compute_unit]; if (!work_group) { evg_faults_debug("effect=\"reg_idle\""); goto end_loop; } /* Get affected entities */ work_item_id_in_compute_unit = fault->reg_id / kernel->bin_file->enc_dict_entry_evergreen->num_gpr_used; work_item_id_in_work_group = work_item_id_in_compute_unit % kernel->local_size; work_item = work_group->work_items[work_item_id_in_work_group]; wavefront = work_item->wavefront; lo_reg = fault->reg_id % kernel->bin_file->enc_dict_entry_evergreen->num_gpr_used; /* Fault falling between Fetch and Read stage of an instruction * consuming register. This case cannot be modeled due to functional * simulation skew. */ fetch_queue = compute_unit->alu_engine.fetch_queue; inst_buffer = compute_unit->alu_engine.inst_buffer; for (linked_list_head(fetch_queue); !linked_list_is_end(fetch_queue); linked_list_next(fetch_queue)) { uop = linked_list_get(fetch_queue); if (evg_stack_faults_is_idep(uop, wavefront, lo_reg)) { evg_faults_debug("effect=\"reg_read\""); goto end_loop; } } uop = inst_buffer; if (uop && evg_stack_faults_is_idep(uop, wavefront, lo_reg)) { evg_faults_debug("effect=\"reg_read\""); goto end_loop; } /* Fault falling between Fetch and Write stage of an instruction * writing on the register. The instruction will overwrite the fault, * so this shouldn't cause its injection. */ exec_buffer = compute_unit->alu_engine.exec_buffer; for (linked_list_head(fetch_queue); !linked_list_is_end(fetch_queue); linked_list_next(fetch_queue)) { uop = linked_list_get(fetch_queue); if (evg_stack_faults_is_odep(uop, wavefront, lo_reg)) { evg_faults_debug("effect=\"reg_write\""); goto end_loop; } } uop = inst_buffer; if (uop && evg_stack_faults_is_odep(uop, wavefront, lo_reg)) { evg_faults_debug("effect=\"reg_write\""); goto end_loop; } uop = exec_buffer; if (uop && evg_stack_faults_is_odep(uop, wavefront, lo_reg)) { evg_faults_debug("effect=\"reg_write\""); goto end_loop; } event_queue = compute_unit->alu_engine.event_queue; for (heap_first(event_queue, (void **) &uop); uop; heap_next(event_queue, (void **) &uop)) { if (evg_stack_faults_is_odep(uop, wavefront, lo_reg)) { evg_faults_debug("effect=\"reg_write\""); goto end_loop; } } /* Fault caused error */ evg_faults_debug("effect=\"error\" "); evg_faults_debug("wg=%d wf=%d wi=%d lo_reg=%d ", work_group->id, work_item->wavefront->id, work_item->id, lo_reg); /* Insert the fault */ if (fault->bit < 32) work_item->gpr[lo_reg].elem[0] ^= 1 << fault->bit; else if (fault->bit < 64) work_item->gpr[lo_reg].elem[1] ^= 1 << (fault->bit - 32); else if (fault->bit < 96) work_item->gpr[lo_reg].elem[2] ^= 1 << (fault->bit - 64); else work_item->gpr[lo_reg].elem[3] ^= 1 << (fault->bit - 96); evg_fault_errors++; break; } case evg_fault_mem: { struct evg_work_group_t *work_group; int work_group_id_in_compute_unit; unsigned char value; /* Initial debug */ evg_faults_debug("fault clk=%lld cu=%d type=\"mem\" byte=%d bit=%d ", evg_gpu->cycle, fault->compute_unit_id, fault->byte, fault->bit); assert(fault->cycle == evg_gpu->cycle); compute_unit = evg_gpu->compute_units[fault->compute_unit_id]; /* If compute unit is idle, dismiss */ if (!compute_unit->work_group_count) { evg_faults_debug("effect=\"cu_idle\""); goto end_loop; } /* Check if there is any local memory used at all */ if (!evg_gpu->ndrange->local_mem_top) { evg_faults_debug("effect=\"mem_idle\""); goto end_loop; } /* Get work-group */ work_group_id_in_compute_unit = fault->byte / evg_gpu->ndrange->local_mem_top; if (work_group_id_in_compute_unit >= evg_gpu_max_work_groups_per_compute_unit) { evg_faults_debug("effect=\"mem_idle\""); goto end_loop; } /* Get work-group (again) */ work_group = compute_unit->work_groups[work_group_id_in_compute_unit]; if (!work_group) { evg_faults_debug("effect=\"mem_idle\""); goto end_loop; } /* Inject fault */ evg_faults_debug("effect=\"error\" wg=%d ", work_group->id); mem_read(work_group->local_mem, fault->byte, 1, &value); value ^= 1 << fault->bit; mem_write(work_group->local_mem, fault->byte, 1, &value); evg_fault_errors++; break; } default: panic("invalid fault type"); } end_loop: /* Extract and free */ free(fault); linked_list_remove(evg_fault_list); evg_faults_debug("\n"); /* If all faults were inserted and no error was caused, end simulation */ if (!linked_list_count(evg_fault_list) && !evg_fault_errors) esim_finish = esim_finish_evg_no_faults; } }