示例#1
0
文件: hif.c 项目: 03199618/linux
static int ath6kl_hif_enable_intrs(struct ath6kl_device *dev)
{
	struct ath6kl_irq_enable_reg regs;
	int status;

	spin_lock_bh(&dev->lock);

	/* Enable all but ATH6KL CPU interrupts */
	dev->irq_en_reg.int_status_en =
			SM(INT_STATUS_ENABLE_ERROR, 0x01) |
			SM(INT_STATUS_ENABLE_CPU, 0x01) |
			SM(INT_STATUS_ENABLE_COUNTER, 0x01);

	/*
	 * NOTE: There are some cases where HIF can do detection of
	 * pending mbox messages which is disabled now.
	 */
	dev->irq_en_reg.int_status_en |= SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);

	/* Set up the CPU Interrupt status Register */
	dev->irq_en_reg.cpu_int_status_en = 0;

	/* Set up the Error Interrupt status Register */
	dev->irq_en_reg.err_int_status_en =
		SM(ERROR_STATUS_ENABLE_RX_UNDERFLOW, 0x01) |
		SM(ERROR_STATUS_ENABLE_TX_OVERFLOW, 0x1);

	/*
	 * Enable Counter interrupt status register to get fatal errors for
	 * debugging.
	 */
	dev->irq_en_reg.cntr_int_status_en = SM(COUNTER_INT_STATUS_ENABLE_BIT,
						ATH6KL_TARGET_DEBUG_INTR_MASK);
	memcpy(&regs, &dev->irq_en_reg, sizeof(regs));

	spin_unlock_bh(&dev->lock);

	status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
				     &regs.int_status_en, sizeof(regs),
				     HIF_WR_SYNC_BYTE_INC);

	if (status)
		ath6kl_err("failed to update interrupt ctl reg err: %d\n",
			   status);

	return status;
}
示例#2
0
int ath6kl_hif_disable_intrs(struct ath6kl_device *dev)
{
	struct ath6kl_irq_enable_reg regs;

	spin_lock_bh(&dev->lock);
	/* Disable all interrupts */
	dev->irq_en_reg.int_status_en = 0;
	dev->irq_en_reg.cpu_int_status_en = 0;
	dev->irq_en_reg.err_int_status_en = 0;
	dev->irq_en_reg.cntr_int_status_en = 0;
	memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
	spin_unlock_bh(&dev->lock);

	return hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
				   &regs.int_status_en, sizeof(regs),
				   HIF_WR_SYNC_BYTE_INC);
}
示例#3
0
文件: bmi.c 项目: 71eh/open80211s
static int ath6kl_bmi_send_buf(struct ath6kl *ar, u8 *buf, u32 len)
{
	int ret;
	u32 addr;

	ret = ath6kl_get_bmi_cmd_credits(ar);
	if (ret)
		return ret;

	addr = ar->mbox_info.htc_addr;

	ret = hif_read_write_sync(ar, addr, buf, len,
				  HIF_WR_SYNC_BYTE_INC);
	if (ret)
		ath6kl_err("unable to send the bmi data to the device\n");

	return ret;
}
示例#4
0
static int ath6kl_hif_proc_cpu_intr(struct ath6kl_device *dev)
{
	int status;
	u8 cpu_int_status;
	u8 reg_buf[4];

	ath6kl_dbg(ATH6KL_DBG_IRQ, "cpu interrupt\n");

	cpu_int_status = dev->irq_proc_reg.cpu_int_status &
			 dev->irq_en_reg.cpu_int_status_en;
	if (!cpu_int_status) {
		WARN_ON(1);
		return -EIO;
	}

	ath6kl_dbg(ATH6KL_DBG_IRQ,
		"valid interrupt source(s) in CPU_INT_STATUS: 0x%x\n",
		cpu_int_status);

	/* Clear the interrupt */
	dev->irq_proc_reg.cpu_int_status &= ~cpu_int_status;

	/*
	 * Set up the register transfer buffer to hit the register 4 times ,
	 * this is done to make the access 4-byte aligned to mitigate issues
	 * with host bus interconnects that restrict bus transfer lengths to
	 * be a multiple of 4-bytes.
	 */

	/* set W1C value to clear the interrupt, this hits the register first */
	reg_buf[0] = cpu_int_status;
	/* the remaining are set to zero which have no-effect  */
	reg_buf[1] = 0;
	reg_buf[2] = 0;
	reg_buf[3] = 0;

	status = hif_read_write_sync(dev->ar, CPU_INT_STATUS_ADDRESS,
				     reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);

	if (status)
		WARN_ON(1);

	return status;
}
示例#5
0
static int ath6kl_hif_proc_err_intr(struct ath6kl_device *dev)
{
	int status;
	u8 error_int_status;
	u8 reg_buf[4];

	ath6kl_dbg(ATH6KL_DBG_IRQ, "error interrupt\n");

	error_int_status = dev->irq_proc_reg.error_int_status & 0x0F;
	if (!error_int_status) {
		WARN_ON(1);
		return -EIO;
	}

	ath6kl_dbg(ATH6KL_DBG_IRQ,
		   "valid interrupt source(s) in ERROR_INT_STATUS: 0x%x\n",
		   error_int_status);

	if (MS(ERROR_INT_STATUS_WAKEUP, error_int_status))
		ath6kl_dbg(ATH6KL_DBG_IRQ, "error : wakeup\n");

	if (MS(ERROR_INT_STATUS_RX_UNDERFLOW, error_int_status))
		ath6kl_err("rx underflow\n");

	if (MS(ERROR_INT_STATUS_TX_OVERFLOW, error_int_status))
		ath6kl_err("tx overflow\n");

	/* Clear the interrupt */
	dev->irq_proc_reg.error_int_status &= ~error_int_status;

	/* set W1C value to clear the interrupt, this hits the register first */
	reg_buf[0] = error_int_status;
	reg_buf[1] = 0;
	reg_buf[2] = 0;
	reg_buf[3] = 0;

	status = hif_read_write_sync(dev->ar, ERROR_INT_STATUS_ADDRESS,
				     reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);

	if (status)
		WARN_ON(1);

	return status;
}
示例#6
0
static int ath6kl_hif_proc_dbg_intr(struct ath6kl_device *dev)
{
	u32 dummy;
	int ret;

	ath6kl_warn("firmware crashed\n");

	
	ret = hif_read_write_sync(dev->ar, COUNT_DEC_ADDRESS,
				     (u8 *)&dummy, 4, HIF_RD_SYNC_BYTE_INC);
	if (ret)
		ath6kl_warn("Failed to clear debug interrupt: %d\n", ret);

	ath6kl_hif_dump_fw_crash(dev->ar);
	ath6kl_read_fwlogs(dev->ar);
	ath6kl_tm_crash_event(dev->ar, ATH6KL_TM_FW_TGT_ASSERT);

	return ret;
}
示例#7
0
文件: bmi.c 项目: 71eh/open80211s
static int ath6kl_get_bmi_cmd_credits(struct ath6kl *ar)
{
	u32 addr;
	unsigned long timeout;
	int ret;

	ar->bmi.cmd_credits = 0;

	/* Read the counter register to get the command credits */
	addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;

	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
	while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {

		/*
		 * Hit the credit counter with a 4-byte access, the first byte
		 * read will hit the counter and cause a decrement, while the
		 * remaining 3 bytes has no effect. The rationale behind this
		 * is to make all HIF accesses 4-byte aligned.
		 */
		ret = hif_read_write_sync(ar, addr,
					 (u8 *)&ar->bmi.cmd_credits, 4,
					 HIF_RD_SYNC_BYTE_INC);
		if (ret) {
			ath6kl_err("Unable to decrement the command credit count register: %d\n",
				   ret);
			return ret;
		}

		/* The counter is only 8 bits.
		 * Ignore anything in the upper 3 bytes
		 */
		ar->bmi.cmd_credits &= 0xFF;
	}

	if (!ar->bmi.cmd_credits) {
		ath6kl_err("bmi communication timeout\n");
		return -ETIMEDOUT;
	}

	return 0;
}
示例#8
0
static int ath6kl_hif_proc_dbg_intr(struct ath6kl_device *dev)
{
	u32 dummy;
	int ret;

	ath6kl_warn("firmware crashed\n");

	/*
	 * read counter to clear the interrupt, the debug error interrupt is
	 * counter 0.
	 */
	ret = hif_read_write_sync(dev->ar, COUNT_DEC_ADDRESS,
				     (u8 *)&dummy, 4, HIF_RD_SYNC_BYTE_INC);
	if (ret)
		ath6kl_warn("Failed to clear debug interrupt: %d\n", ret);

	ath6kl_hif_dump_fw_crash(dev->ar);

	return ret;
}
示例#9
0
static int ath6kl_hif_enable_intrs(struct ath6kl_device *dev)
{
	struct ath6kl_irq_enable_reg regs;
	int status;

	spin_lock_bh(&dev->lock);

	
	dev->irq_en_reg.int_status_en =
			SM(INT_STATUS_ENABLE_ERROR, 0x01) |
			SM(INT_STATUS_ENABLE_CPU, 0x01) |
			SM(INT_STATUS_ENABLE_COUNTER, 0x01);

	
	dev->irq_en_reg.int_status_en |= SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);

	
	dev->irq_en_reg.cpu_int_status_en = 0;

	
	dev->irq_en_reg.err_int_status_en =
		SM(ERROR_STATUS_ENABLE_RX_UNDERFLOW, 0x01) |
		SM(ERROR_STATUS_ENABLE_TX_OVERFLOW, 0x1);

	
	dev->irq_en_reg.cntr_int_status_en = SM(COUNTER_INT_STATUS_ENABLE_BIT,
						ATH6KL_TARGET_DEBUG_INTR_MASK);
	memcpy(&regs, &dev->irq_en_reg, sizeof(regs));

	spin_unlock_bh(&dev->lock);

	status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
				     &regs.int_status_en, sizeof(regs),
				     HIF_WR_SYNC_BYTE_INC);

	if (status)
		ath6kl_err("failed to update interrupt ctl reg err: %d\n",
			   status);

	return status;
}
示例#10
0
static int ath6kl_hif_proc_cpu_intr(struct ath6kl_device *dev)
{
	int status;
	u8 cpu_int_status;
	u8 reg_buf[4];

	ath6kl_dbg(ATH6KL_DBG_IRQ, "cpu interrupt\n");

	cpu_int_status = dev->irq_proc_reg.cpu_int_status &
			 dev->irq_en_reg.cpu_int_status_en;
	if (!cpu_int_status) {
		WARN_ON(1);
		return -EIO;
	}

	ath6kl_dbg(ATH6KL_DBG_IRQ,
		"valid interrupt source(s) in CPU_INT_STATUS: 0x%x\n",
		cpu_int_status);

	
	dev->irq_proc_reg.cpu_int_status &= ~cpu_int_status;

	

	
	reg_buf[0] = cpu_int_status;
	
	reg_buf[1] = 0;
	reg_buf[2] = 0;
	reg_buf[3] = 0;

	status = hif_read_write_sync(dev->ar, CPU_INT_STATUS_ADDRESS,
				     reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);

	if (status)
		WARN_ON(1);

	return status;
}
示例#11
0
/* process pending interrupts synchronously */
static int proc_pending_irqs(struct ath6kl_device *dev, bool *done)
{
	struct ath6kl_irq_proc_registers *rg;
	int status = 0;
	u8 host_int_status = 0;
	u32 lk_ahd = 0;
	u8 htc_mbox = 1 << HTC_MAILBOX;

	ath6kl_dbg(ATH6KL_DBG_IRQ, "proc_pending_irqs: (dev: 0x%p)\n", dev);

	/*
	 * NOTE: HIF implementation guarantees that the context of this
	 * call allows us to perform SYNCHRONOUS I/O, that is we can block,
	 * sleep or call any API that can block or switch thread/task
	 * contexts. This is a fully schedulable context.
	 */

	/*
	 * Process pending intr only when int_status_en is clear, it may
	 * result in unnecessary bus transaction otherwise. Target may be
	 * unresponsive at the time.
	 */
	if (dev->irq_en_reg.int_status_en) {
		/*
		 * Read the first 28 bytes of the HTC register table. This
		 * will yield us the value of different int status
		 * registers and the lookahead registers.
		 *
		 *    length = sizeof(int_status) + sizeof(cpu_int_status)
		 *             + sizeof(error_int_status) +
		 *             sizeof(counter_int_status) +
		 *             sizeof(mbox_frame) + sizeof(rx_lkahd_valid)
		 *             + sizeof(hole) + sizeof(rx_lkahd) +
		 *             sizeof(int_status_en) +
		 *             sizeof(cpu_int_status_en) +
		 *             sizeof(err_int_status_en) +
		 *             sizeof(cntr_int_status_en);
		 */
		status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS,
					     (u8 *) &dev->irq_proc_reg,
					     sizeof(dev->irq_proc_reg),
					     HIF_RD_SYNC_BYTE_INC);
		if (status)
			goto out;

		ath6kl_dump_registers(dev, &dev->irq_proc_reg,
				      &dev->irq_en_reg);

		/* Update only those registers that are enabled */
		host_int_status = dev->irq_proc_reg.host_int_status &
				  dev->irq_en_reg.int_status_en;

		/* Look at mbox status */
		if (host_int_status & htc_mbox) {
			/*
			 * Mask out pending mbox value, we use "lookAhead as
			 * the real flag for mbox processing.
			 */
			host_int_status &= ~htc_mbox;
			if (dev->irq_proc_reg.rx_lkahd_valid &
			    htc_mbox) {
				rg = &dev->irq_proc_reg;
				lk_ahd = le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]);
				if (!lk_ahd)
					ath6kl_err("lookAhead is zero!\n");
			}
		}
	}

	if (!host_int_status && !lk_ahd) {
		*done = true;
		goto out;
	}

	if (lk_ahd) {
		int fetched = 0;

		ath6kl_dbg(ATH6KL_DBG_IRQ,
			   "pending mailbox msg, lk_ahd: 0x%X\n", lk_ahd);
		/*
		 * Mailbox Interrupt, the HTC layer may issue async
		 * requests to empty the mailbox. When emptying the recv
		 * mailbox we use the async handler above called from the
		 * completion routine of the callers read request. This can
		 * improve performance by reducing context switching when
		 * we rapidly pull packets.
		 */
		status = ath6kl_htc_rxmsg_pending_handler(dev->htc_cnxt,
							  lk_ahd, &fetched);
		if (status)
			goto out;

		if (!fetched)
			/*
			 * HTC could not pull any messages out due to lack
			 * of resources.
			 */
			dev->htc_cnxt->chk_irq_status_cnt = 0;
	}

	/* now handle the rest of them */
	ath6kl_dbg(ATH6KL_DBG_IRQ,
		   "valid interrupt source(s) for other interrupts: 0x%x\n",
		   host_int_status);

	if (MS(HOST_INT_STATUS_CPU, host_int_status)) {
		/* CPU Interrupt */
		status = ath6kl_hif_proc_cpu_intr(dev);
		if (status)
			goto out;
	}

	if (MS(HOST_INT_STATUS_ERROR, host_int_status)) {
		/* Error Interrupt */
		status = ath6kl_hif_proc_err_intr(dev);
		if (status)
			goto out;
	}

	if (MS(HOST_INT_STATUS_COUNTER, host_int_status))
		/* Counter Interrupt */
		status = ath6kl_hif_proc_counter_intr(dev);

out:
	/*
	 * An optimization to bypass reading the IRQ status registers
	 * unecessarily which can re-wake the target, if upper layers
	 * determine that we are in a low-throughput mode, we can rely on
	 * taking another interrupt rather than re-checking the status
	 * registers which can re-wake the target.
	 *
	 * NOTE : for host interfaces that makes use of detecting pending
	 * mbox messages at hif can not use this optimization due to
	 * possible side effects, SPI requires the host to drain all
	 * messages from the mailbox before exiting the ISR routine.
	 */

	ath6kl_dbg(ATH6KL_DBG_IRQ,
		   "bypassing irq status re-check, forcing done\n");

	if (!dev->htc_cnxt->chk_irq_status_cnt)
		*done = true;

	ath6kl_dbg(ATH6KL_DBG_IRQ,
		   "proc_pending_irqs: (done:%d, status=%d\n", *done, status);

	return status;
}
示例#12
0
文件: bmi.c 项目: 71eh/open80211s
static int ath6kl_bmi_recv_buf(struct ath6kl *ar, u8 *buf, u32 len)
{
	int ret;
	u32 addr;

	/*
	 * During normal bootup, small reads may be required.
	 * Rather than issue an HIF Read and then wait as the Target
	 * adds successive bytes to the FIFO, we wait here until
	 * we know that response data is available.
	 *
	 * This allows us to cleanly timeout on an unexpected
	 * Target failure rather than risk problems at the HIF level.
	 * In particular, this avoids SDIO timeouts and possibly garbage
	 * data on some host controllers.  And on an interconnect
	 * such as Compact Flash (as well as some SDIO masters) which
	 * does not provide any indication on data timeout, it avoids
	 * a potential hang or garbage response.
	 *
	 * Synchronization is more difficult for reads larger than the
	 * size of the MBOX FIFO (128B), because the Target is unable
	 * to push the 129th byte of data until AFTER the Host posts an
	 * HIF Read and removes some FIFO data.  So for large reads the
	 * Host proceeds to post an HIF Read BEFORE all the data is
	 * actually available to read.  Fortunately, large BMI reads do
	 * not occur in practice -- they're supported for debug/development.
	 *
	 * So Host/Target BMI synchronization is divided into these cases:
	 *  CASE 1: length < 4
	 *        Should not happen
	 *
	 *  CASE 2: 4 <= length <= 128
	 *        Wait for first 4 bytes to be in FIFO
	 *        If CONSERVATIVE_BMI_READ is enabled, also wait for
	 *        a BMI command credit, which indicates that the ENTIRE
	 *        response is available in the the FIFO
	 *
	 *  CASE 3: length > 128
	 *        Wait for the first 4 bytes to be in FIFO
	 *
	 * For most uses, a small timeout should be sufficient and we will
	 * usually see a response quickly; but there may be some unusual
	 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
	 * For now, we use an unbounded busy loop while waiting for
	 * BMI_EXECUTE.
	 *
	 * If BMI_EXECUTE ever needs to support longer-latency execution,
	 * especially in production, this code needs to be enhanced to sleep
	 * and yield.  Also note that BMI_COMMUNICATION_TIMEOUT is currently
	 * a function of Host processor speed.
	 */
	if (len >= 4) { /* NB: Currently, always true */
		ret = ath6kl_bmi_get_rx_lkahd(ar);
		if (ret)
			return ret;
	}

	addr = ar->mbox_info.htc_addr;
	ret = hif_read_write_sync(ar, addr, buf, len,
				  HIF_RD_SYNC_BYTE_INC);
	if (ret) {
		ath6kl_err("Unable to read the bmi data from the device: %d\n",
			   ret);
		return ret;
	}

	return 0;
}
示例#13
0
static int proc_pending_irqs(struct ath6kl_device *dev, bool *done)
{
	struct ath6kl_irq_proc_registers *rg;
	int status = 0;
	u8 host_int_status = 0;
	u32 lk_ahd = 0;
	u8 htc_mbox = 1 << HTC_MAILBOX;

	ath6kl_dbg(ATH6KL_DBG_IRQ, "proc_pending_irqs: (dev: 0x%p)\n", dev);

	

	
	if (dev->irq_en_reg.int_status_en) {
		
		status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS,
					     (u8 *) &dev->irq_proc_reg,
					     sizeof(dev->irq_proc_reg),
					     HIF_RD_SYNC_BYTE_INC);
		if (status)
			goto out;

		if (AR_DBG_LVL_CHECK(ATH6KL_DBG_IRQ))
			ath6kl_dump_registers(dev, &dev->irq_proc_reg,
					 &dev->irq_en_reg);

		
		host_int_status = dev->irq_proc_reg.host_int_status &
				  dev->irq_en_reg.int_status_en;

		
		if (host_int_status & htc_mbox) {
			
			host_int_status &= ~htc_mbox;
			if (dev->irq_proc_reg.rx_lkahd_valid &
			    htc_mbox) {
				rg = &dev->irq_proc_reg;
				lk_ahd = le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]);
				if (!lk_ahd)
					ath6kl_err("lookAhead is zero!\n");
			}
		}
	}

	if (!host_int_status && !lk_ahd) {
		*done = true;
		goto out;
	}

	if (lk_ahd) {
		int fetched = 0;

		ath6kl_dbg(ATH6KL_DBG_IRQ,
			   "pending mailbox msg, lk_ahd: 0x%X\n", lk_ahd);
		
		status = ath6kl_htc_rxmsg_pending_handler(dev->htc_cnxt,
							  lk_ahd, &fetched);
		if (status)
			goto out;

		if (!fetched)
			
			dev->htc_cnxt->chk_irq_status_cnt = 0;
	}

	
	ath6kl_dbg(ATH6KL_DBG_IRQ,
		   "valid interrupt source(s) for other interrupts: 0x%x\n",
		   host_int_status);

	if (MS(HOST_INT_STATUS_CPU, host_int_status)) {
		
		status = ath6kl_hif_proc_cpu_intr(dev);
		if (status)
			goto out;
	}

	if (MS(HOST_INT_STATUS_ERROR, host_int_status)) {
		
		status = ath6kl_hif_proc_err_intr(dev);
		if (status)
			goto out;
	}

	if (MS(HOST_INT_STATUS_COUNTER, host_int_status))
		
		status = ath6kl_hif_proc_counter_intr(dev);

out:
	

	ath6kl_dbg(ATH6KL_DBG_IRQ,
		   "bypassing irq status re-check, forcing done\n");

	if (!dev->htc_cnxt->chk_irq_status_cnt)
		*done = true;

	ath6kl_dbg(ATH6KL_DBG_IRQ,
		   "proc_pending_irqs: (done:%d, status=%d\n", *done, status);

	return status;
}