void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
    double TT1, TT2, dX, dY, *xVec;
    size_t numRow, numVec;
    mxArray *retMat;
    double *retData;
    double GCRS2CIRS[3][3];
    
    if(nrhs<3||nrhs>4){
        mexErrMsgTxt("Wrong number of inputs");
    }
    
    if(nlhs>2) {
        mexErrMsgTxt("Wrong number of outputs.");
    }
    
    checkRealDoubleArray(prhs[0]);
    
    numRow = mxGetM(prhs[0]);
    numVec = mxGetN(prhs[0]);
    
    if(!(numRow==3||numRow==6)) {
        mexErrMsgTxt("The input vector has a bad dimensionality.");
    }

    xVec=(double*)mxGetData(prhs[0]);
    TT1=getDoubleFromMatlab(prhs[1]);
    TT2=getDoubleFromMatlab(prhs[2]);
    
    //If some values from the function getEOP will be needed.
    if(nrhs<4||mxGetM(prhs[3])==0) {
        mxArray *retVals[2];
        double *dXdY;
        mxArray *JulUTCMATLAB[2];
        double JulUTC[2];
        int retVal;
        
        //Get the time in UTC to look up the parameters by going to TAI and
        //then UTC.
        retVal=iauTttai(TT1, TT2, &JulUTC[0], &JulUTC[1]);
        if(retVal!=0) {
            mexErrMsgTxt("An error occurred computing TAI.");
        }
        retVal=iauTaiutc(JulUTC[0], JulUTC[1], &JulUTC[0], &JulUTC[1]);
        switch(retVal){
            case 1:
                mexWarnMsgTxt("Dubious Date entered.");
                break;
            case -1:
                mexErrMsgTxt("Unacceptable date entered");
                break;
            default:
                break;
        }
        
        JulUTCMATLAB[0]=doubleMat2Matlab(&JulUTC[0],1,1);
        JulUTCMATLAB[1]=doubleMat2Matlab(&JulUTC[1],1,1);

        //Get the Earth orientation parameters for the given date.
        mexCallMATLAB(2,retVals,2,JulUTCMATLAB,"getEOP");
        mxDestroyArray(JulUTCMATLAB[0]);
        mxDestroyArray(JulUTCMATLAB[1]);
        
        //%We do not need the polar motion coordinates.
        mxDestroyArray(retVals[0]);
        
        checkRealDoubleArray(retVals[1]);
        if(mxGetM(retVals[1])!=2||mxGetN(retVals[1])!=1) {
            mxDestroyArray(retVals[1]);
            mexErrMsgTxt("Error using the getEOP function.");
            return;
        }
        
        dXdY=(double*)mxGetData(retVals[1]);
        dX=dXdY[0];
        dY=dXdY[1];
        
        //Free the returned arrays.
        mxDestroyArray(retVals[1]);
    } else {//Get the celestial pole offsets
        size_t dim1, dim2;
        
        checkRealDoubleArray(prhs[4]);
        dim1 = mxGetM(prhs[4]);
        dim2 = mxGetN(prhs[4]);
        
        if((dim1==2&&dim2==1)||(dim1==1&&dim2==2)) {
            double *dXdY=(double*)mxGetData(prhs[4]);
        
            dX=dXdY[0];
            dY=dXdY[1];
        } else {
            mexErrMsgTxt("The celestial pole offsets have the wrong dimensionality.");
            return;
        }
    }
    
    {
    double x, y, s;
    double omega;
        
    //Get the X,Y coordinates of the Celestial Intermediate Pole (CIP) and
    //the Celestial Intermediate Origin (CIO) locator s, using the IAU 2006
    //precession and IAU 2000A nutation models.
    iauXys06a(TT1, TT2, &x, &y, &s);
    
    //Add the CIP offsets.
    x += dX;
    y += dY;
    
    //Get the GCRS-to-CIRS matrix
    iauC2ixys(x, y, s, GCRS2CIRS);
    }
    
    //Allocate space for the return vectors.
    retMat=mxCreateDoubleMatrix(numRow,numVec,mxREAL);
    retData=(double*)mxGetData(retMat);
    
    {
        size_t curVec;
        for(curVec=0;curVec<numVec;curVec++) {
            //Multiply the position vector with the rotation matrix.
            iauRxp(GCRS2CIRS, xVec+numRow*curVec, retData+numRow*curVec);
            
            //If a velocity vector was given.
            if(numRow>3) {
                double *velGCRS=xVec+numRow*curVec+3;//Velocity in GCRS
                double *retDataVel=retData+numRow*curVec+3;
                
                //Convert velocity from GCRS to CIRS.
                iauRxp(GCRS2CIRS, velGCRS, retDataVel);
            }
        }
    }
    plhs[0]=retMat;
    
    //If the rotation matrix is desired on the output.
    if(nlhs>1) {
        double *elPtr;
        size_t i,j;
        
        plhs[1]=mxCreateDoubleMatrix(3,3,mxREAL);
        elPtr=(double*)mxGetData(plhs[1]);
        
        for (i=0;i<3;i++) {
            for(j=0;j<3;j++) {
                elPtr[i+3*j]=GCRS2CIRS[i][j];
            }
        }
    }
}
void iauApco(double date1, double date2,
             double ebpv[2][3], double ehp[3],
             double x, double y, double s, double theta,
             double elong, double phi, double hm,
             double xp, double yp, double sp,
             double refa, double refb,
             iauASTROM *astrom)
/*
**  - - - - - - - -
**   i a u A p c o
**  - - - - - - - -
**
**  For a terrestrial observer, prepare star-independent astrometry
**  parameters for transformations between ICRS and observed
**  coordinates.  The caller supplies the Earth ephemeris, the Earth
**  rotation information and the refraction constants as well as the
**  site coordinates.
**
**  This function is part of the International Astronomical Union's
**  SOFA (Standards of Fundamental Astronomy) software collection.
**
**  Status:  support function.
**
**  Given:
**     date1  double       TDB as a 2-part...
**     date2  double       ...Julian Date (Note 1)
**     ebpv   double[2][3] Earth barycentric PV (au, au/day, Note 2)
**     ehp    double[3]    Earth heliocentric P (au, Note 2)
**     x,y    double       CIP X,Y (components of unit vector)
**     s      double       the CIO locator s (radians)
**     theta  double       Earth rotation angle (radians)
**     elong  double       longitude (radians, east +ve, Note 3)
**     phi    double       latitude (geodetic, radians, Note 3)
**     hm     double       height above ellipsoid (m, geodetic, Note 3)
**     xp,yp  double       polar motion coordinates (radians, Note 4)
**     sp     double       the TIO locator s' (radians, Note 4)
**     refa   double       refraction constant A (radians, Note 5)
**     refb   double       refraction constant B (radians, Note 5)
**
**  Returned:
**     astrom iauASTROM*   star-independent astrometry parameters:
**      pmt    double       PM time interval (SSB, Julian years)
**      eb     double[3]    SSB to observer (vector, au)
**      eh     double[3]    Sun to observer (unit vector)
**      em     double       distance from Sun to observer (au)
**      v      double[3]    barycentric observer velocity (vector, c)
**      bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
**      bpn    double[3][3] bias-precession-nutation matrix
**      along  double       longitude + s' (radians)
**      xpl    double       polar motion xp wrt local meridian (radians)
**      ypl    double       polar motion yp wrt local meridian (radians)
**      sphi   double       sine of geodetic latitude
**      cphi   double       cosine of geodetic latitude
**      diurab double       magnitude of diurnal aberration vector
**      eral   double       "local" Earth rotation angle (radians)
**      refa   double       refraction constant A (radians)
**      refb   double       refraction constant B (radians)
**
**  Notes:
**
**  1) The TDB date date1+date2 is a Julian Date, apportioned in any
**     convenient way between the two arguments.  For example,
**     JD(TDB)=2450123.7 could be expressed in any of these ways, among
**     others:
**
**            date1          date2
**
**         2450123.7           0.0       (JD method)
**         2451545.0       -1421.3       (J2000 method)
**         2400000.5       50123.2       (MJD method)
**         2450123.5           0.2       (date & time method)
**
**     The JD method is the most natural and convenient to use in cases
**     where the loss of several decimal digits of resolution is
**     acceptable.  The J2000 method is best matched to the way the
**     argument is handled internally and will deliver the optimum
**     resolution.  The MJD method and the date & time methods are both
**     good compromises between resolution and convenience.  For most
**     applications of this function the choice will not be at all
**     critical.
**
**     TT can be used instead of TDB without any significant impact on
**     accuracy.
**
**  2) The vectors eb, eh, and all the astrom vectors, are with respect
**     to BCRS axes.
**
**  3) The geographical coordinates are with respect to the WGS84
**     reference ellipsoid.  TAKE CARE WITH THE LONGITUDE SIGN
**     CONVENTION:  the longitude required by the present function is
**     right-handed, i.e. east-positive, in accordance with geographical
**     convention.
**
**  4) xp and yp are the coordinates (in radians) of the Celestial
**     Intermediate Pole with respect to the International Terrestrial
**     Reference System (see IERS Conventions), measured along the
**     meridians 0 and 90 deg west respectively.  sp is the TIO locator
**     s', in radians, which positions the Terrestrial Intermediate
**     Origin on the equator.  For many applications, xp, yp and
**     (especially) sp can be set to zero.
**
**     Internally, the polar motion is stored in a form rotated onto the
**     local meridian.
**
**  5) The refraction constants refa and refb are for use in a
**     dZ = A*tan(Z)+B*tan^3(Z) model, where Z is the observed
**     (i.e. refracted) zenith distance and dZ is the amount of
**     refraction.
**
**  6) It is advisable to take great care with units, as even unlikely
**     values of the input parameters are accepted and processed in
**     accordance with the models used.
**
**  7) In cases where the caller does not wish to provide the Earth
**     Ephemeris, the Earth rotation information and refraction
**     constants, the function iauApco13 can be used instead of the
**     present function.  This starts from UTC and weather readings etc.
**     and computes suitable values using other SOFA functions.
**
**  8) This is one of several functions that inserts into the astrom
**     structure star-independent parameters needed for the chain of
**     astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.
**
**     The various functions support different classes of observer and
**     portions of the transformation chain:
**
**          functions         observer        transformation
**
**       iauApcg iauApcg13    geocentric      ICRS <-> GCRS
**       iauApci iauApci13    terrestrial     ICRS <-> CIRS
**       iauApco iauApco13    terrestrial     ICRS <-> observed
**       iauApcs iauApcs13    space           ICRS <-> GCRS
**       iauAper iauAper13    terrestrial     update Earth rotation
**       iauApio iauApio13    terrestrial     CIRS <-> observed
**
**     Those with names ending in "13" use contemporary SOFA models to
**     compute the various ephemerides.  The others accept ephemerides
**     supplied by the caller.
**
**     The transformation from ICRS to GCRS covers space motion,
**     parallax, light deflection, and aberration.  From GCRS to CIRS
**     comprises frame bias and precession-nutation.  From CIRS to
**     observed takes account of Earth rotation, polar motion, diurnal
**     aberration and parallax (unless subsumed into the ICRS <-> GCRS
**     transformation), and atmospheric refraction.
**
**  9) The context structure astrom produced by this function is used by
**     iauAtioq, iauAtoiq, iauAtciq* and iauAticq*.
**
**  Called:
**     iauAper      astrometry parameters: update ERA
**     iauC2ixys    celestial-to-intermediate matrix, given X,Y and s
**     iauPvtob     position/velocity of terrestrial station
**     iauTrxpv     product of transpose of r-matrix and pv-vector
**     iauApcs      astrometry parameters, ICRS-GCRS, space observer
**     iauCr        copy r-matrix
**
**  This revision:   2013 October 9
**
**  SOFA release 2013-12-02
**
**  Copyright (C) 2013 IAU SOFA Board.  See notes at end.
*/
{
   double sl, cl, r[3][3], pvc[2][3], pv[2][3];


/* Longitude with adjustment for TIO locator s'. */
   astrom->along = elong + sp;

/* Polar motion, rotated onto the local meridian. */
   sl = sin(astrom->along);
   cl = cos(astrom->along);
   astrom->xpl = xp*cl - yp*sl;
   astrom->ypl = xp*sl + yp*cl;

/* Functions of latitude. */
   astrom->sphi = sin(phi);
   astrom->cphi = cos(phi);

/* Refraction constants. */
   astrom->refa = refa;
   astrom->refb = refb;

/* Local Earth rotation angle. */
   iauAper(theta, astrom);

/* Disable the (redundant) diurnal aberration step. */
   astrom->diurab = 0.0;

/* CIO based BPN matrix. */
   iauC2ixys(x, y, s, r);

/* Observer's geocentric position and velocity (m, m/s, CIRS). */
   iauPvtob(elong, phi, hm, xp, yp, sp, theta, pvc);

/* Rotate into GCRS. */
   iauTrxpv(r, pvc, pv);

/* ICRS <-> GCRS parameters. */
   iauApcs(date1, date2, pv, ebpv, ehp, astrom);

/* Store the CIO based BPN matrix. */
   iauCr(r, astrom->bpn );

/* Finished. */

/*----------------------------------------------------------------------
**
**  Copyright (C) 2013
**  Standards Of Fundamental Astronomy Board
**  of the International Astronomical Union.
**
**  =====================
**  SOFA Software License
**  =====================
**
**  NOTICE TO USER:
**
**  BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND
**  CONDITIONS WHICH APPLY TO ITS USE.
**
**  1. The Software is owned by the IAU SOFA Board ("SOFA").
**
**  2. Permission is granted to anyone to use the SOFA software for any
**     purpose, including commercial applications, free of charge and
**     without payment of royalties, subject to the conditions and
**     restrictions listed below.
**
**  3. You (the user) may copy and distribute SOFA source code to others,
**     and use and adapt its code and algorithms in your own software,
**     on a world-wide, royalty-free basis.  That portion of your
**     distribution that does not consist of intact and unchanged copies
**     of SOFA source code files is a "derived work" that must comply
**     with the following requirements:
**
**     a) Your work shall be marked or carry a statement that it
**        (i) uses routines and computations derived by you from
**        software provided by SOFA under license to you; and
**        (ii) does not itself constitute software provided by and/or
**        endorsed by SOFA.
**
**     b) The source code of your derived work must contain descriptions
**        of how the derived work is based upon, contains and/or differs
**        from the original SOFA software.
**
**     c) The names of all routines in your derived work shall not
**        include the prefix "iau" or "sofa" or trivial modifications
**        thereof such as changes of case.
**
**     d) The origin of the SOFA components of your derived work must
**        not be misrepresented;  you must not claim that you wrote the
**        original software, nor file a patent application for SOFA
**        software or algorithms embedded in the SOFA software.
**
**     e) These requirements must be reproduced intact in any source
**        distribution and shall apply to anyone to whom you have
**        granted a further right to modify the source code of your
**        derived work.
**
**     Note that, as originally distributed, the SOFA software is
**     intended to be a definitive implementation of the IAU standards,
**     and consequently third-party modifications are discouraged.  All
**     variations, no matter how minor, must be explicitly marked as
**     such, as explained above.
**
**  4. You shall not cause the SOFA software to be brought into
**     disrepute, either by misuse, or use for inappropriate tasks, or
**     by inappropriate modification.
**
**  5. The SOFA software is provided "as is" and SOFA makes no warranty
**     as to its use or performance.   SOFA does not and cannot warrant
**     the performance or results which the user may obtain by using the
**     SOFA software.  SOFA makes no warranties, express or implied, as
**     to non-infringement of third party rights, merchantability, or
**     fitness for any particular purpose.  In no event will SOFA be
**     liable to the user for any consequential, incidental, or special
**     damages, including any lost profits or lost savings, even if a
**     SOFA representative has been advised of such damages, or for any
**     claim by any third party.
**
**  6. The provision of any version of the SOFA software under the terms
**     and conditions specified herein does not imply that future
**     versions will also be made available under the same terms and
**     conditions.
*
**  In any published work or commercial product which uses the SOFA
**  software directly, acknowledgement (see www.iausofa.org) is
**  appreciated.
**
**  Correspondence concerning SOFA software should be addressed as
**  follows:
**
**      By email:  [email protected]
**      By post:   IAU SOFA Center
**                 HM Nautical Almanac Office
**                 UK Hydrographic Office
**                 Admiralty Way, Taunton
**                 Somerset, TA1 2DN
**                 United Kingdom
**
**--------------------------------------------------------------------*/

}
示例#3
0
文件: apci.c 项目: DominicDirkx/sofa
void iauApci(double date1, double date2,
             double ebpv[2][3], double ehp[3],
             double x, double y, double s,
             iauASTROM *astrom)
/*
**  - - - - - - - -
**   i a u A p c i
**  - - - - - - - -
**
**  For a terrestrial observer, prepare star-independent astrometry
**  parameters for transformations between ICRS and geocentric CIRS
**  coordinates.  The Earth ephemeris and CIP/CIO are supplied by the
**  caller.
**
**  The parameters produced by this function are required in the
**  parallax, light deflection, aberration, and bias-precession-nutation
**  parts of the astrometric transformation chain.
**
**  This function is part of the International Astronomical Union's
**  SOFA (Standards of Fundamental Astronomy) software collection.
**
**  Status:  support function.
**
**  Given:
**     date1  double       TDB as a 2-part...
**     date2  double       ...Julian Date (Note 1)
**     ebpv   double[2][3] Earth barycentric position/velocity (au, au/day)
**     ehp    double[3]    Earth heliocentric position (au)
**     x,y    double       CIP X,Y (components of unit vector)
**     s      double       the CIO locator s (radians)
**
**  Returned:
**     astrom iauASTROM*   star-independent astrometry parameters:
**      pmt    double       PM time interval (SSB, Julian years)
**      eb     double[3]    SSB to observer (vector, au)
**      eh     double[3]    Sun to observer (unit vector)
**      em     double       distance from Sun to observer (au)
**      v      double[3]    barycentric observer velocity (vector, c)
**      bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
**      bpn    double[3][3] bias-precession-nutation matrix
**      along  double       unchanged
**      xpl    double       unchanged
**      ypl    double       unchanged
**      sphi   double       unchanged
**      cphi   double       unchanged
**      diurab double       unchanged
**      eral   double       unchanged
**      refa   double       unchanged
**      refb   double       unchanged
**
**  Notes:
**
**  1) The TDB date date1+date2 is a Julian Date, apportioned in any
**     convenient way between the two arguments.  For example,
**     JD(TDB)=2450123.7 could be expressed in any of these ways, among
**     others:
**
**            date1          date2
**
**         2450123.7           0.0       (JD method)
**         2451545.0       -1421.3       (J2000 method)
**         2400000.5       50123.2       (MJD method)
**         2450123.5           0.2       (date & time method)
**
**     The JD method is the most natural and convenient to use in cases
**     where the loss of several decimal digits of resolution is
**     acceptable.  The J2000 method is best matched to the way the
**     argument is handled internally and will deliver the optimum
**     resolution.  The MJD method and the date & time methods are both
**     good compromises between resolution and convenience.  For most
**     applications of this function the choice will not be at all
**     critical.
**
**     TT can be used instead of TDB without any significant impact on
**     accuracy.
**
**  2) All the vectors are with respect to BCRS axes.
**
**  3) In cases where the caller does not wish to provide the Earth
**     ephemeris and CIP/CIO, the function iauApci13 can be used instead
**     of the present function.  This computes the required quantities
**     using other SOFA functions.
**
**  4) This is one of several functions that inserts into the astrom
**     structure star-independent parameters needed for the chain of
**     astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.
**
**     The various functions support different classes of observer and
**     portions of the transformation chain:
**
**          functions         observer        transformation
**
**       iauApcg iauApcg13    geocentric      ICRS <-> GCRS
**       iauApci iauApci13    terrestrial     ICRS <-> CIRS
**       iauApco iauApco13    terrestrial     ICRS <-> observed
**       iauApcs iauApcs13    space           ICRS <-> GCRS
**       iauAper iauAper13    terrestrial     update Earth rotation
**       iauApio iauApio13    terrestrial     CIRS <-> observed
**
**     Those with names ending in "13" use contemporary SOFA models to
**     compute the various ephemerides.  The others accept ephemerides
**     supplied by the caller.
**
**     The transformation from ICRS to GCRS covers space motion,
**     parallax, light deflection, and aberration.  From GCRS to CIRS
**     comprises frame bias and precession-nutation.  From CIRS to
**     observed takes account of Earth rotation, polar motion, diurnal
**     aberration and parallax (unless subsumed into the ICRS <-> GCRS
**     transformation), and atmospheric refraction.
**
**  5) The context structure astrom produced by this function is used by
**     iauAtciq* and iauAticq*.
**
**  Called:
**     iauApcg      astrometry parameters, ICRS-GCRS, geocenter
**     iauC2ixys    celestial-to-intermediate matrix, given X,Y and s
**
**  This revision:   2013 September 25
**
**  SOFA release 2015-02-09
**
**  Copyright (C) 2015 IAU SOFA Board.  See notes at end.
*/
{

/* Star-independent astrometry parameters for geocenter. */
   iauApcg(date1, date2, ebpv, ehp, astrom);

/* CIO based BPN matrix. */
   iauC2ixys(x, y, s, astrom->bpn);

/* Finished. */

/*----------------------------------------------------------------------
**
**  Copyright (C) 2015
**  Standards Of Fundamental Astronomy Board
**  of the International Astronomical Union.
**
**  =====================
**  SOFA Software License
**  =====================
**
**  NOTICE TO USER:
**
**  BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND
**  CONDITIONS WHICH APPLY TO ITS USE.
**
**  1. The Software is owned by the IAU SOFA Board ("SOFA").
**
**  2. Permission is granted to anyone to use the SOFA software for any
**     purpose, including commercial applications, free of charge and
**     without payment of royalties, subject to the conditions and
**     restrictions listed below.
**
**  3. You (the user) may copy and distribute SOFA source code to others,
**     and use and adapt its code and algorithms in your own software,
**     on a world-wide, royalty-free basis.  That portion of your
**     distribution that does not consist of intact and unchanged copies
**     of SOFA source code files is a "derived work" that must comply
**     with the following requirements:
**
**     a) Your work shall be marked or carry a statement that it
**        (i) uses routines and computations derived by you from
**        software provided by SOFA under license to you; and
**        (ii) does not itself constitute software provided by and/or
**        endorsed by SOFA.
**
**     b) The source code of your derived work must contain descriptions
**        of how the derived work is based upon, contains and/or differs
**        from the original SOFA software.
**
**     c) The names of all routines in your derived work shall not
**        include the prefix "iau" or "sofa" or trivial modifications
**        thereof such as changes of case.
**
**     d) The origin of the SOFA components of your derived work must
**        not be misrepresented;  you must not claim that you wrote the
**        original software, nor file a patent application for SOFA
**        software or algorithms embedded in the SOFA software.
**
**     e) These requirements must be reproduced intact in any source
**        distribution and shall apply to anyone to whom you have
**        granted a further right to modify the source code of your
**        derived work.
**
**     Note that, as originally distributed, the SOFA software is
**     intended to be a definitive implementation of the IAU standards,
**     and consequently third-party modifications are discouraged.  All
**     variations, no matter how minor, must be explicitly marked as
**     such, as explained above.
**
**  4. You shall not cause the SOFA software to be brought into
**     disrepute, either by misuse, or use for inappropriate tasks, or
**     by inappropriate modification.
**
**  5. The SOFA software is provided "as is" and SOFA makes no warranty
**     as to its use or performance.   SOFA does not and cannot warrant
**     the performance or results which the user may obtain by using the
**     SOFA software.  SOFA makes no warranties, express or implied, as
**     to non-infringement of third party rights, merchantability, or
**     fitness for any particular purpose.  In no event will SOFA be
**     liable to the user for any consequential, incidental, or special
**     damages, including any lost profits or lost savings, even if a
**     SOFA representative has been advised of such damages, or for any
**     claim by any third party.
**
**  6. The provision of any version of the SOFA software under the terms
**     and conditions specified herein does not imply that future
**     versions will also be made available under the same terms and
**     conditions.
*
**  In any published work or commercial product which uses the SOFA
**  software directly, acknowledgement (see www.iausofa.org) is
**  appreciated.
**
**  Correspondence concerning SOFA software should be addressed as
**  follows:
**
**      By email:  [email protected]
**      By post:   IAU SOFA Center
**                 HM Nautical Almanac Office
**                 UK Hydrographic Office
**                 Admiralty Way, Taunton
**                 Somerset, TA1 2DN
**                 United Kingdom
**
**--------------------------------------------------------------------*/

}
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
    size_t numRow,numVec;
    mxArray *retMat;
    double *xVec, *retData;
    double TT1, TT2, UT11, UT12;
    //The if-statements below should properly initialize all of the EOP.
    //The following initializations to zero are to suppress warnings when
    //compiling with -Wconditional-uninitialized.
    double dX=0;
    double dY=0;
    double deltaT=0;
    double LOD=0;
    double GCRS2TIRS[3][3];
    //Polar motion matrix. ITRS=POM*TIRS. We will just be setting it to the
    //identity matrix as polar motion is not taken into account when going
    //to the TIRS.
    double rident[3][3]={{1,0,0},{0,1,0},{0,0,1}};
    double Omega[3];//The rotation vector in the TIRS
    
    if(nrhs<3||nrhs>6){
        mexErrMsgTxt("Wrong number of inputs");
    }
    
    if(nlhs>2) {
        mexErrMsgTxt("Wrong number of outputs.");
    }
    
    checkRealDoubleArray(prhs[0]);
    
    numRow = mxGetM(prhs[0]);
    numVec = mxGetN(prhs[0]);
    
    if(!(numRow==3||numRow==6)) {
        mexErrMsgTxt("The input vector has a bad dimensionality.");
    }
    
    xVec=(double*)mxGetData(prhs[0]);
    TT1=getDoubleFromMatlab(prhs[1]);
    TT2=getDoubleFromMatlab(prhs[2]);
    
    //If some values from the function getEOP will be needed
    if(nrhs<=5||mxIsEmpty(prhs[3])||mxIsEmpty(prhs[4])||mxIsEmpty(prhs[5])) {
        mxArray *retVals[5];
        double *dXdY;
        mxArray *JulUTCMATLAB[2];
        double JulUTC[2];
        int retVal;
        
        //Get the time in UTC to look up the parameters by going to TAI and
        //then UTC.
        retVal=iauTttai(TT1, TT2, &JulUTC[0], &JulUTC[1]);
        if(retVal!=0) {
            mexErrMsgTxt("An error occurred computing TAI.");
        }
        retVal=iauTaiutc(JulUTC[0], JulUTC[1], &JulUTC[0], &JulUTC[1]);
        switch(retVal){
            case 1:
                mexWarnMsgTxt("Dubious Date entered.");
                break;
            case -1:
                mexErrMsgTxt("Unacceptable date entered");
                break;
            default:
                break;
        }
        
        JulUTCMATLAB[0]=doubleMat2Matlab(&JulUTC[0],1,1);
        JulUTCMATLAB[1]=doubleMat2Matlab(&JulUTC[1],1,1);

        //Get the Earth orientation parameters for the given date.
        mexCallMATLAB(5,retVals,2,JulUTCMATLAB,"getEOP");
        mxDestroyArray(JulUTCMATLAB[0]);
        mxDestroyArray(JulUTCMATLAB[1]);
        
        //%We do not need the polar motion coordinates.
        mxDestroyArray(retVals[0]);
        
        checkRealDoubleArray(retVals[1]);
        if(mxGetM(retVals[1])!=2||mxGetN(retVals[1])!=1) {
            mxDestroyArray(retVals[1]);
            mxDestroyArray(retVals[2]);
            mxDestroyArray(retVals[3]);
            mxDestroyArray(retVals[4]);
            mexErrMsgTxt("Error using the getEOP function.");
            return;
        }
        
        dXdY=(double*)mxGetData(retVals[1]);
        dX=dXdY[0];
        dY=dXdY[1];
        
        //This is TT-UT1
        deltaT=getDoubleFromMatlab(retVals[3]);
        LOD=getDoubleFromMatlab(retVals[4]);
        //Free the returned arrays.
        mxDestroyArray(retVals[1]);
        mxDestroyArray(retVals[2]);
        mxDestroyArray(retVals[3]);
        mxDestroyArray(retVals[4]);
    }
    
    //If deltaT=TT-UT1 is given
    if(nrhs>3&&!mxIsEmpty(prhs[3])) {
        deltaT=getDoubleFromMatlab(prhs[3]);
    }
    
    //Obtain UT1 from terestrial time and deltaT.
    iauTtut1(TT1, TT2, deltaT, &UT11, &UT12);
    
    //Get celestial pole offsets, if given.
    if(nrhs>4&&!mxIsEmpty(prhs[4])) {
        size_t dim1, dim2;
        
        checkRealDoubleArray(prhs[4]);
        dim1 = mxGetM(prhs[4]);
        dim2 = mxGetN(prhs[4]);
        
        if((dim1==2&&dim2==1)||(dim1==1&&dim2==2)) {
            double *dXdY=(double*)mxGetData(prhs[4]);
        
            dX=dXdY[0];
            dY=dXdY[1];
        } else {
            mexErrMsgTxt("The celestial pole offsets have the wrong dimensionality.");
            return;
        }
    }
    
    //If LOD is given
    if(nrhs>5&&mxIsEmpty(prhs[5])) {
        LOD=getDoubleFromMatlab(prhs[5]);
    }
    
    //Compute the rotation matrix for going from GCRS to ITRS as well as
    //the instantaneous vector angular momentum due to the Earth's rotation
    //in TIRS coordinates.
    {
    double x, y, s, era;
    double rc2i[3][3];
    double omega;
        
    //Get the X,Y coordinates of the Celestial Intermediate Pole (CIP) and
    //the Celestial Intermediate Origin (CIO) locator s, using the IAU 2006
    //precession and IAU 2000A nutation models.
    iauXys06a(TT1, TT2, &x, &y, &s);
    
    //Add the CIP offsets.
    x += dX;
    y += dY;
    
    //Get the GCRS-to-CIRS matrix
    iauC2ixys(x, y, s, rc2i);
    
    //Find the Earth rotation angle for the given UT1 time. 
    era = iauEra00(UT11, UT12);
    
    //Set the polar motion matrix to the identity matrix so that the
    //conversion stops at the TIRS instead of the ITRS.

    //Combine the GCRS-to-CIRS matrix, the Earth rotation angle, and use
    //the identity matrix instead of the polar motion matrix to get a
    //to get the rotation matrix to go from GCRS to TIRS.
    iauC2tcio(rc2i, era, rident,GCRS2TIRS);
    
    //Next, to be able to transform the velocity, the rotation of the Earth
    //has to be taken into account. 
    
    //The angular velocity vector of the Earth in the TIRS in radians.
    omega=getScalarMatlabClassConst("Constants","IERSMeanEarthRotationRate");
    //Adjust for LOD
    omega=omega*(1-LOD/86400.0);//86400.0 is the number of seconds in a TT
                                //day.
    Omega[0]=0;
    Omega[1]=0;
    Omega[2]=omega;
    }
    
    //Allocate space for the return vectors.
    retMat=mxCreateDoubleMatrix(numRow,numVec,mxREAL);
    retData=(double*)mxGetData(retMat);
    
    {
        size_t curVec;
        for(curVec=0;curVec<numVec;curVec++) {
            //Multiply the position vector with the rotation matrix.
            iauRxp(GCRS2TIRS, xVec+numRow*curVec, retData+numRow*curVec);
            
            //If a velocity vector was given.
            if(numRow>3) {
                double *posGCRS=xVec+numRow*curVec;
                double posTIRS[3];
                double *velGCRS=xVec+numRow*curVec+3;//Velocity in GCRS
                double velTIRS[3];
                double *retDataVel=retData+numRow*curVec+3;
                double rotVel[3];
                //If a velocity was provided with the position, first
                //convert to TIRS coordinates, then account for the
                //rotation of the Earth.
                
                //Convert velocity from GCRS to TIRS.
                iauRxp(GCRS2TIRS, velGCRS, velTIRS);
                //Convert position from GCRS to TIRS
                iauRxp(GCRS2TIRS, posGCRS, posTIRS);
                                
                //Evaluate the cross product for the angular velocity due
                //to the Earth's rotation.
                iauPxp(Omega, posTIRS, rotVel);
                
                //Subtract out the instantaneous velocity due to rotation.
                iauPmp(velTIRS, rotVel, retDataVel);
            }
        }
    }
    plhs[0]=retMat;
    
    //If the rotation matrix is desired on the output.
    if(nlhs>1) {
        double *elPtr;
        size_t i,j;
        
        plhs[1]=mxCreateDoubleMatrix(3,3,mxREAL);
        elPtr=(double*)mxGetData(plhs[1]);
        
        for (i=0;i<3;i++) {
            for(j=0;j<3;j++) {
                elPtr[i+3*j]=GCRS2TIRS[i][j];
            }
        }
    }
}
void iauC2ixy(double date1, double date2, double x, double y,
              double rc2i[3][3])
/*
**  - - - - - - - - -
**   i a u C 2 i x y
**  - - - - - - - - -
**
**  Form the celestial to intermediate-frame-of-date matrix for a given
**  date when the CIP X,Y coordinates are known.  IAU 2000.
**
**  This function is part of the International Astronomical Union's
**  SOFA (Standards Of Fundamental Astronomy) software collection.
**
**  Status:  support function.
**
**  Given:
**     date1,date2 double       TT as a 2-part Julian Date (Note 1)
**     x,y         double       Celestial Intermediate Pole (Note 2)
**
**  Returned:
**     rc2i        double[3][3] celestial-to-intermediate matrix (Note 3)
**
**  Notes:
**
**  1) The TT date date1+date2 is a Julian Date, apportioned in any
**     convenient way between the two arguments.  For example,
**     JD(TT)=2450123.7 could be expressed in any of these ways,
**     among others:
**
**            date1          date2
**
**         2450123.7           0.0       (JD method)
**         2451545.0       -1421.3       (J2000 method)
**         2400000.5       50123.2       (MJD method)
**         2450123.5           0.2       (date & time method)
**
**     The JD method is the most natural and convenient to use in
**     cases where the loss of several decimal digits of resolution
**     is acceptable.  The J2000 method is best matched to the way
**     the argument is handled internally and will deliver the
**     optimum resolution.  The MJD method and the date & time methods
**     are both good compromises between resolution and convenience.
**
**  2) The Celestial Intermediate Pole coordinates are the x,y components
**     of the unit vector in the Geocentric Celestial Reference System.
**
**  3) The matrix rc2i is the first stage in the transformation from
**     celestial to terrestrial coordinates:
**
**        [TRS] = RPOM * R_3(ERA) * rc2i * [CRS]
**
**              = RC2T * [CRS]
**
**     where [CRS] is a vector in the Geocentric Celestial Reference
**     System and [TRS] is a vector in the International Terrestrial
**     Reference System (see IERS Conventions 2003), ERA is the Earth
**     Rotation Angle and RPOM is the polar motion matrix.
**
**  4) Although its name does not include "00", This function is in fact
**     specific to the IAU 2000 models.
**
**  Called:
**     iauC2ixys    celestial-to-intermediate matrix, given X,Y and s
**     iauS00       the CIO locator s, given X,Y, IAU 2000A
**
**  Reference:
**
**     McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
**     IERS Technical Note No. 32, BKG (2004)
**
**  This revision:  2013 June 18
**
**  SOFA release 2016-05-03
**
**  Copyright (C) 2016 IAU SOFA Board.  See notes at end.
*/

{
    /* Compute s and then the matrix. */
    iauC2ixys(x, y, iauS00(date1, date2, x, y), rc2i);

    return;

    /*----------------------------------------------------------------------
    **
    **  Copyright (C) 2016
    **  Standards Of Fundamental Astronomy Board
    **  of the International Astronomical Union.
    **
    **  =====================
    **  SOFA Software License
    **  =====================
    **
    **  NOTICE TO USER:
    **
    **  BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND
    **  CONDITIONS WHICH APPLY TO ITS USE.
    **
    **  1. The Software is owned by the IAU SOFA Board ("SOFA").
    **
    **  2. Permission is granted to anyone to use the SOFA software for any
    **     purpose, including commercial applications, free of charge and
    **     without payment of royalties, subject to the conditions and
    **     restrictions listed below.
    **
    **  3. You (the user) may copy and distribute SOFA source code to others,
    **     and use and adapt its code and algorithms in your own software,
    **     on a world-wide, royalty-free basis.  That portion of your
    **     distribution that does not consist of intact and unchanged copies
    **     of SOFA source code files is a "derived work" that must comply
    **     with the following requirements:
    **
    **     a) Your work shall be marked or carry a statement that it
    **        (i) uses routines and computations derived by you from
    **        software provided by SOFA under license to you; and
    **        (ii) does not itself constitute software provided by and/or
    **        endorsed by SOFA.
    **
    **     b) The source code of your derived work must contain descriptions
    **        of how the derived work is based upon, contains and/or differs
    **        from the original SOFA software.
    **
    **     c) The names of all routines in your derived work shall not
    **        include the prefix "iau" or "sofa" or trivial modifications
    **        thereof such as changes of case.
    **
    **     d) The origin of the SOFA components of your derived work must
    **        not be misrepresented;  you must not claim that you wrote the
    **        original software, nor file a patent application for SOFA
    **        software or algorithms embedded in the SOFA software.
    **
    **     e) These requirements must be reproduced intact in any source
    **        distribution and shall apply to anyone to whom you have
    **        granted a further right to modify the source code of your
    **        derived work.
    **
    **     Note that, as originally distributed, the SOFA software is
    **     intended to be a definitive implementation of the IAU standards,
    **     and consequently third-party modifications are discouraged.  All
    **     variations, no matter how minor, must be explicitly marked as
    **     such, as explained above.
    **
    **  4. You shall not cause the SOFA software to be brought into
    **     disrepute, either by misuse, or use for inappropriate tasks, or
    **     by inappropriate modification.
    **
    **  5. The SOFA software is provided "as is" and SOFA makes no warranty
    **     as to its use or performance.   SOFA does not and cannot warrant
    **     the performance or results which the user may obtain by using the
    **     SOFA software.  SOFA makes no warranties, express or implied, as
    **     to non-infringement of third party rights, merchantability, or
    **     fitness for any particular purpose.  In no event will SOFA be
    **     liable to the user for any consequential, incidental, or special
    **     damages, including any lost profits or lost savings, even if a
    **     SOFA representative has been advised of such damages, or for any
    **     claim by any third party.
    **
    **  6. The provision of any version of the SOFA software under the terms
    **     and conditions specified herein does not imply that future
    **     versions will also be made available under the same terms and
    **     conditions.
    *
    **  In any published work or commercial product which uses the SOFA
    **  software directly, acknowledgement (see www.iausofa.org) is
    **  appreciated.
    **
    **  Correspondence concerning SOFA software should be addressed as
    **  follows:
    **
    **      By email:  [email protected]
    **      By post:   IAU SOFA Center
    **                 HM Nautical Almanac Office
    **                 UK Hydrographic Office
    **                 Admiralty Way, Taunton
    **                 Somerset, TA1 2DN
    **                 United Kingdom
    **
    **--------------------------------------------------------------------*/
}