示例#1
0
int iauPvstar(double pv[2][3], double *ra, double *dec,
              double *pmr, double *pmd, double *px, double *rv)
/*
**  - - - - - - - - - -
**   i a u P v s t a r
**  - - - - - - - - - -
**
**  Convert star position+velocity vector to catalog coordinates.
**
**  This function is part of the International Astronomical Union's
**  SOFA (Standards Of Fundamental Astronomy) software collection.
**
**  Status:  support function.
**
**  Given (Note 1):
**     pv     double[2][3]   pv-vector (AU, AU/day)
**
**  Returned (Note 2):
**     ra     double         right ascension (radians)
**     dec    double         declination (radians)
**     pmr    double         RA proper motion (radians/year)
**     pmd    double         Dec proper motion (radians/year)
**     px     double         parallax (arcsec)
**     rv     double         radial velocity (km/s, positive = receding)
**
**  Returned (function value):
**            int            status:
**                              0 = OK
**                             -1 = superluminal speed (Note 5)
**                             -2 = null position vector
**
**  Notes:
**
**  1) The specified pv-vector is the coordinate direction (and its rate
**     of change) for the date at which the light leaving the star
**     reached the solar-system barycenter.
**
**  2) The star data returned by this function are "observables" for an
**     imaginary observer at the solar-system barycenter.  Proper motion
**     and radial velocity are, strictly, in terms of barycentric
**     coordinate time, TCB.  For most practical applications, it is
**     permissible to neglect the distinction between TCB and ordinary
**     "proper" time on Earth (TT/TAI).  The result will, as a rule, be
**     limited by the intrinsic accuracy of the proper-motion and
**     radial-velocity data;  moreover, the supplied pv-vector is likely
**     to be merely an intermediate result (for example generated by the
**     function iauStarpv), so that a change of time unit will cancel
**     out overall.
**
**     In accordance with normal star-catalog conventions, the object's
**     right ascension and declination are freed from the effects of
**     secular aberration.  The frame, which is aligned to the catalog
**     equator and equinox, is Lorentzian and centered on the SSB.
**
**     Summarizing, the specified pv-vector is for most stars almost
**     identical to the result of applying the standard geometrical
**     "space motion" transformation to the catalog data.  The
**     differences, which are the subject of the Stumpff paper cited
**     below, are:
**
**     (i) In stars with significant radial velocity and proper motion,
**     the constantly changing light-time distorts the apparent proper
**     motion.  Note that this is a classical, not a relativistic,
**     effect.
**
**     (ii) The transformation complies with special relativity.
**
**  3) Care is needed with units.  The star coordinates are in radians
**     and the proper motions in radians per Julian year, but the
**     parallax is in arcseconds; the radial velocity is in km/s, but
**     the pv-vector result is in AU and AU/day.
**
**  4) The proper motions are the rate of change of the right ascension
**     and declination at the catalog epoch and are in radians per Julian
**     year.  The RA proper motion is in terms of coordinate angle, not
**     true angle, and will thus be numerically larger at high
**     declinations.
**
**  5) Straight-line motion at constant speed in the inertial frame is
**     assumed.  If the speed is greater than or equal to the speed of
**     light, the function aborts with an error status.
**
**  6) The inverse transformation is performed by the function iauStarpv.
**
**  Called:
**     iauPn        decompose p-vector into modulus and direction
**     iauPdp       scalar product of two p-vectors
**     iauSxp       multiply p-vector by scalar
**     iauPmp       p-vector minus p-vector
**     iauPm        modulus of p-vector
**     iauPpp       p-vector plus p-vector
**     iauPv2s      pv-vector to spherical
**     iauAnp       normalize angle into range 0 to 2pi
**
**  Reference:
**
**     Stumpff, P., 1985, Astron.Astrophys. 144, 232-240.
**
**  This revision:  2013 June 18
**
**  SOFA release 2015-02-09
**
**  Copyright (C) 2015 IAU SOFA Board.  See notes at end.
*/
{
   double r, x[3], vr, ur[3], vt, ut[3], bett, betr, d, w, del,
          usr[3], ust[3], a, rad, decd, rd;

/* Isolate the radial component of the velocity (AU/day, inertial). */
   iauPn(pv[0], &r, x);
   vr = iauPdp(x, pv[1]);
   iauSxp(vr, x, ur);

/* Isolate the transverse component of the velocity (AU/day, inertial). */
   iauPmp(pv[1], ur, ut);
   vt = iauPm(ut);

/* Special-relativity dimensionless parameters. */
   bett = vt / DC;
   betr = vr / DC;

/* The inertial-to-observed correction terms. */
   d = 1.0 + betr;
   w = 1.0 - betr*betr - bett*bett;
   if (d == 0.0 || w < 0) return -1;
   del = sqrt(w) - 1.0;

/* Apply relativistic correction factor to radial velocity component. */
   w = (betr != 0) ? (betr - del) / (betr * d) : 1.0;
   iauSxp(w, ur, usr);

/* Apply relativistic correction factor to tangential velocity */
/* component.                                                  */
   iauSxp(1.0/d, ut, ust);

/* Combine the two to obtain the observed velocity vector (AU/day). */
   iauPpp(usr, ust, pv[1]);

/* Cartesian to spherical. */
   iauPv2s(pv, &a, dec, &r, &rad, &decd, &rd);
   if (r == 0.0) return -2;

/* Return RA in range 0 to 2pi. */
   *ra = iauAnp(a);

/* Return proper motions in radians per year. */
   *pmr = rad * DJY;
   *pmd = decd * DJY;

/* Return parallax in arcsec. */
   *px = DR2AS / r;

/* Return radial velocity in km/s. */
   *rv = 1e-3 * rd * DAU / DAYSEC;

/* OK status. */
   return 0;

/*----------------------------------------------------------------------
**
**  Copyright (C) 2015
**  Standards Of Fundamental Astronomy Board
**  of the International Astronomical Union.
**
**  =====================
**  SOFA Software License
**  =====================
**
**  NOTICE TO USER:
**
**  BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND
**  CONDITIONS WHICH APPLY TO ITS USE.
**
**  1. The Software is owned by the IAU SOFA Board ("SOFA").
**
**  2. Permission is granted to anyone to use the SOFA software for any
**     purpose, including commercial applications, free of charge and
**     without payment of royalties, subject to the conditions and
**     restrictions listed below.
**
**  3. You (the user) may copy and distribute SOFA source code to others,
**     and use and adapt its code and algorithms in your own software,
**     on a world-wide, royalty-free basis.  That portion of your
**     distribution that does not consist of intact and unchanged copies
**     of SOFA source code files is a "derived work" that must comply
**     with the following requirements:
**
**     a) Your work shall be marked or carry a statement that it
**        (i) uses routines and computations derived by you from
**        software provided by SOFA under license to you; and
**        (ii) does not itself constitute software provided by and/or
**        endorsed by SOFA.
**
**     b) The source code of your derived work must contain descriptions
**        of how the derived work is based upon, contains and/or differs
**        from the original SOFA software.
**
**     c) The names of all routines in your derived work shall not
**        include the prefix "iau" or "sofa" or trivial modifications
**        thereof such as changes of case.
**
**     d) The origin of the SOFA components of your derived work must
**        not be misrepresented;  you must not claim that you wrote the
**        original software, nor file a patent application for SOFA
**        software or algorithms embedded in the SOFA software.
**
**     e) These requirements must be reproduced intact in any source
**        distribution and shall apply to anyone to whom you have
**        granted a further right to modify the source code of your
**        derived work.
**
**     Note that, as originally distributed, the SOFA software is
**     intended to be a definitive implementation of the IAU standards,
**     and consequently third-party modifications are discouraged.  All
**     variations, no matter how minor, must be explicitly marked as
**     such, as explained above.
**
**  4. You shall not cause the SOFA software to be brought into
**     disrepute, either by misuse, or use for inappropriate tasks, or
**     by inappropriate modification.
**
**  5. The SOFA software is provided "as is" and SOFA makes no warranty
**     as to its use or performance.   SOFA does not and cannot warrant
**     the performance or results which the user may obtain by using the
**     SOFA software.  SOFA makes no warranties, express or implied, as
**     to non-infringement of third party rights, merchantability, or
**     fitness for any particular purpose.  In no event will SOFA be
**     liable to the user for any consequential, incidental, or special
**     damages, including any lost profits or lost savings, even if a
**     SOFA representative has been advised of such damages, or for any
**     claim by any third party.
**
**  6. The provision of any version of the SOFA software under the terms
**     and conditions specified herein does not imply that future
**     versions will also be made available under the same terms and
**     conditions.
*
**  In any published work or commercial product which uses the SOFA
**  software directly, acknowledgement (see www.iausofa.org) is
**  appreciated.
**
**  Correspondence concerning SOFA software should be addressed as
**  follows:
**
**      By email:  [email protected]
**      By post:   IAU SOFA Center
**                 HM Nautical Almanac Office
**                 UK Hydrographic Office
**                 Admiralty Way, Taunton
**                 Somerset, TA1 2DN
**                 United Kingdom
**
**--------------------------------------------------------------------*/
}
示例#2
0
文件: starpv.c 项目: tohka/celes
int iauStarpv(double ra, double dec,
              double pmr, double pmd, double px, double rv,
              double pv[2][3])
/*
**  - - - - - - - - - -
**   i a u S t a r p v
**  - - - - - - - - - -
**
**  Convert star catalog coordinates to position+velocity vector.
**
**  Status:  support function.
**
**  Given (Note 1):
**     ra     double        right ascension (radians)
**     dec    double        declination (radians)
**     pmr    double        RA proper motion (radians/year)
**     pmd    double        Dec proper motion (radians/year)
**     px     double        parallax (arcseconds)
**     rv     double        radial velocity (km/s, positive = receding)
**
**  Returned (Note 2):
**     pv     double[2][3]  pv-vector (AU, AU/day)
**
**  Returned (function value):
**            int           status:
**                              0 = no warnings
**                              1 = distance overridden (Note 6)
**                              2 = excessive speed (Note 7)
**                              4 = solution didn't converge (Note 8)
**                           else = binary logical OR of the above
**
**  Notes:
**
**  1) The star data accepted by this function are "observables" for an
**     imaginary observer at the solar-system barycenter.  Proper motion
**     and radial velocity are, strictly, in terms of barycentric
**     coordinate time, TCB.  For most practical applications, it is
**     permissible to neglect the distinction between TCB and ordinary
**     "proper" time on Earth (TT/TAI).  The result will, as a rule, be
**     limited by the intrinsic accuracy of the proper-motion and
**     radial-velocity data;  moreover, the pv-vector is likely to be
**     merely an intermediate result, so that a change of time unit
**     would cancel out overall.
**
**     In accordance with normal star-catalog conventions, the object's
**     right ascension and declination are freed from the effects of
**     secular aberration.  The frame, which is aligned to the catalog
**     equator and equinox, is Lorentzian and centered on the SSB.
**
**  2) The resulting position and velocity pv-vector is with respect to
**     the same frame and, like the catalog coordinates, is freed from
**     the effects of secular aberration.  Should the "coordinate
**     direction", where the object was located at the catalog epoch, be
**     required, it may be obtained by calculating the magnitude of the
**     position vector pv[0][0-2] dividing by the speed of light in
**     AU/day to give the light-time, and then multiplying the space
**     velocity pv[1][0-2] by this light-time and adding the result to
**     pv[0][0-2].
**
**     Summarizing, the pv-vector returned is for most stars almost
**     identical to the result of applying the standard geometrical
**     "space motion" transformation.  The differences, which are the
**     subject of the Stumpff paper referenced below, are:
**
**     (i) In stars with significant radial velocity and proper motion,
**     the constantly changing light-time distorts the apparent proper
**     motion.  Note that this is a classical, not a relativistic,
**     effect.
**
**     (ii) The transformation complies with special relativity.
**
**  3) Care is needed with units.  The star coordinates are in radians
**     and the proper motions in radians per Julian year, but the
**     parallax is in arcseconds; the radial velocity is in km/s, but
**     the pv-vector result is in AU and AU/day.
**
**  4) The RA proper motion is in terms of coordinate angle, not true
**     angle.  If the catalog uses arcseconds for both RA and Dec proper
**     motions, the RA proper motion will need to be divided by cos(Dec)
**     before use.
**
**  5) Straight-line motion at constant speed, in the inertial frame,
**     is assumed.
**
**  6) An extremely small (or zero or negative) parallax is interpreted
**     to mean that the object is on the "celestial sphere", the radius
**     of which is an arbitrary (large) value (see the constant PXMIN).
**     When the distance is overridden in this way, the status,
**     initially zero, has 1 added to it.
**
**  7) If the space velocity is a significant fraction of c (see the
**     constant VMAX), it is arbitrarily set to zero.  When this action
**     occurs, 2 is added to the status.
**
**  8) The relativistic adjustment involves an iterative calculation.
**     If the process fails to converge within a set number (IMAX) of
**     iterations, 4 is added to the status.
**
**  9) The inverse transformation is performed by the function
**     iauPvstar.
**
**  Called:
**     iauS2pv      spherical coordinates to pv-vector
**     iauPm        modulus of p-vector
**     iauZp        zero p-vector
**     iauPn        decompose p-vector into modulus and direction
**     iauPdp       scalar product of two p-vectors
**     iauSxp       multiply p-vector by scalar
**     iauPmp       p-vector minus p-vector
**     iauPpp       p-vector plus p-vector
**
**  Reference:
**
**     Stumpff, P., 1985, Astron.Astrophys. 144, 232-240.
**
**  This revision:  2009 July 6
**
**  Original version 2012-03-01
**
**  Copyright (C) 2013 Naoki Arita.  See notes at end.
*/
{
/* Smallest allowed parallax */
   static const double PXMIN = 1e-7;

/* Largest allowed speed (fraction of c) */
   static const double VMAX = 0.5;

/* Maximum number of iterations for relativistic solution */
   static const int IMAX = 100;

   int i, iwarn;
   double w, r, rd, rad, decd, v, x[3], usr[3], ust[3],
          vsr, vst, betst, betsr, bett, betr,
          dd, ddel, ur[3], ut[3],
          d = 0.0, del = 0.0,       /* to prevent */
          odd = 0.0, oddel = 0.0,   /* compiler   */
          od = 0.0, odel = 0.0;     /* warnings   */


/* Distance (AU). */
   if (px >= PXMIN) {
      w = px;
      iwarn = 0;
   } else {
      w = PXMIN;
      iwarn = 1;
   }
   r = DR2AS / w;

/* Radial velocity (AU/day). */
   rd = DAYSEC * rv * 1e3 / DAU;

/* Proper motion (radian/day). */
   rad = pmr / DJY;
   decd = pmd / DJY;

/* To pv-vector (AU,AU/day). */
   iauS2pv(ra, dec, r, rad, decd, rd, pv);

/* If excessive velocity, arbitrarily set it to zero. */
   v = iauPm(pv[1]);
   if (v / DC > VMAX) {
      iauZp(pv[1]);
      iwarn += 2;
   }

/* Isolate the radial component of the velocity (AU/day). */
   iauPn(pv[0], &w, x);
   vsr = iauPdp(x, pv[1]);
   iauSxp(vsr, x, usr);

/* Isolate the transverse component of the velocity (AU/day). */
   iauPmp(pv[1], usr, ust);
   vst = iauPm(ust);

/* Special-relativity dimensionless parameters. */
   betsr = vsr / DC;
   betst = vst / DC;

/* Determine the inertial-to-observed relativistic correction terms. */
   bett = betst;
   betr = betsr;
   for (i = 0; i < IMAX; i++) {
      d = 1.0 + betr;
      del = sqrt(1.0 - betr*betr - bett*bett) - 1.0;
      betr = d * betsr + del;
      bett = d * betst;
      if (i > 0) {
         dd = fabs(d - od);
         ddel = fabs(del - odel);
         if ((i > 1) && (dd >= odd) && (ddel >= oddel)) break;
         odd = dd;
         oddel = ddel;
      }
      od = d;
      odel = del;
   }
   if (i >= IMAX) iwarn += 4;

/* Replace observed radial velocity with inertial value. */
   w = (betsr != 0.0) ? d + del / betsr : 1.0;
   iauSxp(w, usr, ur);

/* Replace observed tangential velocity with inertial value. */
   iauSxp(d, ust, ut);

/* Combine the two to obtain the inertial space velocity. */
   iauPpp(ur, ut, pv[1]);

/* Return the status. */
   return iwarn;

/*----------------------------------------------------------------------
**
**  Celes is a wrapper of the SOFA Library for Ruby.
**
**  This file is redistributed and relicensed in accordance with 
**  the SOFA Software License (http://www.iausofa.org/tandc.html).
**
**  The original library is available from IAU Standards of
**  Fundamental Astronomy (http://www.iausofa.org/).
**
**
**
**
**
**  Copyright (C) 2013, Naoki Arita
**  All rights reserved.
**
**  Redistribution and use in source and binary forms, with or without
**  modification, are permitted provided that the following conditions
**  are met:
**
**  1 Redistributions of source code must retain the above copyright
**    notice, this list of conditions and the following disclaimer.
**
**  2 Redistributions in binary form must reproduce the above copyright
**    notice, this list of conditions and the following disclaimer in
**    the documentation and/or other materials provided with the
**    distribution.
**
**  3 Neither the name of the Standards Of Fundamental Astronomy Board,
**    the International Astronomical Union nor the names of its
**    contributors may be used to endorse or promote products derived
**    from this software without specific prior written permission.
**
**  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
**  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
**  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
**  FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
**  COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
**  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
**  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
**  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
**  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
**  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
**  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
**  POSSIBILITY OF SUCH DAMAGE.
**
**--------------------------------------------------------------------*/
}
示例#3
0
文件: pap.c 项目: LouisStrous/LUX
double iauPap(double a[3], double b[3])
/*
**  - - - - - - -
**   i a u P a p
**  - - - - - - -
**
**  Position-angle from two p-vectors.
**
**  This function is part of the International Astronomical Union's
**  SOFA (Standards Of Fundamental Astronomy) software collection.
**
**  Status:  vector/matrix support function.
**
**  Given:
**     a      double[3]  direction of reference point
**     b      double[3]  direction of point whose PA is required
**
**  Returned (function value):
**            double     position angle of b with respect to a (radians)
**
**  Notes:
**
**  1) The result is the position angle, in radians, of direction b with
**     respect to direction a.  It is in the range -pi to +pi.  The
**     sense is such that if b is a small distance "north" of a the
**     position angle is approximately zero, and if b is a small
**     distance "east" of a the position angle is approximately +pi/2.
**
**  2) The vectors a and b need not be of unit length.
**
**  3) Zero is returned if the two directions are the same or if either
**     vector is null.
**
**  4) If vector a is at a pole, the result is ill-defined.
**
**  Called:
**     iauPn        decompose p-vector into modulus and direction
**     iauPm        modulus of p-vector
**     iauPxp       vector product of two p-vectors
**     iauPmp       p-vector minus p-vector
**     iauPdp       scalar product of two p-vectors
**
**  This revision:  2008 May 25
**
**  SOFA release 2012-03-01
**
**  Copyright (C) 2012 IAU SOFA Board.  See notes at end.
*/
{
   double am, au[3], bm, st, ct, xa, ya, za, eta[3], xi[3], a2b[3], pa;


/* Modulus and direction of the a vector. */
   iauPn(a, &am, au);

/* Modulus of the b vector. */
   bm = iauPm(b);

/* Deal with the case of a null vector. */
   if ((am == 0.0) || (bm == 0.0)) {
      st = 0.0;
      ct = 1.0;
   } else {

   /* The "north" axis tangential from a (arbitrary length). */
      xa = a[0];
      ya = a[1];
      za = a[2];
      eta[0] = -xa * za;
      eta[1] = -ya * za;
      eta[2] =  xa*xa + ya*ya;

   /* The "east" axis tangential from a (same length). */
      iauPxp(eta, au, xi);

   /* The vector from a to b. */
      iauPmp(b, a, a2b);

   /* Resolve into components along the north and east axes. */
      st = iauPdp(a2b, xi);
      ct = iauPdp(a2b, eta);

   /* Deal with degenerate cases. */
      if ((st == 0.0) && (ct == 0.0)) ct = 1.0;
   }

/* Position angle. */
   pa = atan2(st, ct);

   return pa;

/*----------------------------------------------------------------------
**
**  Copyright (C) 2012
**  Standards Of Fundamental Astronomy Board
**  of the International Astronomical Union.
**
**  =====================
**  SOFA Software License
**  =====================
**
**  NOTICE TO USER:
**
**  BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND
**  CONDITIONS WHICH APPLY TO ITS USE.
**
**  1. The Software is owned by the IAU SOFA Board ("SOFA").
**
**  2. Permission is granted to anyone to use the SOFA software for any
**     purpose, including commercial applications, free of charge and
**     without payment of royalties, subject to the conditions and
**     restrictions listed below.
**
**  3. You (the user) may copy and distribute SOFA source code to others,
**     and use and adapt its code and algorithms in your own software,
**     on a world-wide, royalty-free basis.  That portion of your
**     distribution that does not consist of intact and unchanged copies
**     of SOFA source code files is a "derived work" that must comply
**     with the following requirements:
**
**     a) Your work shall be marked or carry a statement that it
**        (i) uses routines and computations derived by you from
**        software provided by SOFA under license to you; and
**        (ii) does not itself constitute software provided by and/or
**        endorsed by SOFA.
**
**     b) The source code of your derived work must contain descriptions
**        of how the derived work is based upon, contains and/or differs
**        from the original SOFA software.
**
**     c) The names of all routines in your derived work shall not
**        include the prefix "iau" or "sofa" or trivial modifications
**        thereof such as changes of case.
**
**     d) The origin of the SOFA components of your derived work must
**        not be misrepresented;  you must not claim that you wrote the
**        original software, nor file a patent application for SOFA
**        software or algorithms embedded in the SOFA software.
**
**     e) These requirements must be reproduced intact in any source
**        distribution and shall apply to anyone to whom you have
**        granted a further right to modify the source code of your
**        derived work.
**
**     Note that, as originally distributed, the SOFA software is
**     intended to be a definitive implementation of the IAU standards,
**     and consequently third-party modifications are discouraged.  All
**     variations, no matter how minor, must be explicitly marked as
**     such, as explained above.
**
**  4. You shall not cause the SOFA software to be brought into
**     disrepute, either by misuse, or use for inappropriate tasks, or
**     by inappropriate modification.
**
**  5. The SOFA software is provided "as is" and SOFA makes no warranty
**     as to its use or performance.   SOFA does not and cannot warrant
**     the performance or results which the user may obtain by using the
**     SOFA software.  SOFA makes no warranties, express or implied, as
**     to non-infringement of third party rights, merchantability, or
**     fitness for any particular purpose.  In no event will SOFA be
**     liable to the user for any consequential, incidental, or special
**     damages, including any lost profits or lost savings, even if a
**     SOFA representative has been advised of such damages, or for any
**     claim by any third party.
**
**  6. The provision of any version of the SOFA software under the terms
**     and conditions specified herein does not imply that future
**     versions will also be made available under the same terms and
**     conditions.
*
**  In any published work or commercial product which uses the SOFA
**  software directly, acknowledgement (see www.iausofa.org) is
**  appreciated.
**
**  Correspondence concerning SOFA software should be addressed as
**  follows:
**
**      By email:  [email protected]
**      By post:   IAU SOFA Center
**                 HM Nautical Almanac Office
**                 UK Hydrographic Office
**                 Admiralty Way, Taunton
**                 Somerset, TA1 2DN
**                 United Kingdom
**
**--------------------------------------------------------------------*/
}
示例#4
0
文件: ldn.c 项目: Jvinniec/CppEphem
void iauLdn(int n, iauLDBODY b[], double ob[3], double sc[3],
            double sn[3])
/*+
**  - - - - - - -
**   i a u L d n
**  - - - - - - -
**
**  For a star, apply light deflection by multiple solar-system bodies,
**  as part of transforming coordinate direction into natural direction.
**
**  This function is part of the International Astronomical Union's
**  SOFA (Standards of Fundamental Astronomy) software collection.
**
**  Status:  support function.
**
**  Given:
**     n    int           number of bodies (note 1)
**     b    iauLDBODY[n]  data for each of the n bodies (Notes 1,2):
**      bm   double         mass of the body (solar masses, Note 3)
**      dl   double         deflection limiter (Note 4)
**      pv   [2][3]         barycentric PV of the body (au, au/day)
**     ob   double[3]     barycentric position of the observer (au)
**     sc   double[3]     observer to star coord direction (unit vector)
**
**  Returned:
**     sn    double[3]      observer to deflected star (unit vector)
**
**  1) The array b contains n entries, one for each body to be
**     considered.  If n = 0, no gravitational light deflection will be
**     applied, not even for the Sun.
**
**  2) The array b should include an entry for the Sun as well as for
**     any planet or other body to be taken into account.  The entries
**     should be in the order in which the light passes the body.
**
**  3) In the entry in the b array for body i, the mass parameter
**     b[i].bm can, as required, be adjusted in order to allow for such
**     effects as quadrupole field.
**
**  4) The deflection limiter parameter b[i].dl is phi^2/2, where phi is
**     the angular separation (in radians) between star and body at
**     which limiting is applied.  As phi shrinks below the chosen
**     threshold, the deflection is artificially reduced, reaching zero
**     for phi = 0.   Example values suitable for a terrestrial
**     observer, together with masses, are as follows:
**
**        body i     b[i].bm        b[i].dl
**
**        Sun        1.0            6e-6
**        Jupiter    0.00095435     3e-9
**        Saturn     0.00028574     3e-10
**
**  5) For cases where the starlight passes the body before reaching the
**     observer, the body is placed back along its barycentric track by
**     the light time from that point to the observer.  For cases where
**     the body is "behind" the observer no such shift is applied.  If
**     a different treatment is preferred, the user has the option of
**     instead using the iauLd function.  Similarly, iauLd can be used
**     for cases where the source is nearby, not a star.
**
**  6) The returned vector sn is not normalized, but the consequential
**     departure from unit magnitude is always negligible.
**
**  7) The arguments sc and sn can be the same array.
**
**  8) For efficiency, validation is omitted.  The supplied masses must
**     be greater than zero, the position and velocity vectors must be
**     right, and the deflection limiter greater than zero.
**
**  Reference:
**
**     Urban, S. & Seidelmann, P. K. (eds), Explanatory Supplement to
**     the Astronomical Almanac, 3rd ed., University Science Books
**     (2013), Section 7.2.4.
**
**  Called:
**     iauCp        copy p-vector
**     iauPdp       scalar product of two p-vectors
**     iauPmp       p-vector minus p-vector
**     iauPpsp      p-vector plus scaled p-vector
**     iauPn        decompose p-vector into modulus and direction
**     iauLd        light deflection by a solar-system body
**
**  This revision:   2017 March 16
**
**  SOFA release 2017-04-20
**
**  Copyright (C) 2017 IAU SOFA Board.  See notes at end.
*/
{
/* Light time for 1 au (days) */
   const double CR = AULT/DAYSEC;

   int i;
   double  v[3], dt, ev[3], em, e[3];


/* Star direction prior to deflection. */
   iauCp(sc, sn);

/* Body by body. */
   for ( i = 0; i < n; i++ ) {

   /* Body to observer vector at epoch of observation (au). */
      iauPmp ( ob, b[i].pv[0], v );

   /* Minus the time since the light passed the body (days). */
      dt = iauPdp(sn,v) * CR;

   /* Neutralize if the star is "behind" the observer. */
      dt = gmin(dt, 0.0);

   /* Backtrack the body to the time the light was passing the body. */
      iauPpsp(v, -dt, b[i].pv[1], ev);

   /* Body to observer vector as magnitude and direction. */
      iauPn(ev, &em, e);

   /* Apply light deflection for this body. */
      iauLd ( b[i].bm, sn, sn, e, em, b[i].dl, sn );

   /* Next body. */
   }

/* Finished. */

/*----------------------------------------------------------------------
**
**  Copyright (C) 2017
**  Standards Of Fundamental Astronomy Board
**  of the International Astronomical Union.
**
**  =====================
**  SOFA Software License
**  =====================
**
**  NOTICE TO USER:
**
**  BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND
**  CONDITIONS WHICH APPLY TO ITS USE.
**
**  1. The Software is owned by the IAU SOFA Board ("SOFA").
**
**  2. Permission is granted to anyone to use the SOFA software for any
**     purpose, including commercial applications, free of charge and
**     without payment of royalties, subject to the conditions and
**     restrictions listed below.
**
**  3. You (the user) may copy and distribute SOFA source code to others,
**     and use and adapt its code and algorithms in your own software,
**     on a world-wide, royalty-free basis.  That portion of your
**     distribution that does not consist of intact and unchanged copies
**     of SOFA source code files is a "derived work" that must comply
**     with the following requirements:
**
**     a) Your work shall be marked or carry a statement that it
**        (i) uses routines and computations derived by you from
**        software provided by SOFA under license to you; and
**        (ii) does not itself constitute software provided by and/or
**        endorsed by SOFA.
**
**     b) The source code of your derived work must contain descriptions
**        of how the derived work is based upon, contains and/or differs
**        from the original SOFA software.
**
**     c) The names of all routines in your derived work shall not
**        include the prefix "iau" or "sofa" or trivial modifications
**        thereof such as changes of case.
**
**     d) The origin of the SOFA components of your derived work must
**        not be misrepresented;  you must not claim that you wrote the
**        original software, nor file a patent application for SOFA
**        software or algorithms embedded in the SOFA software.
**
**     e) These requirements must be reproduced intact in any source
**        distribution and shall apply to anyone to whom you have
**        granted a further right to modify the source code of your
**        derived work.
**
**     Note that, as originally distributed, the SOFA software is
**     intended to be a definitive implementation of the IAU standards,
**     and consequently third-party modifications are discouraged.  All
**     variations, no matter how minor, must be explicitly marked as
**     such, as explained above.
**
**  4. You shall not cause the SOFA software to be brought into
**     disrepute, either by misuse, or use for inappropriate tasks, or
**     by inappropriate modification.
**
**  5. The SOFA software is provided "as is" and SOFA makes no warranty
**     as to its use or performance.   SOFA does not and cannot warrant
**     the performance or results which the user may obtain by using the
**     SOFA software.  SOFA makes no warranties, express or implied, as
**     to non-infringement of third party rights, merchantability, or
**     fitness for any particular purpose.  In no event will SOFA be
**     liable to the user for any consequential, incidental, or special
**     damages, including any lost profits or lost savings, even if a
**     SOFA representative has been advised of such damages, or for any
**     claim by any third party.
**
**  6. The provision of any version of the SOFA software under the terms
**     and conditions specified herein does not imply that future
**     versions will also be made available under the same terms and
**     conditions.
*
**  In any published work or commercial product which uses the SOFA
**  software directly, acknowledgement (see www.iausofa.org) is
**  appreciated.
**
**  Correspondence concerning SOFA software should be addressed as
**  follows:
**
**      By email:  [email protected]
**      By post:   IAU SOFA Center
**                 HM Nautical Almanac Office
**                 UK Hydrographic Office
**                 Admiralty Way, Taunton
**                 Somerset, TA1 2DN
**                 United Kingdom
**
**--------------------------------------------------------------------*/

}
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
    size_t numSource, numBodies, baseIdx,curBody,curSource;
    double *vObsSource,posObs[3], *MSolar, *xBody, *deflecLimit;
    iauLDBODY *bodyParam;
    mxArray *vDeflMATLAB;
    double *vDefl;

    if(nrhs<4||nrhs>5) {
        mexErrMsgTxt("Incorrect number of inputs.");
        return;
    }
    
    if(nlhs>1) {
        mexErrMsgTxt("Wrong number of outputs.");
        return;
    }

    //Check the inputs
    checkRealDoubleArray(prhs[0]);
    checkRealDoubleArray(prhs[1]);
    checkRealDoubleArray(prhs[2]);
    
    //Check the inputs
    numSource=mxGetN(prhs[0]);

    if(mxGetM(prhs[0])!=3||numSource==0) {
        mexErrMsgTxt("The input vObsSource has the wrong dimensionality.");
    }

    if(mxGetM(prhs[1])!=3||mxGetN(prhs[1])!=1) {
        mexErrMsgTxt("The input posObs has the wrong dimensionality.");
    }

    numBodies=mxGetM(prhs[2]);

    if(numBodies==0||mxGetN(prhs[2])!=1) {
        mexErrMsgTxt("The input MSolar has the wrong dimensionality.");
    }

    if(mxGetM(prhs[3])!=6||mxGetN(prhs[2])!=numBodies) {
        mexErrMsgTxt("The input xBody has the wrong dimensionality.");
    }

    if(nrhs>3) {
        checkRealDoubleArray(prhs[4]); 

        if(mxGetM(prhs[4])!=numBodies||mxGetN(prhs[4])!=1) {
           mexErrMsgTxt("The input deflecLimit has the wrong dimensionality."); 
        }

    } else {
        deflecLimit=NULL;
    }

    vObsSource=(double*)mxGetData(prhs[0]);
            
    //Get the observer position and convert from meters to AU.
    {
        double *temp=(double*)mxGetData(prhs[1]);
        posObs[0]=temp[0]/DAU;
        posObs[1]=temp[1]/DAU;
        posObs[2]=temp[2]/DAU;
    }
    
    MSolar=(double*)mxGetData(prhs[2]);
    //The units have to be converted to AU and AU/Day
    xBody=(double*)mxGetData(prhs[3]);
       
    //Allocate space to hold the parameters of the astronomical bodies in a
    //manner suitable for the iauLdn function.
    bodyParam=(iauLDBODY*)mxMalloc(sizeof(iauLDBODY)*numBodies);
             
    baseIdx=0;
    for(curBody=0;curBody<numBodies;curBody++) {
        int i;
        
        bodyParam[curBody].bm=MSolar[curBody];
        if(deflecLimit!=NULL) {
            bodyParam[curBody].dl=deflecLimit[curBody];
        } else {
            //A value suitably small for Saturn.
            bodyParam[curBody].dl=3e-10;
        }
        
        //Position
        for(i=0;i<3;i++) {
            //The division converts from meters to AU.
            bodyParam[curBody].pv[0][i]=xBody[baseIdx+i]/DAU;
        }
        
        //Velocity
        for(i=0;i<3;i++) {
            //Convert from meters per second BCRS to AU/ day.
            bodyParam[curBody].pv[1][i]=xBody[3+baseIdx+i]*(1/DAU)*(1/DAYSEC);
        }
        
        baseIdx+=6;
    }
    
    //Allocate space for the return values.
    vDeflMATLAB=mxCreateDoubleMatrix(3,numSource,mxREAL);
    vDefl=(double*)mxGetData(vDeflMATLAB);
    
    baseIdx=0;
    for(curSource=0;curSource<numSource;curSource++) {
        double vecMag, sc[3];//Unit vector to the source
        
        //Get a unit direction vector and magnitude to the current source.
        iauPn(vObsSource+baseIdx, &vecMag, sc);
        
        iauLdn(numBodies, bodyParam, posObs, sc,vDefl+baseIdx);
        
        //Deal with possibly non-unit magnitudes on the input.
        vDefl[baseIdx]*=vecMag;
        vDefl[baseIdx+1]*=vecMag;
        vDefl[baseIdx+2]*=vecMag;
        
        baseIdx+=3;
    }
    
    //Free temporary memory; set the return value.
    mxFree(bodyParam);
    plhs[0]=vDeflMATLAB;
}
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
    double *vOrig;
    double *obsVel;
    mxArray *retMATLAB;
    double c, *retVec;
    size_t numVec;
    
    if(nrhs<2||nrhs>3) {
        mexErrMsgTxt("Incorrect number of inputs.");
        return;
    }
    
    if(nlhs>1) {
        mexErrMsgTxt("Wrong number of outputs.");
        return;
    }

    numVec=mxGetN(prhs[0]);
    if(numVec!=mxGetN(prhs[1])||mxGetM(prhs[0])!=3||mxGetM(prhs[1])!=3) {
        mexErrMsgTxt("The input vectors have the wrong dimensionality.");
        return;
    }
    
    checkRealDoubleArray(prhs[0]);
    vOrig=(double*)mxGetData(prhs[0]);
    checkRealDoubleArray(prhs[1]);
    obsVel=(double*)mxGetData(prhs[1]);
    
    c=getScalarMatlabClassConst("Constants","speedOfLight");
    
    //Allocate space for the return values.
    retMATLAB=mxCreateDoubleMatrix(3,numVec,mxREAL);
    retVec=(double*)mxGetData(retMATLAB);
    
    //If the third parameter is provided, then use the algorithm from the IAU.
    if(nrhs>2) {
        double AU, *sunDist;
        size_t curVec;
        
        //Needed to convert units.
        AU=getScalarMatlabClassConst("Constants","AstronomialUnit");
        
        //If the dimensionality is wrong.
        if(!((mxGetM(prhs[2])==1&&mxGetN(prhs[2])==numVec)||(mxGetM(prhs[2])==numVec&&mxGetN(prhs[2])==1))) {
            mxDestroyArray(retMATLAB);
            mexErrMsgTxt("The input vectors have the wrong dimensionality.");
            return;
        }
        checkRealDoubleArray(prhs[0]);
        sunDist=(double*)mxGetData(prhs[2]);

        for(curVec=0;curVec<numVec;curVec++) {
            double vecMag,unitVec[3];
            double v[3];
            double s;
            double bm1;
            
            //Get a unit direction vector and magnitude.
            iauPn(vOrig+3*curVec, &vecMag, unitVec);
            
            //Convert the velocity to units of the speed of light.
            v[0]=obsVel[3*curVec]/c;
            v[1]=obsVel[3*curVec+1]/c;
            v[2]=obsVel[3*curVec+2]/c;
            
            //The distance to the sun in AU.
            s=sunDist[curVec]/AU;
            //The reciprocal of the Lorentz factor.
            bm1=sqrt(1-(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]));
            
            //Perform the correction with the IAU's function.
            iauAb(unitVec, v, s, bm1,retVec+3*curVec);
            
            //Set the magnitude back to what it was.
            retVec[3*curVec]*=vecMag;
            retVec[3*curVec+1]*=vecMag;
            retVec[3*curVec+2]*=vecMag;
        }
    } else {
    //If the distance to the sun is not given, then just perform a normal
    //special relativistic correction.
        size_t curVec;
        
        for(curVec=0;curVec<numVec;curVec++) {
            double vecMag,lightVec[3];
            
            //Get a unit direction vector and magnitude.
            iauPn(vOrig+3*curVec, &vecMag, lightVec);
            
            //The light is in direction lightVec with speed c
            lightVec[0]*=c;
            lightVec[1]*=c;
            lightVec[2]*=c;
            
            //The light travels at speed c with true direction uPosition.
            //Add the velocity vector of the observer to that of light.
            relVecAddC(c,obsVel+3*curVec,lightVec,retVec+3*curVec);
            //Because one vector had a magnitude of c, the returned vector
            //must have the same magnitude. Restore the previous magnitude.
            retVec[3*curVec]*=vecMag/c;
            retVec[3*curVec+1]*=vecMag/c;
            retVec[3*curVec+2]*=vecMag/c;
        }
    }

    //Set the return value.
    plhs[0]=retMATLAB;
}