示例#1
0
static int ad7152_write_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *chan,
			    int val,
			    int val2,
			    long mask)
{
	struct ad7152_chip_info *chip = iio_priv(indio_dev);
	int ret, i;

	mutex_lock(&indio_dev->mlock);

	switch (mask) {
	case IIO_CHAN_INFO_CALIBSCALE:
		if (val != 1) {
			ret = -EINVAL;
			goto out;
		}

		val = (val2 * 1024) / 15625;

		ret = i2c_smbus_write_word_data(chip->client,
				ad7152_addresses[chan->channel][AD7152_GAIN],
				swab16(val));
		if (ret < 0)
			goto out;

		ret = 0;
		break;

	case IIO_CHAN_INFO_CALIBBIAS:
		if ((val < 0) | (val > 0xFFFF)) {
			ret = -EINVAL;
			goto out;
		}
		ret = i2c_smbus_write_word_data(chip->client,
				ad7152_addresses[chan->channel][AD7152_OFFS],
				swab16(val));
		if (ret < 0)
			goto out;

		ret = 0;
		break;
	case IIO_CHAN_INFO_SCALE:
		if (val != 0) {
			ret = -EINVAL;
			goto out;
		}
		for (i = 0; i < ARRAY_SIZE(ad7152_scale_table); i++)
			if (val2 == ad7152_scale_table[i])
				break;

		chip->setup[chan->channel] &= ~AD7152_SETUP_RANGE_4pF;
		chip->setup[chan->channel] |= AD7152_SETUP_RANGE(i);

		ret = i2c_smbus_write_byte_data(chip->client,
				ad7152_addresses[chan->channel][AD7152_SETUP],
				chip->setup[chan->channel]);
		if (ret < 0)
			goto out;

		ret = 0;
		break;
	default:
		ret = -EINVAL;
	}

out:
	mutex_unlock(&indio_dev->mlock);
	return ret;
}
static int __devinit lpc32xx_adc_probe(struct platform_device *pdev)
{
	struct lpc32xx_adc_info *info = NULL;
	struct resource *res;
	int retval = -ENODEV;
	struct iio_dev *iodev = NULL;
	int irq;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(&pdev->dev, "failed to get platform I/O memory\n");
		retval = -EBUSY;
		goto errout1;
	}

	iodev = iio_allocate_device(sizeof(struct lpc32xx_adc_info));
	if (!iodev) {
		dev_err(&pdev->dev, "failed allocating iio device\n");
		retval = -ENOMEM;
		goto errout1;
	}

	info = iio_priv(iodev);

	info->adc_base = ioremap(res->start, res->end - res->start + 1);
	if (!info->adc_base) {
		dev_err(&pdev->dev, "failed mapping memory\n");
		retval = -EBUSY;
		goto errout2;
	}

	info->clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(info->clk)) {
		dev_err(&pdev->dev, "failed getting clock\n");
		goto errout3;
	}

	irq = platform_get_irq(pdev, 0);
	if ((irq < 0) || (irq >= NR_IRQS)) {
		dev_err(&pdev->dev, "failed getting interrupt resource\n");
		retval = -EINVAL;
		goto errout4;
	}

	retval = request_irq(irq, lpc32xx_adc_isr, 0, MOD_NAME, info);
	if (retval < 0) {
		dev_err(&pdev->dev, "failed requesting interrupt\n");
		goto errout4;
	}

	platform_set_drvdata(pdev, iodev);

	init_completion(&info->completion);

	iodev->name = MOD_NAME;
	iodev->dev.parent = &pdev->dev;
	iodev->info = &lpc32xx_adc_iio_info;
	iodev->modes = INDIO_DIRECT_MODE;
	iodev->channels = lpc32xx_adc_iio_channels;
	iodev->num_channels = ARRAY_SIZE(lpc32xx_adc_iio_channels);

	retval = iio_device_register(iodev);
	if (retval)
		goto errout5;

	dev_info(&pdev->dev, "LPC32XX ADC driver loaded, IRQ %d\n", irq);

	return 0;

errout5:
	free_irq(irq, iodev);
errout4:
	clk_put(info->clk);
errout3:
	iounmap(info->adc_base);
errout2:
	iio_free_device(iodev);
errout1:
	return retval;
}
示例#3
0
static int ade7854_spi_write_reg_8(struct device *dev,
		u16 reg_address,
		u8 value)
{
	int ret;
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct ade7854_state *st = iio_priv(indio_dev);
	struct spi_transfer xfer = {
		.tx_buf = st->tx,
		.bits_per_word = 8,
		.len = 4,
	};

	mutex_lock(&st->buf_lock);
	st->tx[0] = ADE7854_WRITE_REG;
	st->tx[1] = (reg_address >> 8) & 0xFF;
	st->tx[2] = reg_address & 0xFF;
	st->tx[3] = value & 0xFF;

	ret = spi_sync_transfer(st->spi, &xfer, 1);
	mutex_unlock(&st->buf_lock);

	return ret;
}

static int ade7854_spi_write_reg_16(struct device *dev,
		u16 reg_address,
		u16 value)
{
	int ret;
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct ade7854_state *st = iio_priv(indio_dev);
	struct spi_transfer xfer = {
		.tx_buf = st->tx,
		.bits_per_word = 8,
		.len = 5,
	};

	mutex_lock(&st->buf_lock);
	st->tx[0] = ADE7854_WRITE_REG;
	st->tx[1] = (reg_address >> 8) & 0xFF;
	st->tx[2] = reg_address & 0xFF;
	st->tx[3] = (value >> 8) & 0xFF;
	st->tx[4] = value & 0xFF;

	ret = spi_sync_transfer(st->spi, &xfer, 1);
	mutex_unlock(&st->buf_lock);

	return ret;
}

static int ade7854_spi_write_reg_24(struct device *dev,
		u16 reg_address,
		u32 value)
{
	int ret;
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct ade7854_state *st = iio_priv(indio_dev);
	struct spi_transfer xfer = {
		.tx_buf = st->tx,
		.bits_per_word = 8,
		.len = 6,
	};

	mutex_lock(&st->buf_lock);
	st->tx[0] = ADE7854_WRITE_REG;
	st->tx[1] = (reg_address >> 8) & 0xFF;
	st->tx[2] = reg_address & 0xFF;
	st->tx[3] = (value >> 16) & 0xFF;
	st->tx[4] = (value >> 8) & 0xFF;
	st->tx[5] = value & 0xFF;

	ret = spi_sync_transfer(st->spi, &xfer, 1);
	mutex_unlock(&st->buf_lock);

	return ret;
}

static int ade7854_spi_write_reg_32(struct device *dev,
		u16 reg_address,
		u32 value)
{
	int ret;
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct ade7854_state *st = iio_priv(indio_dev);
	struct spi_transfer xfer = {
		.tx_buf = st->tx,
		.bits_per_word = 8,
		.len = 7,
	};

	mutex_lock(&st->buf_lock);
	st->tx[0] = ADE7854_WRITE_REG;
	st->tx[1] = (reg_address >> 8) & 0xFF;
	st->tx[2] = reg_address & 0xFF;
	st->tx[3] = (value >> 24) & 0xFF;
	st->tx[4] = (value >> 16) & 0xFF;
	st->tx[5] = (value >> 8) & 0xFF;
	st->tx[6] = value & 0xFF;

	ret = spi_sync_transfer(st->spi, &xfer, 1);
	mutex_unlock(&st->buf_lock);

	return ret;
}

static int ade7854_spi_read_reg_8(struct device *dev,
		u16 reg_address,
		u8 *val)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct ade7854_state *st = iio_priv(indio_dev);
	int ret;
	struct spi_transfer xfers[] = {
		{
			.tx_buf = st->tx,
			.bits_per_word = 8,
			.len = 3,
		}, {
			.rx_buf = st->rx,
			.bits_per_word = 8,
			.len = 1,
		}
	};
示例#4
0
static int rockchip_saradc_probe(struct platform_device *pdev)
{
	struct rockchip_saradc *info = NULL;
	struct device_node *np = pdev->dev.of_node;
	struct iio_dev *indio_dev = NULL;
	struct resource	*mem;
	const struct of_device_id *match;
	int ret;
	int irq;

	if (!np)
		return -ENODEV;

	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*info));
	if (!indio_dev) {
		dev_err(&pdev->dev, "failed allocating iio device\n");
		return -ENOMEM;
	}
	info = iio_priv(indio_dev);

	match = of_match_device(rockchip_saradc_match, &pdev->dev);
	info->data = match->data;

	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	info->regs = devm_ioremap_resource(&pdev->dev, mem);
	if (IS_ERR(info->regs))
		return PTR_ERR(info->regs);

	/*
	 * The reset should be an optional property, as it should work
	 * with old devicetrees as well
	 */
	info->reset = devm_reset_control_get(&pdev->dev, "saradc-apb");
	if (IS_ERR(info->reset)) {
		ret = PTR_ERR(info->reset);
		if (ret != -ENOENT)
			return ret;

		dev_dbg(&pdev->dev, "no reset control found\n");
		info->reset = NULL;
	}

	init_completion(&info->completion);

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "no irq resource?\n");
		return irq;
	}

	ret = devm_request_irq(&pdev->dev, irq, rockchip_saradc_isr,
			       0, dev_name(&pdev->dev), info);
	if (ret < 0) {
		dev_err(&pdev->dev, "failed requesting irq %d\n", irq);
		return ret;
	}

	info->pclk = devm_clk_get(&pdev->dev, "apb_pclk");
	if (IS_ERR(info->pclk)) {
		dev_err(&pdev->dev, "failed to get pclk\n");
		return PTR_ERR(info->pclk);
	}

	info->clk = devm_clk_get(&pdev->dev, "saradc");
	if (IS_ERR(info->clk)) {
		dev_err(&pdev->dev, "failed to get adc clock\n");
		return PTR_ERR(info->clk);
	}

	info->vref = devm_regulator_get(&pdev->dev, "vref");
	if (IS_ERR(info->vref)) {
		dev_err(&pdev->dev, "failed to get regulator, %ld\n",
			PTR_ERR(info->vref));
		return PTR_ERR(info->vref);
	}

	if (info->reset)
		rockchip_saradc_reset_controller(info->reset);

	/*
	 * Use a default value for the converter clock.
	 * This may become user-configurable in the future.
	 */
	ret = clk_set_rate(info->clk, info->data->clk_rate);
	if (ret < 0) {
		dev_err(&pdev->dev, "failed to set adc clk rate, %d\n", ret);
		return ret;
	}

	ret = regulator_enable(info->vref);
	if (ret < 0) {
		dev_err(&pdev->dev, "failed to enable vref regulator\n");
		return ret;
	}

	ret = clk_prepare_enable(info->pclk);
	if (ret < 0) {
		dev_err(&pdev->dev, "failed to enable pclk\n");
		goto err_reg_voltage;
	}

	ret = clk_prepare_enable(info->clk);
	if (ret < 0) {
		dev_err(&pdev->dev, "failed to enable converter clock\n");
		goto err_pclk;
	}

	platform_set_drvdata(pdev, indio_dev);

	indio_dev->name = dev_name(&pdev->dev);
	indio_dev->dev.parent = &pdev->dev;
	indio_dev->dev.of_node = pdev->dev.of_node;
	indio_dev->info = &rockchip_saradc_iio_info;
	indio_dev->modes = INDIO_DIRECT_MODE;

	indio_dev->channels = info->data->channels;
	indio_dev->num_channels = info->data->num_channels;

	ret = iio_device_register(indio_dev);
	if (ret)
		goto err_clk;

	return 0;

err_clk:
	clk_disable_unprepare(info->clk);
err_pclk:
	clk_disable_unprepare(info->pclk);
err_reg_voltage:
	regulator_disable(info->vref);
	return ret;
}
static int __devinit max77660_adc_probe(struct platform_device *pdev)
{
	struct max77660_adc *adc;
	struct max77660_platform_data *pdata;
	struct max77660_adc_platform_data *adc_pdata;
	struct iio_dev *iodev;
	int ret;

	pdata = dev_get_platdata(pdev->dev.parent);
	if (!pdata || !pdata->adc_pdata) {
		dev_err(&pdev->dev, "No platform data\n");
		return -ENODEV;
	}
	adc_pdata = pdata->adc_pdata;

	iodev = iio_allocate_device(sizeof(*adc));
	if (!iodev) {
		dev_err(&pdev->dev, "iio_device_alloc failed\n");
		return -ENOMEM;
	}
	adc = iio_priv(iodev);
	adc->dev = &pdev->dev;
	adc->parent = pdev->dev.parent;
	adc->adc_info = max77660_adc_info;
	init_completion(&adc->conv_completion);
	dev_set_drvdata(&pdev->dev, iodev);

	adc->irq = platform_get_irq(pdev, 0);
	ret = request_threaded_irq(adc->irq, NULL,
		max77660_adc_irq,
		IRQF_ONESHOT | IRQF_EARLY_RESUME, dev_name(adc->dev),
		adc);
	if (ret < 0) {
		dev_err(adc->dev,
			"request irq %d failed: %dn", adc->irq, ret);
		goto out;
	}

	if (adc_pdata->adc_ref_enabled)
		adc->adc_control |= MAX77660_ADCCTRL_ADCREFEN;

	if (adc_pdata->adc_avg_sample <= 1)
		adc->adc_control |= MAX77660_ADCCTRL_ADCAVG(0);
	else if (adc_pdata->adc_avg_sample <= 2)
		adc->adc_control |= MAX77660_ADCCTRL_ADCAVG(1);
	else if (adc_pdata->adc_avg_sample <= 16)
		adc->adc_control |= MAX77660_ADCCTRL_ADCAVG(2);
	else
		adc->adc_control |= MAX77660_ADCCTRL_ADCAVG(3);

	if (adc_pdata->adc_current_uA == 0)
		adc->iadc_val = 0;
	else if (adc_pdata->adc_current_uA <= 10)
		adc->iadc_val = 1;
	else if (adc_pdata->adc_current_uA <= 50)
		adc->iadc_val = 2;
	else
		adc->iadc_val = 3;

	iodev->name = MOD_NAME;
	iodev->dev.parent = &pdev->dev;
	iodev->info = &max77660_adc_iio_info;
	iodev->modes = INDIO_DIRECT_MODE;
	iodev->channels = max77660_adc_iio_channel;
	iodev->num_channels = ARRAY_SIZE(max77660_adc_iio_channel);
	ret = iio_device_register(iodev);
	if (ret < 0) {
		dev_err(adc->dev, "iio_device_register() failed: %d\n", ret);
		goto out_irq_free;
	}

	if (adc_pdata->channel_mapping) {
		ret = iio_map_array_register(iodev, adc_pdata->channel_mapping);
		if (ret < 0) {
			dev_err(adc->dev,
				"iio_map_array_register() failed: %d\n", ret);
			goto out_irq_free;
			}
	}

	device_set_wakeup_capable(&pdev->dev, 1);
	if (adc_pdata->adc_wakeup_data) {
		memcpy(&adc->adc_wake_props, adc_pdata->adc_wakeup_data,
			sizeof(struct max77660_adc_wakeup_property));
		adc->wakeup_props_available = true;
		device_wakeup_enable(&pdev->dev);
	}
	return 0;

out_irq_free:
	free_irq(adc->irq, adc);
out:
	iio_free_device(iodev);
	return ret;
}
示例#6
0
	}

	return 0;
}

static const int max1363_event_codes[] = {
	IIO_EVENT_CODE_IN_LOW_THRESH(3), IIO_EVENT_CODE_IN_HIGH_THRESH(3),
	IIO_EVENT_CODE_IN_LOW_THRESH(2), IIO_EVENT_CODE_IN_HIGH_THRESH(2),
	IIO_EVENT_CODE_IN_LOW_THRESH(1), IIO_EVENT_CODE_IN_HIGH_THRESH(1),
	IIO_EVENT_CODE_IN_LOW_THRESH(0), IIO_EVENT_CODE_IN_HIGH_THRESH(0)
};

static irqreturn_t max1363_event_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct max1363_state *st = iio_priv(indio_dev);
	s64 timestamp = iio_get_time_ns();
	unsigned long mask, loc;
	u8 rx;
	u8 tx[2] = { st->setupbyte,
		     MAX1363_MON_INT_ENABLE | (st->monitor_speed << 1) | 0xF0 };

	i2c_master_recv(st->client, &rx, 1);
	mask = rx;
	for_each_set_bit(loc, &mask, 8)
		iio_push_event(indio_dev, 0, max1363_event_codes[loc],
			       timestamp);
	i2c_master_send(st->client, tx, 2);

	return IRQ_HANDLED;
}
static int __devinit isl29028_probe(struct i2c_client *client,
	const struct i2c_device_id *id)
{
	struct isl29028_chip *chip;
	struct iio_dev *indio_dev;
	struct regulator *isl_reg = regulator_get(&client->dev, "vdd");
	int err;

	dev_dbg(&client->dev, "%s() called\n", __func__);

	if (IS_ERR_OR_NULL(isl_reg)) {
		dev_info(&client->dev, "no regulator found," \
			"continue without regulator\n");
		isl_reg = NULL;
	}

	indio_dev = iio_allocate_device(sizeof(*chip));
	if (indio_dev == NULL) {
		dev_err(&client->dev, "iio allocation fails\n");
		err = -ENOMEM;
		goto exit;
	}
	chip = iio_priv(indio_dev);

	i2c_set_clientdata(client, indio_dev);
	chip->client = client;
	chip->irq = client->irq;
	chip->isl_reg = isl_reg;

	mutex_init(&chip->lock);

	err = isl29028_chip_init(client);
	if (err)
		goto exit_iio_free;

	init_completion(&chip->prox_completion);
	init_completion(&chip->als_completion);

	if (chip->irq > 0) {
		err = request_threaded_irq(chip->irq, NULL, threshold_isr,
						IRQF_SHARED, "ISL29028", chip);
		if (err) {
			dev_err(&client->dev, "Unable to register irq %d; "
				"error %d\n", chip->irq, err);
			goto exit_iio_free;
		}
		chip->is_int_enable = true;
	}

	indio_dev->info = &isl29028_info;
	indio_dev->dev.parent = &client->dev;
	indio_dev->modes = INDIO_DIRECT_MODE;
	err = iio_device_register(indio_dev);
	if (err) {
		dev_err(&client->dev, "iio registration fails\n");
		goto exit_irq;
	}
	dev_dbg(&client->dev, "%s() success\n", __func__);
	return 0;

exit_irq:
	if (chip->irq > 0)
		free_irq(chip->irq, chip);
exit_iio_free:
	if (chip->isl_reg)
		regulator_put(chip->isl_reg);
	iio_free_device(indio_dev);
exit:
	return err;
}
static int yas_probe(struct i2c_client *i2c, const struct i2c_device_id *id)
{
	struct yas_state *st;
	struct iio_dev *indio_dev;
	int ret, i;
	s8 *bias;
	struct yas_acc_platform_data *pdata;

	I("%s\n", __func__);

	this_client = i2c;
	indio_dev = iio_device_alloc(sizeof(*st));
	if (!indio_dev) {
		ret = -ENOMEM;
		goto error_ret;
	}
	i2c_set_clientdata(i2c, indio_dev);

	indio_dev->name = id->name;
	indio_dev->dev.parent = &i2c->dev;
	indio_dev->info = &yas_info;
	indio_dev->channels = yas_channels;
	indio_dev->num_channels = ARRAY_SIZE(yas_channels);
	indio_dev->modes = INDIO_DIRECT_MODE;

	st = iio_priv(indio_dev);
	st->client = i2c;
	st->sampling_frequency = 20;
	st->acc.callback.device_open = yas_device_open;
	st->acc.callback.device_close = yas_device_close;
	st->acc.callback.device_read = yas_device_read;
	st->acc.callback.device_write = yas_device_write;
	st->acc.callback.usleep = yas_usleep;
	st->acc.callback.current_time = yas_current_time;
	st->indio_dev = indio_dev;
	INIT_DELAYED_WORK(&st->work, yas_work_func);
	INIT_WORK(&st->resume_work, yas_resume_work_func);
	mutex_init(&st->lock);
#ifdef CONFIG_HAS_EARLYSUSPEND
	st->sus.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1;
	st->sus.suspend = yas_early_suspend;
	st->sus.resume = yas_late_resume;
	register_early_suspend(&st->sus);
#endif
	ret = yas_probe_buffer(indio_dev);
	if (ret)
		goto error_free_dev;
	ret = yas_probe_trigger(indio_dev);
	if (ret)
		goto error_remove_buffer;
	ret = iio_device_register(indio_dev);
	if (ret)
		goto error_remove_trigger;
	ret = yas_acc_driver_init(&st->acc);
	if (ret < 0) {
		ret = -EFAULT;
		goto error_unregister_iio;
	}
	ret = st->acc.init();
	if (ret < 0) {
		ret = -EFAULT;
		goto error_unregister_iio;
	}
	ret = st->acc.set_enable(1);
	if (ret < 0) {
		ret = -EFAULT;
		goto error_driver_term;
	}

	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
	if (pdata == NULL)
		E("%s: memory allocation for pdata failed.", __func__);
	else
		yas_parse_dt(&i2c->dev, pdata);

	for (i = 0; i < 3; i++) {
		st->accel_data[i] = 0;
		bias = (s8 *)&pdata->gs_kvalue;
		st->calib_bias[i] = -(bias[2-i] *
					YAS_GRAVITY_EARTH / 256);
		I("%s: calib_bias[%d] = %d\n", __func__, i, st->calib_bias[i]);
	}

	mutex_lock(&st->lock);
	if ((pdata->placement < 8) && (pdata->placement >= 0)) {
		ret = st->acc.set_position(pdata->placement);
		I("%s: set position = %d\n", __func__, pdata->placement);
	} else {
		ret = st->acc.set_position(5);
		D("%s: set default position = 5\n", __func__);
	}
	mutex_unlock(&st->lock);

#ifdef CONFIG_CIR_ALWAYS_READY
	
	module.IRQ = pdata->intr;
	I("%s: IRQ = %d\n", __func__, module.IRQ);
	ret = request_irq(module.IRQ, kxtj2_irq_handler, IRQF_TRIGGER_RISING,
			"kxtj2", &module);
	enable_irq_wake(module.IRQ);
	if (ret)
		E("%s: Could not request irq = %d\n", __func__, module.IRQ);

	module.kxtj2_wq = create_singlethread_workqueue("kxtj2_wq");
	if (!module.kxtj2_wq) {
		E("%s: Can't create workqueue\n", __func__);
		ret = -ENOMEM;
		goto error_create_singlethread_workqueue;
	}
#endif

	init_irq_work(&st->iio_irq_work, iio_trigger_work);
	g_st = st;

	ret = create_sysfs_interfaces(st);
	if (ret) {
		E("%s: create_sysfs_interfaces fail, ret = %d\n",
		  __func__, ret);
		goto err_create_fixed_sysfs;
	}

	I("%s: Successfully probe\n", __func__);


	return 0;

err_create_fixed_sysfs:

#ifdef CONFIG_CIR_ALWAYS_READY
	if (module.kxtj2_wq)
		destroy_workqueue(module.kxtj2_wq);
error_create_singlethread_workqueue:
#endif
	kfree(pdata);
error_driver_term:
	st->acc.term();
error_unregister_iio:
	iio_device_unregister(indio_dev);
error_remove_trigger:
	yas_remove_trigger(indio_dev);
error_remove_buffer:
	yas_remove_buffer(indio_dev);
error_free_dev:
#ifdef CONFIG_HAS_EARLYSUSPEND
	unregister_early_suspend(&st->sus);
#endif
	iio_device_free(indio_dev);
error_ret:
	i2c_set_clientdata(i2c, NULL);
	this_client = NULL;
	return ret;
}
示例#9
0
文件: apds9300.c 项目: 03199618/linux
					  IIO_EV_DIR_RISING) |
			       IIO_EV_BIT(IIO_EV_TYPE_THRESH,
					  IIO_EV_DIR_FALLING)),
	}, {
		.type = IIO_INTENSITY,
		.channel = 1,
		.channel2 = IIO_MOD_LIGHT_IR,
		.indexed = true,
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
	},
};

static irqreturn_t apds9300_interrupt_handler(int irq, void *private)
{
	struct iio_dev *dev_info = private;
	struct apds9300_data *data = iio_priv(dev_info);

	iio_push_event(dev_info,
		       IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0,
					    IIO_EV_TYPE_THRESH,
					    IIO_EV_DIR_EITHER),
		       iio_get_time_ns());

	apds9300_clear_intr(data);

	return IRQ_HANDLED;
}

static int apds9300_probe(struct i2c_client *client,
		const struct i2c_device_id *id)
{
示例#10
0
static int ad5504_spi_read(struct spi_device *spi, u8 addr, u16 *val)
{
	u16 tmp = cpu_to_be16(AD5504_CMD_READ | AD5504_ADDR(addr));
	int ret;
	struct spi_transfer	t = {
			.tx_buf		= &tmp,
			.rx_buf		= val,
			.len		= 2,
		};
	struct spi_message	m;

	spi_message_init(&m);
	spi_message_add_tail(&t, &m);
	ret = spi_sync(spi, &m);

	*val = be16_to_cpu(*val) & AD5504_RES_MASK;

	return ret;
}

static ssize_t ad5504_write_dac(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t len)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct ad5504_state *st = iio_priv(indio_dev);
	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
	long readin;
	int ret;

	ret = strict_strtol(buf, 10, &readin);
	if (ret)
		return ret;

	ret = ad5504_spi_write(st->spi, this_attr->address, readin);
	return ret ? ret : len;
}

static ssize_t ad5504_read_dac(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct ad5504_state *st = iio_priv(indio_dev);
	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
	int ret;
	u16 val;

	ret = ad5504_spi_read(st->spi, this_attr->address, &val);
	if (ret)
		return ret;

	return sprintf(buf, "%d\n", val);
}

static ssize_t ad5504_read_powerdown_mode(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct ad5504_state *st = iio_priv(indio_dev);

	const char mode[][14] = {"20kohm_to_gnd", "three_state"};

	return sprintf(buf, "%s\n", mode[st->pwr_down_mode]);
}

static ssize_t ad5504_write_powerdown_mode(struct device *dev,
				       struct device_attribute *attr,
				       const char *buf, size_t len)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct ad5504_state *st = iio_priv(indio_dev);
	int ret;

	if (sysfs_streq(buf, "20kohm_to_gnd"))
		st->pwr_down_mode = AD5504_DAC_PWRDN_20K;
	else if (sysfs_streq(buf, "three_state"))
		st->pwr_down_mode = AD5504_DAC_PWRDN_3STATE;
	else
		ret = -EINVAL;

	return ret ? ret : len;
}

static ssize_t ad5504_read_dac_powerdown(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct ad5504_state *st = iio_priv(indio_dev);
	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);

	return sprintf(buf, "%d\n",
			!(st->pwr_down_mask & (1 << this_attr->address)));
}

static ssize_t ad5504_write_dac_powerdown(struct device *dev,
					    struct device_attribute *attr,
					    const char *buf, size_t len)
{
	long readin;
	int ret;
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct ad5504_state *st = iio_priv(indio_dev);
	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);

	ret = strict_strtol(buf, 10, &readin);
	if (ret)
		return ret;

	if (readin == 0)
		st->pwr_down_mask |= (1 << this_attr->address);
	else if (readin == 1)
		st->pwr_down_mask &= ~(1 << this_attr->address);
	else
		ret = -EINVAL;

	ret = ad5504_spi_write(st->spi, AD5504_ADDR_CTRL,
				AD5504_DAC_PWRDWN_MODE(st->pwr_down_mode) |
				AD5504_DAC_PWR(st->pwr_down_mask));

	/* writes to the CTRL register must be followed by a NOOP */
	ad5504_spi_write(st->spi, AD5504_ADDR_NOOP, 0);

	return ret ? ret : len;
}
示例#11
0
static unsigned int st_sensors_spi_get_irq(struct iio_dev *indio_dev)
{
	struct st_sensor_data *sdata = iio_priv(indio_dev);

	return to_spi_device(sdata->dev)->irq;
}
示例#12
0
static int mlx90614_read_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *channel, int *val,
			    int *val2, long mask)
{
	struct mlx90614_data *data = iio_priv(indio_dev);
	u8 cmd;
	s32 ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW: /* 0.02K / LSB */
		switch (channel->channel2) {
		case IIO_MOD_TEMP_AMBIENT:
			cmd = MLX90614_TA;
			break;
		case IIO_MOD_TEMP_OBJECT:
			switch (channel->channel) {
			case 0:
				cmd = MLX90614_TOBJ1;
				break;
			case 1:
				cmd = MLX90614_TOBJ2;
				break;
			default:
				return -EINVAL;
			}
			break;
		default:
			return -EINVAL;
		}

		ret = mlx90614_power_get(data, true);
		if (ret < 0)
			return ret;
		ret = i2c_smbus_read_word_data(data->client, cmd);
		mlx90614_power_put(data);

		if (ret < 0)
			return ret;

		/* MSB is an error flag */
		if (ret & 0x8000)
			return -EIO;

		*val = ret;
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_OFFSET:
		*val = MLX90614_CONST_OFFSET_DEC;
		*val2 = MLX90614_CONST_OFFSET_REM;
		return IIO_VAL_INT_PLUS_MICRO;
	case IIO_CHAN_INFO_SCALE:
		*val = MLX90614_CONST_SCALE;
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_CALIBEMISSIVITY: /* 1/65535 / LSB */
		mlx90614_power_get(data, false);
		mutex_lock(&data->lock);
		ret = i2c_smbus_read_word_data(data->client,
					       MLX90614_EMISSIVITY);
		mutex_unlock(&data->lock);
		mlx90614_power_put(data);

		if (ret < 0)
			return ret;

		if (ret == MLX90614_CONST_RAW_EMISSIVITY_MAX) {
			*val = 1;
			*val2 = 0;
		} else {
			*val = 0;
			*val2 = ret * MLX90614_CONST_EMISSIVITY_RESOLUTION;
		}
		return IIO_VAL_INT_PLUS_NANO;
	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: /* IIR setting with
							     FIR = 1024 */
		mlx90614_power_get(data, false);
		mutex_lock(&data->lock);
		ret = i2c_smbus_read_word_data(data->client, MLX90614_CONFIG);
		mutex_unlock(&data->lock);
		mlx90614_power_put(data);

		if (ret < 0)
			return ret;

		*val = mlx90614_iir_values[ret & MLX90614_CONFIG_IIR_MASK] / 100;
		*val2 = (mlx90614_iir_values[ret & MLX90614_CONFIG_IIR_MASK] % 100) *
			10000;
		return IIO_VAL_INT_PLUS_MICRO;
	default:
		return -EINVAL;
	}
}
示例#13
0
文件: isl29018.c 项目: 020gzh/linux
static int isl29018_read_raw(struct iio_dev *indio_dev,
			     struct iio_chan_spec const *chan,
			     int *val,
			     int *val2,
			     long mask)
{
	int ret = -EINVAL;
	struct isl29018_chip *chip = iio_priv(indio_dev);

	mutex_lock(&chip->lock);
	if (chip->suspended) {
		mutex_unlock(&chip->lock);
		return -EBUSY;
	}
	switch (mask) {
	case IIO_CHAN_INFO_RAW:
	case IIO_CHAN_INFO_PROCESSED:
		switch (chan->type) {
		case IIO_LIGHT:
			ret = isl29018_read_lux(chip, val);
			break;
		case IIO_INTENSITY:
			ret = isl29018_read_ir(chip, val);
			break;
		case IIO_PROXIMITY:
			ret = isl29018_read_proximity_ir(chip,
							 chip->prox_scheme,
							 val);
			break;
		default:
			break;
		}
		if (!ret)
			ret = IIO_VAL_INT;
		break;
	case IIO_CHAN_INFO_INT_TIME:
		if (chan->type == IIO_LIGHT) {
			*val = 0;
			*val2 = isl29018_int_utimes[chip->type][chip->int_time];
			ret = IIO_VAL_INT_PLUS_MICRO;
		}
		break;
	case IIO_CHAN_INFO_SCALE:
		if (chan->type == IIO_LIGHT) {
			*val = chip->scale.scale;
			*val2 = chip->scale.uscale;
			ret = IIO_VAL_INT_PLUS_MICRO;
		}
		break;
	case IIO_CHAN_INFO_CALIBSCALE:
		if (chan->type == IIO_LIGHT) {
			*val = chip->calibscale;
			*val2 = chip->ucalibscale;
			ret = IIO_VAL_INT_PLUS_MICRO;
		}
		break;
	default:
		break;
	}
	mutex_unlock(&chip->lock);
	return ret;
}
示例#14
0
static int ad7152_read_raw(struct iio_dev *indio_dev,
			   struct iio_chan_spec const *chan,
			   int *val, int *val2,
			   long mask)
{
	struct ad7152_chip_info *chip = iio_priv(indio_dev);
	int ret;
	u8 regval = 0;

	mutex_lock(&indio_dev->mlock);

	switch (mask) {
	case 0:
		/* First set whether in differential mode */

		regval = chip->setup[chan->channel];

		if (chan->differential)
			chip->setup[chan->channel] |= AD7152_SETUP_CAPDIFF;
		else
			chip->setup[chan->channel] &= ~AD7152_SETUP_CAPDIFF;

		if (regval != chip->setup[chan->channel]) {
			ret = i2c_smbus_write_byte_data(chip->client,
				ad7152_addresses[chan->channel][AD7152_SETUP],
				chip->setup[chan->channel]);
			if (ret < 0)
				goto out;
		}
		/* Make sure the channel is enabled */
		if (chan->channel == 0)
			regval = AD7152_CONF_CH1EN;
		else
			regval = AD7152_CONF_CH2EN;

		/* Trigger a single read */
		regval |= AD7152_CONF_MODE_SINGLE_CONV;
		ret = i2c_smbus_write_byte_data(chip->client, AD7152_REG_CFG,
				regval);
		if (ret < 0)
			goto out;

		msleep(ad7152_filter_rate_table[chip->filter_rate_setup][1]);
		/* Now read the actual register */
		ret = i2c_smbus_read_word_data(chip->client,
				ad7152_addresses[chan->channel][AD7152_DATA]);
		if (ret < 0)
			goto out;
		*val = swab16(ret);

		if (chan->differential)
			*val -= 0x8000;

		ret = IIO_VAL_INT;
		break;
	case IIO_CHAN_INFO_CALIBSCALE:

		ret = i2c_smbus_read_word_data(chip->client,
				ad7152_addresses[chan->channel][AD7152_GAIN]);
		if (ret < 0)
			goto out;
		/* 1 + gain_val / 2^16 */
		*val = 1;
		*val2 = (15625 * swab16(ret)) / 1024;

		ret = IIO_VAL_INT_PLUS_MICRO;
		break;
	case IIO_CHAN_INFO_CALIBBIAS:
		ret = i2c_smbus_read_word_data(chip->client,
				ad7152_addresses[chan->channel][AD7152_OFFS]);
		if (ret < 0)
			goto out;
		*val = swab16(ret);

		ret = IIO_VAL_INT;
		break;
	case IIO_CHAN_INFO_SCALE:
		ret = i2c_smbus_read_byte_data(chip->client,
				ad7152_addresses[chan->channel][AD7152_SETUP]);
		if (ret < 0)
			goto out;
		*val = 0;
		*val2 = ad7152_scale_table[ret >> 6];

		ret = IIO_VAL_INT_PLUS_NANO;
		break;
	default:
		ret = -EINVAL;
	};
out:
	mutex_unlock(&indio_dev->mlock);
	return ret;
}
示例#15
0
int hmc5843_common_suspend(struct device *dev)
{
	return hmc5843_set_mode(iio_priv(dev_get_drvdata(dev)),
				HMC5843_MODE_SLEEP);
}
示例#16
0
文件: ad5446.c 项目: 03199618/linux
	return st->pwr_down_mode - 1;
}

static const struct iio_enum ad5446_powerdown_mode_enum = {
	.items = ad5446_powerdown_modes,
	.num_items = ARRAY_SIZE(ad5446_powerdown_modes),
	.get = ad5446_get_powerdown_mode,
	.set = ad5446_set_powerdown_mode,
};

static ssize_t ad5446_read_dac_powerdown(struct iio_dev *indio_dev,
					   uintptr_t private,
					   const struct iio_chan_spec *chan,
					   char *buf)
{
	struct ad5446_state *st = iio_priv(indio_dev);

	return sprintf(buf, "%d\n", st->pwr_down);
}

static ssize_t ad5446_write_dac_powerdown(struct iio_dev *indio_dev,
					    uintptr_t private,
					    const struct iio_chan_spec *chan,
					    const char *buf, size_t len)
{
	struct ad5446_state *st = iio_priv(indio_dev);
	unsigned int shift;
	unsigned int val;
	bool powerdown;
	int ret;
示例#17
0
int hmc5843_common_resume(struct device *dev)
{
	return hmc5843_set_mode(iio_priv(dev_get_drvdata(dev)),
		HMC5843_MODE_CONVERSION_CONTINUOUS);
}
示例#18
0
文件: spear_adc.c 项目: 7799/linux
static int spear_adc_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	struct spear_adc_info *info;
	struct iio_dev *iodev = NULL;
	int ret = -ENODEV;
	int irq;

	iodev = devm_iio_device_alloc(dev, sizeof(struct spear_adc_info));
	if (!iodev) {
		dev_err(dev, "failed allocating iio device\n");
		return -ENOMEM;
	}

	info = iio_priv(iodev);
	info->np = np;

	/*
	 * SPEAr600 has a different register layout than other SPEAr SoC's
	 * (e.g. SPEAr3xx). Let's provide two register base addresses
	 * to support multi-arch kernels.
	 */
	info->adc_base_spear6xx = of_iomap(np, 0);
	if (!info->adc_base_spear6xx) {
		dev_err(dev, "failed mapping memory\n");
		return -ENOMEM;
	}
	info->adc_base_spear3xx =
		(struct adc_regs_spear3xx __iomem *)info->adc_base_spear6xx;

	info->clk = clk_get(dev, NULL);
	if (IS_ERR(info->clk)) {
		dev_err(dev, "failed getting clock\n");
		goto errout1;
	}

	ret = clk_prepare_enable(info->clk);
	if (ret) {
		dev_err(dev, "failed enabling clock\n");
		goto errout2;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq <= 0) {
		dev_err(dev, "failed getting interrupt resource\n");
		ret = -EINVAL;
		goto errout3;
	}

	ret = devm_request_irq(dev, irq, spear_adc_isr, 0, MOD_NAME, info);
	if (ret < 0) {
		dev_err(dev, "failed requesting interrupt\n");
		goto errout3;
	}

	if (of_property_read_u32(np, "sampling-frequency",
				 &info->sampling_freq)) {
		dev_err(dev, "sampling-frequency missing in DT\n");
		ret = -EINVAL;
		goto errout3;
	}

	/*
	 * Optional avg_samples defaults to 0, resulting in single data
	 * conversion
	 */
	of_property_read_u32(np, "average-samples", &info->avg_samples);

	/*
	 * Optional vref_external defaults to 0, resulting in internal vref
	 * selection
	 */
	of_property_read_u32(np, "vref-external", &info->vref_external);

	spear_adc_configure(info);

	platform_set_drvdata(pdev, iodev);

	init_completion(&info->completion);

	iodev->name = MOD_NAME;
	iodev->dev.parent = dev;
	iodev->info = &spear_adc_iio_info;
	iodev->modes = INDIO_DIRECT_MODE;
	iodev->channels = spear_adc_iio_channels;
	iodev->num_channels = ARRAY_SIZE(spear_adc_iio_channels);

	ret = iio_device_register(iodev);
	if (ret)
		goto errout3;

	dev_info(dev, "SPEAR ADC driver loaded, IRQ %d\n", irq);

	return 0;

errout3:
	clk_disable_unprepare(info->clk);
errout2:
	clk_put(info->clk);
errout1:
	iounmap(info->adc_base_spear6xx);
	return ret;
}
示例#19
0
static int max1363_read_single_chan(struct iio_dev *indio_dev,
				    struct iio_chan_spec const *chan,
				    int *val,
				    long m)
{
	int ret = 0;
	s32 data;
	char rxbuf[2];
	long mask;
	struct max1363_state *st = iio_priv(indio_dev);
	struct i2c_client *client = st->client;

	mutex_lock(&indio_dev->mlock);
	/*
	 * If monitor mode is enabled, the method for reading a single
	 * channel will have to be rather different and has not yet
	 * been implemented.
	 */
	if (st->monitor_on) {
		ret = -EBUSY;
		goto error_ret;
	}

	/* If ring buffer capture is occurring, query the buffer */
	if (iio_ring_enabled(indio_dev)) {
		mask = max1363_mode_table[chan->address].modemask;
		data = max1363_single_channel_from_ring(mask, st);
		if (data < 0) {
			ret = data;
			goto error_ret;
		}
	} else {
		/* Check to see if current scan mode is correct */
		if (st->current_mode != &max1363_mode_table[chan->address]) {
			/* Update scan mode if needed */
			st->current_mode = &max1363_mode_table[chan->address];
			ret = max1363_set_scan_mode(st);
			if (ret < 0)
				goto error_ret;
		}
		if (st->chip_info->bits != 8) {
			/* Get reading */
			data = i2c_master_recv(client, rxbuf, 2);
			if (data < 0) {
				ret = data;
				goto error_ret;
			}
			data = (s32)(rxbuf[1]) | ((s32)(rxbuf[0] & 0x0F)) << 8;
		} else {
			/* Get reading */
			data = i2c_master_recv(client, rxbuf, 1);
			if (data < 0) {
				ret = data;
				goto error_ret;
			}
			data = rxbuf[0];
		}
	}
	*val = data;
error_ret:
	mutex_unlock(&indio_dev->mlock);
	return ret;

}
	iio_push_to_buffers(idev, (u8 *)st->buffer);

	iio_trigger_notify_done(idev->trig);

	/* Needed to ACK the DRDY interruption */
	at91_adc_readl(st, AT91_ADC_LCDR);

	enable_irq(st->irq);

	return IRQ_HANDLED;
}

static irqreturn_t at91_adc_eoc_trigger(int irq, void *private)
{
	struct iio_dev *idev = private;
	struct at91_adc_state *st = iio_priv(idev);
	u32 status = at91_adc_readl(st, st->registers->status_register);

	if (!(status & st->registers->drdy_mask))
		return IRQ_HANDLED;

	if (iio_buffer_enabled(idev)) {
		disable_irq_nosync(irq);
		iio_trigger_poll(idev->trig, iio_get_time_ns());
	} else {
		st->last_value = at91_adc_readl(st, AT91_ADC_LCDR);
		st->done = true;
		wake_up_interruptible(&st->wq_data_avail);
	}

	return IRQ_HANDLED;
 * combine_8_to_16() utility function to munge to u8s into u16
 **/
static inline u16 combine_8_to_16(u8 lower, u8 upper)
{
	u16 _lower = lower;
	u16 _upper = upper;
	return _lower | (_upper << 8);
}

/**
 * lis3l02dq_data_rdy_trig_poll() the event handler for the data rdy trig
 **/
irqreturn_t lis3l02dq_data_rdy_trig_poll(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct lis3l02dq_state *st = iio_priv(indio_dev);

	if (st->trigger_on) {
		iio_trigger_poll(st->trig, iio_get_time_ns());
		return IRQ_HANDLED;
	} else
		return IRQ_WAKE_THREAD;
}

static const u8 read_all_tx_array[] = {
	LIS3L02DQ_READ_REG(LIS3L02DQ_REG_OUT_X_L_ADDR), 0,
	LIS3L02DQ_READ_REG(LIS3L02DQ_REG_OUT_X_H_ADDR), 0,
	LIS3L02DQ_READ_REG(LIS3L02DQ_REG_OUT_Y_L_ADDR), 0,
	LIS3L02DQ_READ_REG(LIS3L02DQ_REG_OUT_Y_H_ADDR), 0,
	LIS3L02DQ_READ_REG(LIS3L02DQ_REG_OUT_Z_L_ADDR), 0,
	LIS3L02DQ_READ_REG(LIS3L02DQ_REG_OUT_Z_H_ADDR), 0,
示例#22
0
int st_accel_common_probe(struct iio_dev *indio_dev)
{
	struct st_sensor_data *adata = iio_priv(indio_dev);
	int irq = adata->get_irq_data_ready(indio_dev);
	int err;

	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &accel_info;
	mutex_init(&adata->tb.buf_lock);

	err = st_sensors_power_enable(indio_dev);
	if (err)
		return err;

	err = st_sensors_check_device_support(indio_dev,
					ARRAY_SIZE(st_accel_sensors_settings),
					st_accel_sensors_settings);
	if (err < 0)
		goto st_accel_power_off;

	adata->num_data_channels = ST_ACCEL_NUMBER_DATA_CHANNELS;
	adata->multiread_bit = adata->sensor_settings->multi_read_bit;
	indio_dev->channels = adata->sensor_settings->ch;
	indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS;

	adata->current_fullscale = (struct st_sensor_fullscale_avl *)
					&adata->sensor_settings->fs.fs_avl[0];
	adata->odr = adata->sensor_settings->odr.odr_avl[0].hz;

	if (!adata->dev->platform_data)
		adata->dev->platform_data =
			(struct st_sensors_platform_data *)&default_accel_pdata;

	err = st_sensors_init_sensor(indio_dev, adata->dev->platform_data);
	if (err < 0)
		goto st_accel_power_off;

	err = st_accel_allocate_ring(indio_dev);
	if (err < 0)
		goto st_accel_power_off;

	if (irq > 0) {
		err = st_sensors_allocate_trigger(indio_dev,
						 ST_ACCEL_TRIGGER_OPS);
		if (err < 0)
			goto st_accel_probe_trigger_error;
	}

	err = iio_device_register(indio_dev);
	if (err)
		goto st_accel_device_register_error;

	dev_info(&indio_dev->dev, "registered accelerometer %s\n",
		 indio_dev->name);

	return 0;

st_accel_device_register_error:
	if (irq > 0)
		st_sensors_deallocate_trigger(indio_dev);
st_accel_probe_trigger_error:
	st_accel_deallocate_ring(indio_dev);
st_accel_power_off:
	st_sensors_power_disable(indio_dev);

	return err;
}
示例#23
0
文件: nau7802.c 项目: AK101111/linux
{
	int ret;

	ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
	if (ret < 0)
		return ret;
	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
				ret | NAU7802_PUCTRL_CS_BIT);

	return ret;
}

static irqreturn_t nau7802_eoc_trigger(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct nau7802_state *st = iio_priv(indio_dev);
	int status;

	status = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
	if (status < 0)
		return IRQ_HANDLED;

	if (!(status & NAU7802_PUCTRL_CR_BIT))
		return IRQ_NONE;

	if (nau7802_read_conversion(st) < 0)
		return IRQ_HANDLED;

	/*
	 * Because there is actually only one ADC for both channels, we have to
	 * wait for enough conversions to happen before getting a significant
示例#24
0
文件: exynos_adc.c 项目: avagin/linux
static int exynos_adc_probe(struct platform_device *pdev)
{
	struct exynos_adc *info = NULL;
	struct device_node *np = pdev->dev.of_node;
	struct s3c2410_ts_mach_info *pdata = dev_get_platdata(&pdev->dev);
	struct iio_dev *indio_dev = NULL;
	struct resource	*mem;
	bool has_ts = false;
	int ret = -ENODEV;
	int irq;

	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct exynos_adc));
	if (!indio_dev) {
		dev_err(&pdev->dev, "failed allocating iio device\n");
		return -ENOMEM;
	}

	info = iio_priv(indio_dev);

	info->data = exynos_adc_get_data(pdev);
	if (!info->data) {
		dev_err(&pdev->dev, "failed getting exynos_adc_data\n");
		return -EINVAL;
	}

	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	info->regs = devm_ioremap_resource(&pdev->dev, mem);
	if (IS_ERR(info->regs))
		return PTR_ERR(info->regs);


	if (info->data->needs_adc_phy) {
		info->pmu_map = syscon_regmap_lookup_by_phandle(
					pdev->dev.of_node,
					"samsung,syscon-phandle");
		if (IS_ERR(info->pmu_map)) {
			dev_err(&pdev->dev, "syscon regmap lookup failed.\n");
			return PTR_ERR(info->pmu_map);
		}
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "no irq resource?\n");
		return irq;
	}
	info->irq = irq;

	irq = platform_get_irq(pdev, 1);
	if (irq == -EPROBE_DEFER)
		return irq;

	info->tsirq = irq;

	info->dev = &pdev->dev;

	init_completion(&info->completion);

	info->clk = devm_clk_get(&pdev->dev, "adc");
	if (IS_ERR(info->clk)) {
		dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
							PTR_ERR(info->clk));
		return PTR_ERR(info->clk);
	}

	if (info->data->needs_sclk) {
		info->sclk = devm_clk_get(&pdev->dev, "sclk");
		if (IS_ERR(info->sclk)) {
			dev_err(&pdev->dev,
				"failed getting sclk clock, err = %ld\n",
				PTR_ERR(info->sclk));
			return PTR_ERR(info->sclk);
		}
	}

	info->vdd = devm_regulator_get(&pdev->dev, "vdd");
	if (IS_ERR(info->vdd)) {
		dev_err(&pdev->dev, "failed getting regulator, err = %ld\n",
							PTR_ERR(info->vdd));
		return PTR_ERR(info->vdd);
	}

	ret = regulator_enable(info->vdd);
	if (ret)
		return ret;

	ret = exynos_adc_prepare_clk(info);
	if (ret)
		goto err_disable_reg;

	ret = exynos_adc_enable_clk(info);
	if (ret)
		goto err_unprepare_clk;

	platform_set_drvdata(pdev, indio_dev);

	indio_dev->name = dev_name(&pdev->dev);
	indio_dev->dev.parent = &pdev->dev;
	indio_dev->dev.of_node = pdev->dev.of_node;
	indio_dev->info = &exynos_adc_iio_info;
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->channels = exynos_adc_iio_channels;
	indio_dev->num_channels = info->data->num_channels;

	ret = request_irq(info->irq, exynos_adc_isr,
					0, dev_name(&pdev->dev), info);
	if (ret < 0) {
		dev_err(&pdev->dev, "failed requesting irq, irq = %d\n",
							info->irq);
		goto err_disable_clk;
	}

	ret = iio_device_register(indio_dev);
	if (ret)
		goto err_irq;

	if (info->data->init_hw)
		info->data->init_hw(info);

	/* leave out any TS related code if unreachable */
	if (IS_REACHABLE(CONFIG_INPUT)) {
		has_ts = of_property_read_bool(pdev->dev.of_node,
					       "has-touchscreen") || pdata;
	}

	if (pdata)
		info->delay = pdata->delay;
	else
		info->delay = 10000;

	if (has_ts)
		ret = exynos_adc_ts_init(info);
	if (ret)
		goto err_iio;

	ret = of_platform_populate(np, exynos_adc_match, NULL, &indio_dev->dev);
	if (ret < 0) {
		dev_err(&pdev->dev, "failed adding child nodes\n");
		goto err_of_populate;
	}

	return 0;

err_of_populate:
	device_for_each_child(&indio_dev->dev, NULL,
				exynos_adc_remove_devices);
	if (has_ts) {
		input_unregister_device(info->input);
		free_irq(info->tsirq, info);
	}
err_iio:
	iio_device_unregister(indio_dev);
err_irq:
	free_irq(info->irq, info);
err_disable_clk:
	if (info->data->exit_hw)
		info->data->exit_hw(info);
	exynos_adc_disable_clk(info);
err_unprepare_clk:
	exynos_adc_unprepare_clk(info);
err_disable_reg:
	regulator_disable(info->vdd);
	return ret;
}
示例#25
0
/**
 *  inv_mpu_probe() - probe function.
 *  @client:          i2c client.
 *  @id:              i2c device id.
 *
 *  Returns 0 on success, a negative error code otherwise.
 */
static int inv_mpu_probe(struct i2c_client *client,
                         const struct i2c_device_id *id)
{
    struct inv_mpu6050_state *st;
    int result, chip_type;
    struct regmap *regmap;
    const char *name;

    if (!i2c_check_functionality(client->adapter,
                                 I2C_FUNC_SMBUS_I2C_BLOCK))
        return -EOPNOTSUPP;

    if (id) {
        chip_type = (int)id->driver_data;
        name = id->name;
    } else if (ACPI_HANDLE(&client->dev)) {
        name = inv_mpu_match_acpi_device(&client->dev, &chip_type);
        if (!name)
            return -ENODEV;
    } else {
        return -ENOSYS;
    }

    regmap = devm_regmap_init_i2c(client, &inv_mpu_regmap_config);
    if (IS_ERR(regmap)) {
        dev_err(&client->dev, "Failed to register i2c regmap %d\n",
                (int)PTR_ERR(regmap));
        return PTR_ERR(regmap);
    }

    result = inv_mpu_core_probe(regmap, client->irq, name,
                                NULL, chip_type);
    if (result < 0)
        return result;

    st = iio_priv(dev_get_drvdata(&client->dev));
    st->muxc = i2c_mux_alloc(client->adapter, &client->dev,
                             1, 0, I2C_MUX_LOCKED | I2C_MUX_GATE,
                             inv_mpu6050_select_bypass,
                             inv_mpu6050_deselect_bypass);
    if (!st->muxc) {
        result = -ENOMEM;
        goto out_unreg_device;
    }
    st->muxc->priv = dev_get_drvdata(&client->dev);
    result = i2c_mux_add_adapter(st->muxc, 0, 0, 0);
    if (result)
        goto out_unreg_device;

    result = inv_mpu_acpi_create_mux_client(client);
    if (result)
        goto out_del_mux;

    return 0;

out_del_mux:
    i2c_mux_del_adapters(st->muxc);
out_unreg_device:
    inv_mpu_core_remove(&client->dev);
    return result;
}
static int yas_data_rdy_trig_poll(struct iio_dev *indio_dev)
{
	struct yas_state *st = iio_priv(indio_dev);
	iio_trigger_poll(st->trig, iio_get_time_ns());
	return 0;
}
示例#27
0
static int adis16209_read_raw(struct iio_dev *indio_dev,
			      struct iio_chan_spec const *chan,
			      int *val, int *val2,
			      long mask)
{
	struct adis *st = iio_priv(indio_dev);
	int ret;
	int bits;
	u8 addr;
	s16 val16;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		return adis_single_conversion(indio_dev, chan,
			ADIS16209_ERROR_ACTIVE, val);
	case IIO_CHAN_INFO_SCALE:
		switch (chan->type) {
		case IIO_VOLTAGE:
			*val = 0;
			switch (chan->channel) {
			case 0:
				*val2 = 305180; /* 0.30518 mV */
				break;
			case 1:
				*val2 = 610500; /* 0.6105 mV */
				break;
			default:
				return -EINVAL;
			}
			return IIO_VAL_INT_PLUS_MICRO;
		case IIO_TEMP:
			*val = -470;
			*val2 = 0;
			return IIO_VAL_INT_PLUS_MICRO;
		case IIO_ACCEL:
			/*
			 * IIO base unit for sensitivity of accelerometer
			 * is milli g.
			 * 1 LSB represents 0.244 mg.
			 */
			*val = 0;
			*val2 = IIO_G_TO_M_S_2(244140);
			return IIO_VAL_INT_PLUS_NANO;
		case IIO_INCLI:
		case IIO_ROT:
			/*
			 * IIO base units for rotation are degrees.
			 * 1 LSB represents 0.025 milli degrees.
			 */
			*val = 0;
			*val2 = 25000;
			return IIO_VAL_INT_PLUS_MICRO;
		default:
			return -EINVAL;
		}
		break;
	case IIO_CHAN_INFO_OFFSET:
		/*
		 * The raw ADC value is 0x4FE when the temperature
		 * is 25 degrees and the scale factor per milli
		 * degree celcius is -470.
		 */
		*val = 25000 / -470 - 0x4FE;
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_CALIBBIAS:
		switch (chan->type) {
		case IIO_ACCEL:
			bits = 14;
			break;
		default:
			return -EINVAL;
		}
		addr = adis16209_addresses[chan->scan_index][0];
		ret = adis_read_reg_16(st, addr, &val16);
		if (ret)
			return ret;

		*val = sign_extend32(val16, bits - 1);
		return IIO_VAL_INT;
	}
	return -EINVAL;
}
static int yas_probe(struct i2c_client *i2c, const struct i2c_device_id *id)
{
	struct yas_state *st;
	struct iio_dev *indio_dev;
	struct yas53x_platform_data *pdata;
	int ret;

	D("%s", __func__);

	this_client = i2c;
	indio_dev = iio_allocate_device(sizeof(*st));
	if (!indio_dev) {
		ret = -ENOMEM;
		goto error_ret;
	}
	i2c_set_clientdata(i2c, indio_dev);

	indio_dev->name = YAS_MAG_NAME;
	indio_dev->dev.parent = &i2c->dev;
	indio_dev->info = &yas_info;
	indio_dev->channels = yas_channels;
	indio_dev->num_channels = ARRAY_SIZE(yas_channels);
	indio_dev->modes = INDIO_DIRECT_MODE;
	printk("YAMAHA id->name[%s]\n", id->name);

	st = iio_priv(indio_dev);
	st->client = i2c;
	st->sampling_frequency = 20;
	st->mag.callback.device_open = yas_device_open;
	st->mag.callback.device_close = yas_device_close;
	st->mag.callback.device_read = yas_device_read;
	st->mag.callback.device_write = yas_device_write;
	st->mag.callback.usleep = yas_usleep;
	st->mag.callback.current_time = yas_current_time;
	INIT_DELAYED_WORK(&st->work, yas_work_func);
	mutex_init(&st->lock);
#ifdef CONFIG_HAS_EARLYSUSPEND
	st->sus.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1;
	st->sus.suspend = yas_early_suspend;
	st->sus.resume = yas_late_resume;
	register_early_suspend(&st->sus);
#endif

	ret = yas_probe_buffer(indio_dev);
	if (ret)
		goto error_free_dev;
	ret = yas_probe_trigger(indio_dev);
	if (ret)
		goto error_remove_buffer;
	ret = iio_device_register(indio_dev);
	if (ret)
		goto error_remove_trigger;
	ret = yas_mag_driver_init(&st->mag);
	if (ret < 0) {
		ret = -EFAULT;
		goto error_unregister_iio;
	}
	ret = st->mag.init();
	if (ret < 0) {
		ret = -EFAULT;
		goto error_unregister_iio;
	}
	ret = st->mag.set_enable(1);
	if (ret < 0) {
		ret = -EFAULT;
		goto error_driver_term;
	}

	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
	if (pdata == NULL) {
		D("%s: memory allocation for pdata failed.", __func__);
	} else {
		yas53x_parse_dt(&i2c->dev , pdata);
	}
	mutex_lock(&st->lock);
	if (pdata->chip_layout<8 && pdata->chip_layout>=0) {
		ret = st->mag.set_position(pdata->chip_layout);
		D("%s: set position to %d\n", __func__, pdata->chip_layout);
	} else {
		ret = st->mag.set_position(5);
		D("%s: set default position: 5\n", __func__);
	}
	mutex_unlock(&st->lock);

	return 0;

error_driver_term:
	st->mag.term();
error_unregister_iio:
	iio_device_unregister(indio_dev);
error_remove_trigger:
	yas_remove_trigger(indio_dev);
error_remove_buffer:
	yas_remove_buffer(indio_dev);
error_free_dev:
#ifdef CONFIG_HAS_EARLYSUSPEND
	unregister_early_suspend(&st->sus);
#endif
	iio_free_device(indio_dev);
error_ret:
	i2c_set_clientdata(i2c, NULL);
	this_client = NULL;
	return ret;
}
示例#29
0
int st_press_common_probe(struct iio_dev *indio_dev)
{
	struct st_sensor_data *press_data = iio_priv(indio_dev);
	int irq = press_data->get_irq_data_ready(indio_dev);
	int err;

	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &press_info;
	mutex_init(&press_data->tb.buf_lock);

	err = st_sensors_power_enable(indio_dev);
	if (err)
		return err;

	err = st_sensors_check_device_support(indio_dev,
					ARRAY_SIZE(st_press_sensors_settings),
					st_press_sensors_settings);
	if (err < 0)
		goto st_press_power_off;

	/*
	 * Skip timestamping channel while declaring available channels to
	 * common st_sensor layer. Look at st_sensors_get_buffer_element() to
	 * see how timestamps are explicitly pushed as last samples block
	 * element.
	 */
	press_data->num_data_channels = press_data->sensor_settings->num_ch - 1;
	press_data->multiread_bit = press_data->sensor_settings->multi_read_bit;
	indio_dev->channels = press_data->sensor_settings->ch;
	indio_dev->num_channels = press_data->sensor_settings->num_ch;

	press_data->current_fullscale =
		(struct st_sensor_fullscale_avl *)
			&press_data->sensor_settings->fs.fs_avl[0];

	press_data->odr = press_data->sensor_settings->odr.odr_avl[0].hz;

	/* Some devices don't support a data ready pin. */
	if (!press_data->dev->platform_data &&
				press_data->sensor_settings->drdy_irq.addr)
		press_data->dev->platform_data =
			(struct st_sensors_platform_data *)&default_press_pdata;

	err = st_sensors_init_sensor(indio_dev, press_data->dev->platform_data);
	if (err < 0)
		goto st_press_power_off;

	err = st_press_allocate_ring(indio_dev);
	if (err < 0)
		goto st_press_power_off;

	if (irq > 0) {
		err = st_sensors_allocate_trigger(indio_dev,
						  ST_PRESS_TRIGGER_OPS);
		if (err < 0)
			goto st_press_probe_trigger_error;
	}

	err = iio_device_register(indio_dev);
	if (err)
		goto st_press_device_register_error;

	dev_info(&indio_dev->dev, "registered pressure sensor %s\n",
		 indio_dev->name);

	return err;

st_press_device_register_error:
	if (irq > 0)
		st_sensors_deallocate_trigger(indio_dev);
st_press_probe_trigger_error:
	st_press_deallocate_ring(indio_dev);
st_press_power_off:
	st_sensors_power_disable(indio_dev);

	return err;
}
示例#30
0
static int isl29018_chip_init(struct i2c_client *client)
{
	struct isl29018_chip *chip = iio_priv(i2c_get_clientdata(client));
	int status;
	int new_adc_bit;
	unsigned int new_range;

	memset(chip->reg_cache, 0, sizeof(chip->reg_cache));

	/* Code added per Intersil Application Note 1534:
	 *     When VDD sinks to approximately 1.8V or below, some of
	 * the part's registers may change their state. When VDD
	 * recovers to 2.25V (or greater), the part may thus be in an
	 * unknown mode of operation. The user can return the part to
	 * a known mode of operation either by (a) setting VDD = 0V for
	 * 1 second or more and then powering back up with a slew rate
	 * of 0.5V/ms or greater, or (b) via I2C disable all ALS/PROX
	 * conversions, clear the test registers, and then rewrite all
	 * registers to the desired values.
	 * ...
	 * FOR ISL29011, ISL29018, ISL29021, ISL29023
	 * 1. Write 0x00 to register 0x08 (TEST)
	 * 2. Write 0x00 to register 0x00 (CMD1)
	 * 3. Rewrite all registers to the desired values
	 *
	 * ISL29018 Data Sheet (FN6619.1, Feb 11, 2010) essentially says
	 * the same thing EXCEPT the data sheet asks for a 1ms delay after
	 * writing the CMD1 register.
	 */
	status = isl29018_write_data(client, ISL29018_REG_TEST, 0,
				ISL29018_TEST_MASK, ISL29018_TEST_SHIFT);
	if (status < 0) {
		dev_err(&client->dev, "Failed to clear isl29018 TEST reg."
					"(%d)\n", status);
		return status;
	}

	/* See Intersil AN1534 comments above.
	 * "Operating Mode" (COMMAND1) register is reprogrammed when
	 * data is read from the device.
	 */
	status = isl29018_write_data(client, ISL29018_REG_ADD_COMMAND1, 0,
				0xff, 0);
	if (status < 0) {
		dev_err(&client->dev, "Failed to clear isl29018 CMD1 reg."
					"(%d)\n", status);
		return status;
	}

	msleep(1);	/* per data sheet, page 10 */

	/* set defaults */
	status = isl29018_set_range(client, chip->range, &new_range);
	if (status < 0) {
		dev_err(&client->dev, "Init of isl29018 fails\n");
		return status;
	}

	status = isl29018_set_resolution(client, chip->adc_bit,
						&new_adc_bit);

	return 0;
}