void test_il_dupe(CuTest* tc) { int i, N=63; il* x = il_new(4), *y; for (i=0;i<N;i++) il_push(x,i); y = il_dupe(x); for (i=0;i<N;i++) CuAssertIntEquals(tc, i, il_get(y, i)); for (i=0;i<N;i++) il_pop(x); CuAssertIntEquals(tc, N, il_size(y)); CuAssertIntEquals(tc, il_check_consistency(x), 0); il_free(x); il_free(y); }
void test_il_insert_descending(CuTest* tc) { int i; il* x = il_new(4); il_insert_descending(x,2); il_insert_descending(x,4); il_insert_descending(x,8); il_insert_descending(x,5); il_insert_descending(x,6); il_insert_descending(x,7); il_insert_descending(x,1); il_insert_descending(x,3); il_insert_descending(x,0); CuAssertIntEquals(tc, il_check_consistency(x), 0); CuAssertIntEquals(tc, il_check_sorted_descending(x, 0), 0); for (i=0;i<il_size(x);i++) CuAssertIntEquals(tc, il_size(x)-i-1, il_get(x, i)); il_free(x); }
static int build_quads(hpquads_t* me, int Nhptotry, il* hptotry, int R) { int nthispass = 0; int lastgrass = 0; int i; for (i=0; i<Nhptotry; i++) { anbool ok; int hp; if ((i * 80 / Nhptotry) != lastgrass) { printf("."); fflush(stdout); lastgrass = i * 80 / Nhptotry; } if (hptotry) hp = il_get(hptotry, i); else hp = i; me->hp = hp; me->quad_created = FALSE; ok = find_stars(me, me->radius2, R); if (ok) create_quad(me, TRUE); if (me->quad_created) nthispass++; else { if (R && me->Nstars && me->retryhps) // there were some stars, and we're counting how many times stars are used. //il_insert_unique_ascending(me->retryhps, hp); // we don't mind hps showing up multiple times because we want to make up for the lost // passes during loosening... il_append(me->retryhps, hp); // FIXME -- could also track which hps are worth visiting in a future pass } } printf("\n"); return nthispass; }
static dimage_label_t relabel_image(il* on_pixels, int maxlabel, dimage_label_t* equivs, int* object) { int i; dimage_label_t maxcontiguouslabel = 0; dimage_label_t *number; number = malloc(sizeof(dimage_label_t) * maxlabel); assert(number); for (i = 0; i < maxlabel; i++) number[i] = LABEL_MAX; for (i=0; i<il_size(on_pixels); i++) { int onpix; int minlabel; onpix = il_get(on_pixels, i); minlabel = collapsing_find_minlabel(object[onpix], equivs); if (number[minlabel] == LABEL_MAX) number[minlabel] = maxcontiguouslabel++; object[onpix] = number[minlabel]; } free(number); return maxcontiguouslabel; }
int main(int argc, char** args) { char* filename = NULL; int npoints; int i, j; int* healpixes; int argchar; char* progname = args[0]; il** lists; anbool quiet = FALSE; rdlist* rdls; int Nside = 1; int N; while ((argchar = getopt (argc, args, OPTIONS)) != -1) switch (argchar) { case 'N': Nside = atoi(optarg); break; case 'f': filename = optarg; break; case 'h': printHelp(progname); exit(0); case 'q': quiet = TRUE; break; case '?': fprintf(stderr, "Unknown option `-%c'.\n", optopt); default: exit(-1); } if (!filename) { printHelp(progname); exit(-1); } fprintf(stderr, "Opening RDLS file %s...\n", filename); rdls = rdlist_open(filename); if (!rdls) { fprintf(stderr, "Failed to open RDLS file.\n"); exit(-1); } N = 12 * Nside * Nside; healpixes = malloc(N * sizeof(int)); lists = calloc(N, sizeof(il*)); /* for (i=0; i<N; i++) { lists[i] = il_new(256); } */ for (j=1; j<=rdls_n_fields(rdls); j++) { rd* points; points = rdlist_get_field(rdls, j); if (!points) { fprintf(stderr, "error reading field %i\n", j); break; } memset(healpixes, 0, N * sizeof(int)); npoints = rd_size(points); for (i=0; i<npoints; i++) { double ra, dec; int hp; ra = deg2rad(rd_refra (points, i)); dec = deg2rad(rd_refdec(points, i)); if (Nside > 1) hp = radectohealpix_nside(ra, dec, Nside); else hp = radectohealpix(ra, dec); if ((hp < 0) || (hp >= N)) { printf("hp=%i\n", hp); continue; } healpixes[hp] = 1; } if (!quiet) { printf("Field %i: healpixes ", j); for (i=0; i<N; i++) { if (healpixes[i]) printf("%i ", i); } printf("\n"); fflush(stdout); } for (i=0; i<N; i++) if (healpixes[i]) { if (!lists[i]) lists[i] = il_new(256); il_append(lists[i], j); } free_rd(points); } for (i=0; i<N; i++) { int N; if (!lists[i]) continue; printf("HP %i: ", i); N = il_size(lists[i]); for (j=0; j<N; j++) printf("%i ", il_get(lists[i], j)); il_free(lists[i]); printf("\n"); } free(lists); free(healpixes); rdlist_close(rdls); return 0; }
int main(int argc, char *argv[]) { int argchar; char* progname = argv[0]; sl* infns = sl_new(16); char* outfnpat = NULL; char* racol = "RA"; char* deccol = "DEC"; char* tempdir = "/tmp"; anbool gzip = FALSE; sl* cols = sl_new(16); int loglvl = LOG_MSG; int nside = 1; double margin = 0.0; int NHP; double md; char* backref = NULL; fitstable_t* intable; fitstable_t** outtables; char** myargs; int nmyargs; int i; while ((argchar = getopt (argc, argv, OPTIONS)) != -1) switch (argchar) { case 'b': backref = optarg; break; case 't': tempdir = optarg; break; case 'c': sl_append(cols, optarg); break; case 'g': gzip = TRUE; break; case 'o': outfnpat = optarg; break; case 'r': racol = optarg; break; case 'd': deccol = optarg; break; case 'n': nside = atoi(optarg); break; case 'm': margin = atof(optarg); break; case 'v': loglvl++; break; case '?': fprintf(stderr, "Unknown option `-%c'.\n", optopt); case 'h': printHelp(progname); return 0; default: return -1; } if (sl_size(cols) == 0) { sl_free2(cols); cols = NULL; } nmyargs = argc - optind; myargs = argv + optind; for (i=0; i<nmyargs; i++) sl_append(infns, myargs[i]); if (!sl_size(infns)) { printHelp(progname); printf("Need input filenames!\n"); exit(-1); } log_init(loglvl); fits_use_error_system(); NHP = 12 * nside * nside; logmsg("%i output healpixes\n", NHP); outtables = calloc(NHP, sizeof(fitstable_t*)); assert(outtables); md = deg2dist(margin); /** About the mincaps/maxcaps: These have a center and radius-squared, describing the region inside a small circle on the sphere. The "mincaps" describe the regions that are definitely owned by a single healpix -- ie, more than MARGIN distance from any edge. That is, the mincap is the small circle centered at (0.5, 0.5) in the healpix and with radius = the distance to the closest healpix boundary, MINUS the margin distance. Below, we first check whether a new star is within the "mincap" of any healpix. If so, we stick it in that healpix and continue. Otherwise, we check all the "maxcaps" -- these are the healpixes it could *possibly* be in. We then refine with healpix_within_range_of_xyz. The maxcap distance is the distance to the furthest boundary point, PLUS the margin distance. */ cap_t* mincaps = malloc(NHP * sizeof(cap_t)); cap_t* maxcaps = malloc(NHP * sizeof(cap_t)); for (i=0; i<NHP; i++) { // center double r2; double xyz[3]; double* cxyz; double step = 1e-3; double v; double r2b, r2a; cxyz = mincaps[i].xyz; healpix_to_xyzarr(i, nside, 0.5, 0.5, mincaps[i].xyz); memcpy(maxcaps[i].xyz, cxyz, 3 * sizeof(double)); logverb("Center of HP %i: (%.3f, %.3f, %.3f)\n", i, cxyz[0], cxyz[1], cxyz[2]); // radius-squared: // max is the easy one: max of the four corners (I assume) r2 = 0.0; healpix_to_xyzarr(i, nside, 0.0, 0.0, xyz); logverb(" HP %i corner 1: (%.3f, %.3f, %.3f), distsq %.3f\n", i, xyz[0], xyz[1], xyz[2], distsq(xyz, cxyz, 3)); r2 = MAX(r2, distsq(xyz, cxyz, 3)); healpix_to_xyzarr(i, nside, 1.0, 0.0, xyz); logverb(" HP %i corner 1: (%.3f, %.3f, %.3f), distsq %.3f\n", i, xyz[0], xyz[1], xyz[2], distsq(xyz, cxyz, 3)); r2 = MAX(r2, distsq(xyz, cxyz, 3)); healpix_to_xyzarr(i, nside, 0.0, 1.0, xyz); logverb(" HP %i corner 1: (%.3f, %.3f, %.3f), distsq %.3f\n", i, xyz[0], xyz[1], xyz[2], distsq(xyz, cxyz, 3)); r2 = MAX(r2, distsq(xyz, cxyz, 3)); healpix_to_xyzarr(i, nside, 1.0, 1.0, xyz); logverb(" HP %i corner 1: (%.3f, %.3f, %.3f), distsq %.3f\n", i, xyz[0], xyz[1], xyz[2], distsq(xyz, cxyz, 3)); r2 = MAX(r2, distsq(xyz, cxyz, 3)); logverb(" max distsq: %.3f\n", r2); logverb(" margin dist: %.3f\n", md); maxcaps[i].r2 = square(sqrt(r2) + md); logverb(" max cap distsq: %.3f\n", maxcaps[i].r2); r2a = r2; r2 = 1.0; r2b = 0.0; for (v=0; v<=1.0; v+=step) { healpix_to_xyzarr(i, nside, 0.0, v, xyz); r2 = MIN(r2, distsq(xyz, cxyz, 3)); r2b = MAX(r2b, distsq(xyz, cxyz, 3)); healpix_to_xyzarr(i, nside, 1.0, v, xyz); r2 = MIN(r2, distsq(xyz, cxyz, 3)); r2b = MAX(r2b, distsq(xyz, cxyz, 3)); healpix_to_xyzarr(i, nside, v, 0.0, xyz); r2 = MIN(r2, distsq(xyz, cxyz, 3)); r2b = MAX(r2b, distsq(xyz, cxyz, 3)); healpix_to_xyzarr(i, nside, v, 1.0, xyz); r2 = MIN(r2, distsq(xyz, cxyz, 3)); r2b = MAX(r2b, distsq(xyz, cxyz, 3)); } mincaps[i].r2 = square(MAX(0, sqrt(r2) - md)); logverb("\nhealpix %i: min rad %g\n", i, sqrt(r2)); logverb("healpix %i: max rad %g\n", i, sqrt(r2a)); logverb("healpix %i: max rad(b) %g\n", i, sqrt(r2b)); assert(r2a >= r2b); } if (backref) { fitstable_t* tab = fitstable_open_for_writing(backref); int maxlen = 0; char* buf; for (i=0; i<sl_size(infns); i++) { char* infn = sl_get(infns, i); maxlen = MAX(maxlen, strlen(infn)); } fitstable_add_write_column_array(tab, fitscolumn_char_type(), maxlen, "filename", NULL); fitstable_add_write_column(tab, fitscolumn_i16_type(), "index", NULL); if (fitstable_write_primary_header(tab) || fitstable_write_header(tab)) { ERROR("Failed to write header of backref table \"%s\"", backref); exit(-1); } buf = malloc(maxlen+1); assert(buf); for (i=0; i<sl_size(infns); i++) { char* infn = sl_get(infns, i); int16_t ind; memset(buf, 0, maxlen); strcpy(buf, infn); ind = i; if (fitstable_write_row(tab, buf, &ind)) { ERROR("Failed to write row %i of backref table: %s = %i", i, buf, ind); exit(-1); } } if (fitstable_fix_header(tab) || fitstable_close(tab)) { ERROR("Failed to fix header & close backref table"); exit(-1); } logmsg("Wrote backref table %s\n", backref); free(buf); } for (i=0; i<sl_size(infns); i++) { char* infn = sl_get(infns, i); char* originfn = infn; int r, NR; tfits_type any, dubl; il* hps = NULL; bread_t* rowbuf; int R; char* tempfn = NULL; char* padrowdata = NULL; int ii; logmsg("Reading input \"%s\"...\n", infn); if (gzip) { char* cmd; int rtn; tempfn = create_temp_file("hpsplit", tempdir); asprintf_safe(&cmd, "gunzip -cd %s > %s", infn, tempfn); logmsg("Running: \"%s\"\n", cmd); rtn = run_command_get_outputs(cmd, NULL, NULL); if (rtn) { ERROR("Failed to run command: \"%s\"", cmd); exit(-1); } free(cmd); infn = tempfn; } intable = fitstable_open(infn); if (!intable) { ERROR("Couldn't read catalog %s", infn); exit(-1); } NR = fitstable_nrows(intable); logmsg("Got %i rows\n", NR); any = fitscolumn_any_type(); dubl = fitscolumn_double_type(); fitstable_add_read_column_struct(intable, dubl, 1, 0, any, racol, TRUE); fitstable_add_read_column_struct(intable, dubl, 1, sizeof(double), any, deccol, TRUE); fitstable_use_buffered_reading(intable, 2*sizeof(double), 1000); R = fitstable_row_size(intable); rowbuf = buffered_read_new(R, 1000, NR, refill_rowbuffer, intable); if (fitstable_read_extension(intable, 1)) { ERROR("Failed to find RA and DEC columns (called \"%s\" and \"%s\" in the FITS file)", racol, deccol); exit(-1); } for (r=0; r<NR; r++) { int hp = -1; double ra, dec; int j; double* rd; void* rowdata; void* rdata; if (r && ((r % 100000) == 0)) { logmsg("Reading row %i of %i\n", r, NR); } //printf("reading RA,Dec for row %i\n", r); rd = fitstable_next_struct(intable); ra = rd[0]; dec = rd[1]; logverb("row %i: ra,dec %g,%g\n", r, ra, dec); if (margin == 0) { hp = radecdegtohealpix(ra, dec, nside); logverb(" --> healpix %i\n", hp); } else { double xyz[3]; anbool gotit = FALSE; double d2; if (!hps) hps = il_new(4); radecdeg2xyzarr(ra, dec, xyz); for (j=0; j<NHP; j++) { d2 = distsq(xyz, mincaps[j].xyz, 3); if (d2 <= mincaps[j].r2) { logverb(" -> in mincap %i (dist %g vs %g)\n", j, sqrt(d2), sqrt(mincaps[j].r2)); il_append(hps, j); gotit = TRUE; break; } } if (!gotit) { for (j=0; j<NHP; j++) { d2 = distsq(xyz, maxcaps[j].xyz, 3); if (d2 <= maxcaps[j].r2) { logverb(" -> in maxcap %i (dist %g vs %g)\n", j, sqrt(d2), sqrt(maxcaps[j].r2)); if (healpix_within_range_of_xyz(j, nside, xyz, margin)) { logverb(" -> and within range.\n"); il_append(hps, j); } } } } //hps = healpix_rangesearch_radec(ra, dec, margin, nside, hps); logverb(" --> healpixes: ["); for (j=0; j<il_size(hps); j++) logverb(" %i", il_get(hps, j)); logverb(" ]\n"); } //printf("Reading rowdata for row %i\n", r); rowdata = buffered_read(rowbuf); assert(rowdata); j=0; while (1) { if (hps) { if (j >= il_size(hps)) break; hp = il_get(hps, j); j++; } assert(hp < NHP); assert(hp >= 0); if (!outtables[hp]) { char* outfn; fitstable_t* out; // MEMLEAK the output filename. You'll live. asprintf_safe(&outfn, outfnpat, hp); logmsg("Opening output file \"%s\"...\n", outfn); out = fitstable_open_for_writing(outfn); if (!out) { ERROR("Failed to open output table \"%s\"", outfn); exit(-1); } // Set the output table structure. if (cols) { fitstable_add_fits_columns_as_struct3(intable, out, cols, 0); } else fitstable_add_fits_columns_as_struct2(intable, out); if (backref) { tfits_type i16type; tfits_type i32type; // R = fitstable_row_size(intable); int off = R; i16type = fitscolumn_i16_type(); i32type = fitscolumn_i32_type(); fitstable_add_read_column_struct(out, i16type, 1, off, i16type, "backref_file", TRUE); off += sizeof(int16_t); fitstable_add_read_column_struct(out, i32type, 1, off, i32type, "backref_index", TRUE); } //printf("Output table:\n"); //fitstable_print_columns(out); if (fitstable_write_primary_header(out) || fitstable_write_header(out)) { ERROR("Failed to write output file headers for \"%s\"", outfn); exit(-1); } outtables[hp] = out; } if (backref) { int16_t brfile; int32_t brind; if (!padrowdata) { padrowdata = malloc(R + sizeof(int16_t) + sizeof(int32_t)); assert(padrowdata); } // convert to FITS endian brfile = htons(i); brind = htonl(r); // add backref data to rowdata memcpy(padrowdata, rowdata, R); memcpy(padrowdata + R, &brfile, sizeof(int16_t)); memcpy(padrowdata + R + sizeof(int16_t), &brind, sizeof(int32_t)); rdata = padrowdata; } else { rdata = rowdata; } if (cols) { if (fitstable_write_struct_noflip(outtables[hp], rdata)) { ERROR("Failed to copy a row of data from input table \"%s\" to output healpix %i", infn, hp); } } else { if (fitstable_write_row_data(outtables[hp], rdata)) { ERROR("Failed to copy a row of data from input table \"%s\" to output healpix %i", infn, hp); } } if (!hps) break; } if (hps) il_remove_all(hps); } buffered_read_free(rowbuf); // wack... buffered_read_free() just frees its internal buffer, // not the "rowbuf" struct itself. // who wrote this crazy code? Oh, me of 5 years ago. Jerk. free(rowbuf); fitstable_close(intable); il_free(hps); if (tempfn) { logverb("Removing temp file %s\n", tempfn); if (unlink(tempfn)) { SYSERROR("Failed to unlink() temp file \"%s\"", tempfn); } tempfn = NULL; } // fix headers so that the files are valid at this point. for (ii=0; ii<NHP; ii++) { if (!outtables[ii]) continue; off_t offset = ftello(outtables[ii]->fid); if (fitstable_fix_header(outtables[ii])) { ERROR("Failed to fix header for healpix %i after reading input file \"%s\"", ii, originfn); exit(-1); } fseeko(outtables[ii]->fid, offset, SEEK_SET); } if (padrowdata) { free(padrowdata); padrowdata = NULL; } } for (i=0; i<NHP; i++) { if (!outtables[i]) continue; if (fitstable_fix_header(outtables[i]) || fitstable_fix_primary_header(outtables[i]) || fitstable_close(outtables[i])) { ERROR("Failed to close output table for healpix %i", i); exit(-1); } } free(outtables); sl_free2(infns); sl_free2(cols); free(mincaps); free(maxcaps); return 0; }
int handle_request(FILE* fid) { char buf[256]; char fn[256]; int set; int get; int getall; int filenum; int fieldnum; int lastfieldnum; int maxfields; char* nextword; //printf("Fileno %i:\n", fileno(fid)); if (!fgets(buf, 256, fid)) { fprintf(stderr, "Error: failed to read a line of input.\n"); fflush(stderr); fclose(fid); return -1; } //printf("Got request %s\n", buf); get = set = getall = 0; if (is_word(buf, "get ", &nextword)) { get = 1; } else if (is_word(buf, "set ", &nextword)) { set = 1; } else if (is_word(buf, "getall ", &nextword)) { getall = 1; } if (!(get || set || getall)) { fprintf(stderr, "Error: malformed command.\n"); fclose(fid); return -1; } if (get || set) { if (sscanf(nextword, "%i %i", &filenum, &fieldnum) != 2) { fprintf(stderr, "Error: malformed request: %s\n", buf); fflush(stderr); fclose(fid); return -1; } } else if (getall) { if (sscanf(nextword, "%i %i %i %i", &filenum, &fieldnum, &lastfieldnum, &maxfields) != 4) { fprintf(stderr, "Error: malformed request: %s\n", buf); fflush(stderr); fclose(fid); return -1; } if (lastfieldnum < fieldnum) { fprintf(stderr, "Error: invalid \"getall\" request: lastfieldnum must be >= firstfieldnum.\n"); fflush(stderr); fclose(fid); return -1; } } sprintf(fn, solvedfnpattern, filenum); if (get) { int val; printf("Get %s [%i].\n", fn, fieldnum); fflush(stdout); val = solvedfile_get(fn, fieldnum); if (val == -1) { fclose(fid); return -1; } else { fprintf(fid, "%s %i %i\n", (val ? "solved" : "unsolved"), filenum, fieldnum); fflush(fid); } return 0; } else if (set) { printf("Set %s [%i].\n", fn, fieldnum); fflush(stdout); if (solvedfile_set(fn, fieldnum)) { fclose(fid); return -1; } fprintf(fid, "ok\n"); fflush(fid); return 0; } else if (getall) { int i; il* list; printf("Getall %s [%i : %i], max %i.\n", fn, fieldnum, lastfieldnum, maxfields); fflush(stdout); fprintf(fid, "unsolved %i", filenum); list = solvedfile_getall(fn, fieldnum, lastfieldnum, maxfields); if (list) { for (i=0; i<il_size(list); i++) fprintf(fid, " %i", il_get(list, i)); il_free(list); } fprintf(fid, "\n"); fflush(fid); return 0; } return -1; }
static PyObject* spherematch_match(PyObject* self, PyObject* args) { size_t i, N; long p1, p2; kdtree_t *kd1, *kd2; double rad; struct dualtree_results dtresults; PyArrayObject* inds; npy_intp dims[2]; PyArrayObject* dists; anbool notself; anbool permute; PyObject* rtn; // So that ParseTuple("b") with a C "anbool" works assert(sizeof(anbool) == sizeof(unsigned char)); if (!PyArg_ParseTuple(args, "lldbb", &p1, &p2, &rad, ¬self, &permute)) { PyErr_SetString(PyExc_ValueError, "spherematch_c.match: need five args: two kdtree identifiers (ints), search radius (float), notself (boolean), permuted (boolean)"); return NULL; } //printf("Notself = %i\n", (int)notself); // Nasty! kd1 = (kdtree_t*)p1; kd2 = (kdtree_t*)p2; dtresults.inds1 = il_new(256); dtresults.inds2 = il_new(256); dtresults.dists = dl_new(256); dualtree_rangesearch(kd1, kd2, 0.0, rad, notself, NULL, callback_dualtree, &dtresults, NULL, NULL); N = il_size(dtresults.inds1); dims[0] = N; dims[1] = 2; inds = (PyArrayObject*)PyArray_SimpleNew(2, dims, PyArray_INT); dims[1] = 1; dists = (PyArrayObject*)PyArray_SimpleNew(2, dims, PyArray_DOUBLE); for (i=0; i<N; i++) { int index; int* iptr; double* dptr; iptr = PyArray_GETPTR2(inds, i, 0); index = il_get(dtresults.inds1, i); if (permute) index = kdtree_permute(kd1, index); *iptr = index; iptr = PyArray_GETPTR2(inds, i, 1); index = il_get(dtresults.inds2, i); if (permute) index = kdtree_permute(kd2, index); *iptr = index; dptr = PyArray_GETPTR2(dists, i, 0); *dptr = dl_get(dtresults.dists, i); } il_free(dtresults.inds1); il_free(dtresults.inds2); dl_free(dtresults.dists); rtn = Py_BuildValue("(OO)", inds, dists); Py_DECREF(inds); Py_DECREF(dists); return rtn; }
int wcs_rd2xy(const char* wcsfn, int wcsext, const char* rdlsfn, const char* xylsfn, const char* racol, const char* deccol, anbool forcetan, anbool forcewcslib, il* fields) { xylist_t* xyls = NULL; rdlist_t* rdls = NULL; anwcs_t* wcs = NULL; int i; anbool alloced_fields = FALSE; int rtn = -1; // read WCS. if (forcewcslib) { wcs = anwcs_open_wcslib(wcsfn, wcsext); } else if (forcetan) { wcs = anwcs_open_tan(wcsfn, wcsext); } else { wcs = anwcs_open(wcsfn, wcsext); } if (!wcs) { ERROR("Failed to read WCS file \"%s\", extension %i", wcsfn, wcsext); return -1; } // read RDLS. rdls = rdlist_open(rdlsfn); if (!rdls) { ERROR("Failed to read an RA,Dec list from file %s", rdlsfn); goto bailout; } if (racol) rdlist_set_raname(rdls, racol); if (deccol) rdlist_set_decname(rdls, deccol); // write XYLS. xyls = xylist_open_for_writing(xylsfn); if (!xyls) { ERROR("Failed to open file %s to write XYLS", xylsfn); goto bailout; } if (xylist_write_primary_header(xyls)) { ERROR("Failed to write header to XYLS file %s", xylsfn); goto bailout; } if (!fields) { alloced_fields = TRUE; fields = il_new(16); } if (!il_size(fields)) { // add all fields. int NF = rdlist_n_fields(rdls); for (i=1; i<=NF; i++) il_append(fields, i); } for (i=0; i<il_size(fields); i++) { int fieldnum = il_get(fields, i); int j; starxy_t xy; rd_t rd; if (!rdlist_read_field_num(rdls, fieldnum, &rd)) { ERROR("Failed to read rdls file \"%s\" field %i", rdlsfn, fieldnum); goto bailout; } starxy_alloc_data(&xy, rd_n(&rd), FALSE, FALSE); if (xylist_write_header(xyls)) { ERROR("Failed to write xyls field header"); goto bailout; } for (j=0; j<rd_n(&rd); j++) { double x, y, ra, dec; ra = rd_getra (&rd, j); dec = rd_getdec(&rd, j); if (anwcs_radec2pixelxy(wcs, ra, dec, &x, &y)) { ERROR("Point RA,Dec = (%g,%g) projects to the opposite side of the sphere", ra, dec); starxy_set(&xy, j, NAN, NAN); continue; } starxy_set(&xy, j, x, y); } if (xylist_write_field(xyls, &xy)) { ERROR("Failed to write xyls field"); goto bailout; } if (xylist_fix_header(xyls)) { ERROR("Failed to fix xyls field header"); goto bailout; } xylist_next_field(xyls); starxy_free_data(&xy); rd_free_data(&rd); } if (xylist_fix_primary_header(xyls) || xylist_close(xyls)) { ERROR("Failed to fix header of XYLS file"); goto bailout; } xyls = NULL; if (rdlist_close(rdls)) { ERROR("Failed to close RDLS file"); goto bailout; } rdls = NULL; rtn = 0; bailout: if (alloced_fields) il_free(fields); if (rdls) rdlist_close(rdls); if (xyls) xylist_close(xyls); if (wcs) anwcs_free(wcs); return rtn; }
int wcs_xy2rd(const char* wcsfn, int ext, const char* xylsfn, const char* rdlsfn, const char* xcol, const char* ycol, int forcetan, int forcewcslib, il* fields) { rdlist_t* rdls = NULL; xylist_t* xyls = NULL; anwcs_t* wcs = NULL; int i; int rtn = -1; anbool alloced_fields = FALSE; // read WCS. if (forcewcslib) { wcs = anwcs_open_wcslib(wcsfn, ext); } else if (forcetan) { wcs = anwcs_open_tan(wcsfn, ext); } else { wcs = anwcs_open(wcsfn, ext); } if (!wcs) { ERROR("Failed to read WCS file \"%s\", extension %i", wcsfn, ext); return -1; } // read XYLS. xyls = xylist_open(xylsfn); if (!xyls) { ERROR("Failed to read an xylist from file %s", xylsfn); goto bailout; } xylist_set_include_flux(xyls, FALSE); xylist_set_include_background(xyls, FALSE); if (xcol) xylist_set_xname(xyls, xcol); if (ycol) xylist_set_yname(xyls, ycol); // write RDLS. rdls = rdlist_open_for_writing(rdlsfn); if (!rdls) { ERROR("Failed to open file %s to write RDLS.\n", rdlsfn); goto bailout; } if (rdlist_write_primary_header(rdls)) { ERROR("Failed to write header to RDLS file %s.\n", rdlsfn); goto bailout; } if (!fields) { alloced_fields = TRUE; fields = il_new(16); } if (!il_size(fields)) { // add all fields. int NF = xylist_n_fields(xyls); for (i=1; i<=NF; i++) il_append(fields, i); } logverb("Processing %zu extensions...\n", il_size(fields)); for (i=0; i<il_size(fields); i++) { int fieldind = il_get(fields, i); starxy_t xy; rd_t rd; int j; if (!xylist_read_field_num(xyls, fieldind, &xy)) { ERROR("Failed to read xyls file %s, field %i", xylsfn, fieldind); goto bailout; } if (rdlist_write_header(rdls)) { ERROR("Failed to write rdls field header to %s", rdlsfn); goto bailout; } rd_alloc_data(&rd, starxy_n(&xy)); for (j=0; j<starxy_n(&xy); j++) { double x, y, ra, dec; x = starxy_getx(&xy, j); y = starxy_gety(&xy, j); anwcs_pixelxy2radec(wcs, x, y, &ra, &dec); rd_setra (&rd, j, ra); rd_setdec(&rd, j, dec); } if (rdlist_write_field(rdls, &rd)) { ERROR("Failed to write rdls field to %s", rdlsfn); goto bailout; } rd_free_data(&rd); starxy_free_data(&xy); if (rdlist_fix_header(rdls)) { ERROR("Failed to fix rdls field header for %s", rdlsfn); goto bailout; } rdlist_next_field(rdls); } if (rdlist_fix_primary_header(rdls) || rdlist_close(rdls)) { ERROR("Failed to fix header of RDLS file %s", rdlsfn); goto bailout; } rdls = NULL; if (xylist_close(xyls)) { ERROR("Failed to close XYLS file %s", xylsfn); goto bailout; } xyls = NULL; rtn = 0; bailout: if (alloced_fields) il_free(fields); if (rdls) rdlist_close(rdls); if (xyls) xylist_close(xyls); if (wcs) anwcs_free(wcs); return rtn; }
int main(int argc, char** args) { int argchar; char* progname = args[0]; char* outfn = NULL; char* outwcsfn = NULL; int outwcsext = 0; anwcs_t* outwcs; sl* inimgfns = sl_new(16); sl* inwcsfns = sl_new(16); sl* inwtfns = sl_new(16); il* inimgexts = il_new(16); il* inwcsexts = il_new(16); il* inwtexts = il_new(16); int i; int loglvl = LOG_MSG; int order = 3; coadd_t* coadd; lanczos_args_t largs; double sigma = 0.0; anbool nearest = FALSE; anbool divweight = FALSE; int plane = 0; while ((argchar = getopt(argc, args, OPTIONS)) != -1) switch (argchar) { case '?': case 'h': printHelp(progname); exit(0); case 'D': divweight = TRUE; break; case 'p': plane = atoi(optarg); break; case 'N': nearest = TRUE; break; case 's': sigma = atof(optarg); break; case 'v': loglvl++; break; case 'e': outwcsext = atoi(optarg); break; case 'w': outwcsfn = optarg; break; case 'o': outfn = optarg; break; case 'O': order = atoi(optarg); break; } log_init(loglvl); fits_use_error_system(); args += optind; argc -= optind; if (argc == 0 || argc % 6) { printHelp(progname); exit(-1); } for (i=0; i<argc/6; i++) { sl_append(inimgfns, args[6*i+0]); il_append(inimgexts, atoi(args[6*i+1])); sl_append(inwtfns, args[6*i+2]); il_append(inwtexts, atoi(args[6*i+3])); sl_append(inwcsfns, args[6*i+4]); il_append(inwcsexts, atoi(args[6*i+5])); } logmsg("Reading output WCS file %s\n", outwcsfn); outwcs = anwcs_open(outwcsfn, outwcsext); if (!outwcs) { ERROR("Failed to read WCS from file: %s ext %i\n", outwcsfn, outwcsext); exit(-1); } logmsg("Output image will be %i x %i\n", (int)anwcs_imagew(outwcs), (int)anwcs_imageh(outwcs)); coadd = coadd_new(anwcs_imagew(outwcs), anwcs_imageh(outwcs)); coadd->wcs = outwcs; if (nearest) { coadd->resample_func = nearest_resample_f; coadd->resample_token = NULL; } else { coadd->resample_func = lanczos_resample_f; largs.order = order; coadd->resample_token = &largs; } for (i=0; i<sl_size(inimgfns); i++) { anqfits_t* anq; anqfits_t* wanq; float* img; float* wt = NULL; anwcs_t* inwcs; char* fn; int ext; float overallwt = 1.0; int W, H; fn = sl_get(inimgfns, i); ext = il_get(inimgexts, i); logmsg("Reading input image \"%s\" ext %i\n", fn, ext); anq = anqfits_open(fn); if (!anq) { ERROR("Failed to open file \"%s\"\n", fn); exit(-1); } img = anqfits_readpix(anq, ext, 0, 0, 0, 0, plane, PTYPE_FLOAT, NULL, &W, &H); if (!img) { ERROR("Failed to read image from ext %i of %s\n", ext, fn); exit(-1); } anqfits_close(anq); logmsg("Read image: %i x %i.\n", W, H); if (sigma > 0.0) { int k0, nk; float* kernel; logmsg("Smoothing by Gaussian with sigma=%g\n", sigma); kernel = convolve_get_gaussian_kernel_f(sigma, 4, &k0, &nk); convolve_separable_f(img, W, H, kernel, k0, nk, img, NULL); free(kernel); } fn = sl_get(inwcsfns, i); ext = il_get(inwcsexts, i); logmsg("Reading input WCS file \"%s\" ext %i\n", fn, ext); inwcs = anwcs_open(fn, ext); if (!inwcs) { ERROR("Failed to read WCS from file \"%s\" ext %i\n", fn, ext); exit(-1); } if (anwcs_pixel_scale(inwcs) == 0) { ERROR("Pixel scale from the WCS file is zero. Usually this means the image has no valid WCS header.\n"); exit(-1); } if (anwcs_imagew(inwcs) != W || anwcs_imageh(inwcs) != H) { ERROR("Size mismatch between image and WCS!"); exit(-1); } fn = sl_get(inwtfns, i); ext = il_get(inwtexts, i); if (streq(fn, "none")) { logmsg("Not using weight image.\n"); wt = NULL; } else if (file_exists(fn)) { logmsg("Reading input weight image \"%s\" ext %i\n", fn, ext); wanq = anqfits_open(fn); if (!wanq) { ERROR("Failed to open file \"%s\"\n", fn); exit(-1); } int wtW, wtH; wt = anqfits_readpix(anq, ext, 0, 0, 0, 0, 0, PTYPE_FLOAT, NULL, &wtW, &wtH); if (!wt) { ERROR("Failed to read image from ext %i of %s\n", ext, fn); exit(-1); } anqfits_close(wanq); logmsg("Read image: %i x %i.\n", wtW, wtH); if (wtW != W || wtH != H) { ERROR("Size mismatch between image and weight!"); exit(-1); } } else { char* endp; overallwt = strtod(fn, &endp); if (endp == fn) { ERROR("Weight: \"%s\" is neither a file nor a double.\n", fn); exit(-1); } logmsg("Parsed weight value \"%g\"\n", overallwt); } if (divweight && wt) { int j; logmsg("Dividing image by weight image...\n"); for (j=0; j<(W*H); j++) img[j] /= wt[j]; } coadd_add_image(coadd, img, wt, overallwt, inwcs); anwcs_free(inwcs); free(img); if (wt) free(wt); } // logmsg("Writing output: %s\n", outfn); coadd_divide_by_weight(coadd, 0.0); /* if (fits_write_float_image_hdr(coadd->img, coadd->W, coadd->H, outfn)) { ERROR("Failed to write output image %s", outfn); exit(-1); } */ /* if (fits_write_float_image(coadd->img, coadd->W, coadd->H, outfn)) { ERROR("Failed to write output image %s", outfn); exit(-1); } */ { qfitsdumper qoutimg; qfits_header* hdr; hdr = anqfits_get_header2(outwcsfn, outwcsext); if (!hdr) { ERROR("Failed to read WCS file \"%s\" ext %i\n", outwcsfn, outwcsext); exit(-1); } fits_header_mod_int(hdr, "NAXIS", 2, NULL); fits_header_set_int(hdr, "NAXIS1", coadd->W, "image width"); fits_header_set_int(hdr, "NAXIS2", coadd->H, "image height"); fits_header_modf(hdr, "BITPIX", "-32", "32-bit floats"); memset(&qoutimg, 0, sizeof(qoutimg)); qoutimg.filename = outfn; qoutimg.npix = coadd->W * coadd->H; qoutimg.fbuf = coadd->img; qoutimg.ptype = PTYPE_FLOAT; qoutimg.out_ptype = BPP_IEEE_FLOAT; if (fits_write_header_and_image(NULL, &qoutimg, coadd->W)) { ERROR("Failed to write FITS image to file \"%s\"", outfn); exit(-1); } qfits_header_destroy(hdr); } coadd_free(coadd); sl_free2(inimgfns); sl_free2(inwcsfns); sl_free2(inwtfns); il_free(inimgexts); il_free(inwcsexts); il_free(inwtexts); anwcs_free(outwcs); return 0; }
void test_big_list(CuTest* tc) { // Test size_t sizes and indices of bl's. // Test ptrdiff_t as -1 or index CuAssertTrue(tc, -1 == BL_NOT_FOUND); CuAssertTrue(tc, BL_NOT_FOUND < 0); CuAssertTrue(tc, sizeof(size_t) == sizeof(ptrdiff_t)); // Create a fake list so we don't have to allocate 16 GB of list to test. int blocksize = 1048576; il* big = il_new(blocksize); // that's 1<<20 ~ 1e6 elements per block // now need 1<<12 ~ 4096 blocks to overflow a 32-bit int int i; int N = 4096; bl_node* nodes = calloc(N, sizeof(bl_node)); for (i=1; i<N; i++) { nodes[i-1].next = nodes+i; nodes[i-1].N = blocksize; } nodes[N-1].N = blocksize; big->head = nodes; big->tail = nodes + (N-1); big->N = (size_t)blocksize * (size_t)N; bl_print_structure(big); printf("N %zu\n", il_size(big)); printf("check: %s\n", (bl_check_consistency(big) ? "bad" : "ok")); int* p = il_append(big, 42); printf("appended: %i\n", *p); CuAssertIntEquals(tc, 42, *p); CuAssertTrue(tc, 4294967297L == il_size(big)); size_t index = 4294967296L; int v = il_get(big, index); CuAssertIntEquals(tc, 42, v); big->last_access = NULL; big->last_access_n = 0; v = il_get(big, index); CuAssertIntEquals(tc, 42, v); for (i=0; i<blocksize*2; i++) { il_push(big, i); } il* split = il_new(1024); bl_split(big, split, (size_t)blocksize * (size_t)N); printf("split: %zu, %zu\n", il_size(big), il_size(split)); CuAssertIntEquals(tc, 42, il_get(split, 0)); CuAssertIntEquals(tc, 3, il_get(split, 4)); il_append_list(big, split); CuAssertTrue(tc, 4297064449L == il_size(big)); int* arr = calloc(1024, sizeof(int)); bl_copy(big, (size_t)blocksize * (size_t)N, 1024, arr); CuAssertIntEquals(tc, 42, arr[0]); CuAssertIntEquals(tc, 3, arr[4]); }
int main(int argc, char **argv) { int argchar; startree_t* starkd; double ra=0.0, dec=0.0, radius=0.0; sl* tag = sl_new(4); anbool tagall = FALSE; char* starfn = NULL; int loglvl = LOG_MSG; char** myargs; int nmyargs; anbool getinds = FALSE; double* radec; int* inds; int N; int i; char* rdfn = NULL; pl* tagdata = pl_new(16); il* tagsizes = il_new(16); fitstable_t* tagalong = NULL; while ((argchar = getopt (argc, argv, OPTIONS)) != -1) switch (argchar) { case 'o': rdfn = optarg; break; case 'I': getinds = TRUE; break; case 'r': ra = atof(optarg); break; case 'd': dec = atof(optarg); break; case 'R': radius = atof(optarg); break; case 't': sl_append(tag, optarg); break; case 'T': tagall = TRUE; break; case 'v': loglvl++; break; case '?': fprintf(stderr, "Unknown option `-%c'.\n", optopt); case 'h': printHelp(argv[0]); break; default: return -1; } nmyargs = argc - optind; myargs = argv + optind; if (nmyargs != 1) { ERROR("Got %i arguments; expected 1.\n", nmyargs); printHelp(argv[0]); exit(-1); } starfn = myargs[0]; log_init(loglvl); starkd = startree_open(starfn); if (!starkd) { ERROR("Failed to open star kdtree"); exit(-1); } logmsg("Searching kdtree %s at RA,Dec = (%g,%g), radius %g deg.\n", starfn, ra, dec, radius); startree_search_for_radec(starkd, ra, dec, radius, NULL, &radec, &inds, &N); logmsg("Got %i results.\n", N); if (!N) goto done; if (tagall) { int j, M; M = startree_get_tagalong_N_columns(starkd); for (j=0; j<M; j++) sl_append(tag, startree_get_tagalong_column_name(starkd, j)); } if (sl_size(tag)) { tagalong = startree_get_tagalong(starkd); if (!tagalong) { ERROR("Failed to find tag-along table in index"); exit(-1); } } if (rdfn) { rdlist_t* rd = rdlist_open_for_writing(rdfn); il* colnums = il_new(16); if (!rd) { ERROR("Failed to open output file %s", rdfn); exit(-1); } if (rdlist_write_primary_header(rd)) { ERROR("Failed to write header to output file %s", rdfn); exit(-1); } for (i=0; i<sl_size(tag); i++) { const char* col = sl_get(tag, i); char* units; tfits_type type; int arraysize; void* data; int colnum; int itemsize; if (fitstable_find_fits_column(tagalong, col, &units, &type, &arraysize)) { ERROR("Failed to find column \"%s\" in index", col); exit(-1); } itemsize = fits_get_atom_size(type) * arraysize; data = fitstable_read_column_array_inds(tagalong, col, type, inds, N, NULL); if (!data) { ERROR("Failed to read data for column \"%s\" in index", col); exit(-1); } colnum = rdlist_add_tagalong_column(rd, type, arraysize, type, col, NULL); il_append(colnums, colnum); il_append(tagsizes, itemsize); pl_append(tagdata, data); } if (rdlist_write_header(rd)) { ERROR("Failed to write header to output file %s", rdfn); exit(-1); } for (i=0; i<N; i++) { if (rdlist_write_one_radec(rd, radec[i*2+0], radec[i*2+1])) { ERROR("Failed to write RA,Dec to output file %s", rdfn); exit(-1); } } for (i=0; i<sl_size(tag); i++) { int col = il_get(colnums, i); void* data = pl_get(tagdata, i); int itemsize = il_get(tagsizes, i); if (rdlist_write_tagalong_column(rd, col, 0, N, data, itemsize)) { ERROR("Failed to write tag-along data column %s", sl_get(tag, i)); exit(-1); } } if (rdlist_fix_header(rd) || rdlist_fix_primary_header(rd) || rdlist_close(rd)) { ERROR("Failed to close output file %s", rdfn); exit(-1); } il_free(colnums); } else { // Header printf("# RA, Dec"); if (getinds) printf(", index"); for (i=0; i<sl_size(tag); i++) printf(", %s", sl_get(tag, i)); printf("\n"); for (i=0; i<sl_size(tag); i++) { const char* col = sl_get(tag, i); char* units; tfits_type type; int arraysize; void* data; int itemsize; if (fitstable_find_fits_column(tagalong, col, &units, &type, &arraysize)) { ERROR("Failed to find column \"%s\" in index", col); exit(-1); } itemsize = fits_get_atom_size(type) * arraysize; data = fitstable_read_column_array_inds(tagalong, col, type, inds, N, NULL); if (!data) { ERROR("Failed to read data for column \"%s\" in index", col); exit(-1); } il_append(tagsizes, itemsize); pl_append(tagdata, data); } for (i=0; i<N; i++) { //int j; printf("%g, %g", radec[i*2+0], radec[i*2+1]); if (getinds) printf(", %i", inds[i]); //// FIXME -- print tag-along data of generic type. /* for (j=0; j<pl_size(tagdata); j++) { double* data = pl_get(tagdata, j); printf(", %g", data[i]); } */ printf("\n"); } } done: free(radec); free(inds); for (i=0; i<pl_size(tagdata); i++) free(pl_get(tagdata, i)); pl_free(tagdata); il_free(tagsizes); return 0; }
int main(int argc, char** args) { int argchar; char* progname = args[0]; char** inputfiles = NULL; int ninputfiles = 0; int i; char* outfile = NULL; int N; anbool* solved; int noerr = 0; while ((argchar = getopt (argc, args, OPTIONS)) != -1) { switch (argchar) { case 'o': outfile = optarg; break; case 'e': noerr = 1; break; case 'h': default: printHelp(progname); exit(-1); } } if (optind < argc) { ninputfiles = argc - optind; inputfiles = args + optind; } else { printHelp(progname); exit(-1); } N = 0; for (i=0; i<ninputfiles; i++) { int n = solvedfile_getsize(inputfiles[i]); if (n == -1) { if (!noerr) { fprintf(stderr, "Failed to get size of input file %s.\n", inputfiles[i]); exit(-1); } } if (n > N) N = n; } solved = calloc(N, sizeof(anbool)); for (i=0; i<ninputfiles; i++) { il* slist; int j; slist = solvedfile_getall_solved(inputfiles[i], 1, N, 0); for (j=0; j<il_size(slist); j++) solved[il_get(slist, j) - 1] = TRUE; il_free(slist); } if (solvedfile_set_file(outfile, solved, N)) { fprintf(stderr, "Failed to set values in output file.\n"); exit(-1); } free(solved); return 0; }
static void plot_constellations(cairo_t* cairo, plot_args_t* pargs, plotann_t* ann) { int i, N; double ra,dec,radius; double xyzf[3]; // Find the field center and radius anwcs_get_radec_center_and_radius(pargs->wcs, &ra, &dec, &radius); logverb("Plotting constellations: field center %g,%g, radius %g\n", ra, dec, radius); radecdeg2xyzarr(ra, dec, xyzf); radius = deg2dist(radius); N = constellations_n(); for (i=0; i<N; i++) { int j, k; // Find the approximate center and radius of this constellation // and see if it overlaps with the field. il* stars = constellations_get_unique_stars(i); double xyzj[3]; double xyzc[3]; double maxr2 = 0; dl* rds; xyzc[0] = xyzc[1] = xyzc[2] = 0.0; xyzj[0] = xyzj[1] = xyzj[2] = 0.0; for (j=0; j<il_size(stars); j++) { constellations_get_star_radec(il_get(stars, j), &ra, &dec); radecdeg2xyzarr(ra, dec, xyzj); for (k=0; k<3; k++) xyzc[k] += xyzj[k]; } normalize_3(xyzc); for (j=0; j<il_size(stars); j++) { constellations_get_star_radec(il_get(stars, j), &ra, &dec); maxr2 = MAX(maxr2, distsq(xyzc, xyzj, 3)); } il_free(stars); maxr2 = square(sqrt(maxr2) + radius); if (distsq(xyzf, xyzc, 3) > maxr2) { xyzarr2radecdeg(xyzc, &ra, &dec); logverb("Constellation %s (center %g,%g, radius %g) out of bounds\n", constellations_get_shortname(i), ra, dec, dist2deg(sqrt(maxr2) - radius)); logverb(" dist from field center to constellation center is %g deg\n", distsq2deg(distsq(xyzf, xyzc, 3))); logverb(" max radius: %g\n", distsq2deg(maxr2)); continue; } if (ann->constellation_pastel) { float r,g,b; xyzarr2radecdeg(xyzc, &ra, &dec); color_for_radec(ra, dec, &r,&g,&b); plotstuff_set_rgba2(pargs, r,g,b, 0.8); plotstuff_builtin_apply(cairo, pargs); } // Phew, plot it. if (ann->constellation_lines) { rds = constellations_get_lines_radec(i); logverb("Constellation %s: plotting %zu lines\n", constellations_get_shortname(i), dl_size(rds)/4); for (j=0; j<dl_size(rds)/4; j++) { double r1,d1,r2,d2; double r3,d3,r4,d4; double off = ann->constellation_lines_offset; r1 = dl_get(rds, j*4+0); d1 = dl_get(rds, j*4+1); r2 = dl_get(rds, j*4+2); d2 = dl_get(rds, j*4+3); if (anwcs_find_discontinuity(pargs->wcs, r1, d1, r2, d2, &r3, &d3, &r4, &d4)) { logverb("Discontinuous: %g,%g -- %g,%g\n", r1, d1, r2, d2); logverb(" %g,%g == %g,%g\n", r3,d3, r4,d4); plot_offset_line_rd(NULL, pargs, r1,d1,r3,d3, off, 0.); plot_offset_line_rd(NULL, pargs, r4,d4,r2,d2, 0., off); } else { plot_offset_line_rd(NULL, pargs, r1,d1,r2,d2, off, off); } plotstuff_stroke(pargs); } dl_free(rds); } if (ann->constellation_labels || ann->constellation_markers) { // Put the label at the center of mass of the stars that // are in-bounds int Nin = 0; stars = constellations_get_unique_stars(i); xyzc[0] = xyzc[1] = xyzc[2] = 0.0; logverb("Labeling %s: %zu stars\n", constellations_get_shortname(i), il_size(stars)); for (j=0; j<il_size(stars); j++) { constellations_get_star_radec(il_get(stars, j), &ra, &dec); if (!anwcs_radec_is_inside_image(pargs->wcs, ra, dec)) continue; if (ann->constellation_markers) plotstuff_marker_radec(pargs, ra, dec); radecdeg2xyzarr(ra, dec, xyzj); for (k=0; k<3; k++) xyzc[k] += xyzj[k]; Nin++; } logverb(" %i stars in-bounds\n", Nin); if (ann->constellation_labels && Nin) { const char* label; normalize_3(xyzc); xyzarr2radecdeg(xyzc, &ra, &dec); if (ann->constellation_labels_long) label = constellations_get_longname(i); else label = constellations_get_shortname(i); plotstuff_text_radec(pargs, ra, dec, label); } il_free(stars); } } }
static int write_to_file(startree_t* s, const char* fn, anbool flipped, FILE* fid) { bl* chunks; il* wordsizes = NULL; int i; kdtree_fits_t* io = NULL; // just haven't bothered... assert(!(flipped && fid)); if (fn) { io = kdtree_fits_open_for_writing(fn); if (!io) { ERROR("Failed to open file \"%s\" for writing kdtree", fn); return -1; } } if (flipped) { if (kdtree_fits_write_tree_flipped(io, s->tree, s->header)) { ERROR("Failed to write (flipped) kdtree to file \"%s\"", fn); return -1; } } else { if (fid) { if (kdtree_fits_append_tree_to(s->tree, s->header, fid)) { ERROR("Failed to write star kdtree"); return -1; } } else { if (kdtree_fits_write_tree(io, s->tree, s->header)) { ERROR("Failed to write kdtree to file \"%s\"", fn); return -1; } } } if (flipped) wordsizes = il_new(4); chunks = get_chunks(s, wordsizes); for (i=0; i<bl_size(chunks); i++) { fitsbin_chunk_t* chunk = bl_access(chunks, i); if (!chunk->data) continue; if (flipped) kdtree_fits_write_chunk_flipped(io, chunk, il_get(wordsizes, i)); else { if (fid) { kdtree_fits_write_chunk_to(chunk, fid); } else { kdtree_fits_write_chunk(io, chunk); } } fitsbin_chunk_clean(chunk); } bl_free(chunks); if (flipped) il_free(wordsizes); if (io) kdtree_fits_io_close(io); return 0; }
int main(int argc, char** args) { int c; char* wcsfn = NULL; char* outfn = NULL; char* infn = NULL; sip_t sip; double scale = 1.0; anbool pngformat = TRUE; char* hdpath = NULL; anbool HD = FALSE; cairos_t thecairos; cairos_t* cairos = &thecairos; cairo_surface_t* target = NULL; cairo_t* cairot = NULL; cairo_surface_t* surfbg = NULL; cairo_t* cairobg = NULL; cairo_surface_t* surfshapes = NULL; cairo_t* cairoshapes = NULL; cairo_surface_t* surfshapesmask = NULL; cairo_t* cairoshapesmask = NULL; cairo_surface_t* surffg = NULL; cairo_t* cairo = NULL; double lw = 2.0; // circle linewidth. double cw = 2.0; double ngc_fraction = 0.02; // NGC linewidth double nw = 2.0; // leave a gap short of connecting the points. double endgap = 5.0; // circle radius. double crad = endgap; double fontsize = 14.0; double label_offset = 15.0; int W = 0, H = 0; unsigned char* img = NULL; anbool NGC = FALSE, constell = FALSE; anbool bright = FALSE; anbool common_only = FALSE; anbool print_common_only = FALSE; int Nbright = 0; double ra, dec, px, py; int i, N; anbool justlist = FALSE; anbool only_messier = FALSE; anbool grid = FALSE; double gridspacing = 0.0; double gridcolor[3] = { 0.2, 0.2, 0.2 }; int loglvl = LOG_MSG; char halign = 'L'; char valign = 'C'; sl* json = NULL; anbool whitetext = FALSE; while ((c = getopt(argc, args, OPTIONS)) != -1) { switch (c) { case 'V': valign = optarg[0]; break; case 'O': halign = optarg[0]; break; case 'F': ngc_fraction = atof(optarg); break; case 'h': print_help(args[0]); exit(0); case 'J': json = sl_new(4); break; case 'G': gridspacing = atof(optarg); break; case 'g': { char *tail = NULL; gridcolor[0] = strtod(optarg,&tail); if (*tail) { tail++; gridcolor[1] = strtod(tail,&tail); } if (*tail) { tail++; gridcolor[2] = strtod(tail,&tail); } } break; case 'D': HD = TRUE; break; case 'd': hdpath = optarg; break; case 'M': only_messier = TRUE; break; case 'n': nw = atof(optarg); break; case 'f': fontsize = atof(optarg); break; case 'L': justlist = TRUE; outfn = NULL; break; case 'x': whitetext = TRUE; break; case 'v': loglvl++; break; break; case 'j': print_common_only = TRUE; break; case 'c': common_only = TRUE; break; case 'b': Nbright = atoi(optarg); break; case 'B': bright = TRUE; break; case 'N': NGC = TRUE; break; case 'C': constell = TRUE; break; case 'p': pngformat = FALSE; break; case 's': scale = atof(optarg); break; case 'o': outfn = optarg; break; case 'i': infn = optarg; break; case 'w': wcsfn = optarg; break; case 'W': W = atoi(optarg); break; case 'H': H = atoi(optarg); break; } } log_init(loglvl); log_to(stderr); fits_use_error_system(); if (optind != argc) { print_help(args[0]); exit(-1); } if (!(outfn || justlist) || !wcsfn) { logerr("Need (-o or -L) and -w args.\n"); print_help(args[0]); exit(-1); } // read WCS. logverb("Trying to parse SIP/TAN header from %s...\n", wcsfn); if (!file_exists(wcsfn)) { ERROR("No such file: \"%s\"", wcsfn); exit(-1); } if (sip_read_header_file(wcsfn, &sip)) { logverb("Got SIP header.\n"); } else { ERROR("Failed to parse SIP/TAN header from %s", wcsfn); exit(-1); } if (!(NGC || constell || bright || HD || grid)) { logerr("Neither constellations, bright stars, HD nor NGC/IC overlays selected!\n"); print_help(args[0]); exit(-1); } if (gridspacing > 0.0) grid = TRUE; // adjust for scaling... lw /= scale; cw /= scale; nw /= scale; crad /= scale; endgap /= scale; fontsize /= scale; label_offset /= scale; if (!W || !H) { W = sip.wcstan.imagew; H = sip.wcstan.imageh; } if (!(infn || (W && H))) { logerr("Image width/height unspecified, and no input image given.\n"); exit(-1); } if (infn) { cairoutils_fake_ppm_init(); img = cairoutils_read_ppm(infn, &W, &H); if (!img) { ERROR("Failed to read input image %s", infn); exit(-1); } cairoutils_rgba_to_argb32(img, W, H); } else if (!justlist) { // Allocate a black image. img = calloc(4 * W * H, 1); if (!img) { SYSERROR("Failed to allocate a blank image on which to plot!"); exit(-1); } } if (HD && !hdpath) { logerr("If you specify -D (plot Henry Draper objs), you also have to give -d (path to Henry Draper catalog)\n"); exit(-1); } if (!justlist) { /* Cairo layers: -background: surfbg / cairobg --> gets drawn first, in black, masked by surfshapesmask -shapes: surfshapes / cairoshapes --> gets drawn second, masked by surfshapesmask -foreground/text: surffg / cairo --> gets drawn last. */ surffg = cairo_image_surface_create(CAIRO_FORMAT_ARGB32, W, H); cairo = cairo_create(surffg); cairo_set_line_join(cairo, CAIRO_LINE_JOIN_BEVEL); cairo_set_antialias(cairo, CAIRO_ANTIALIAS_GRAY); cairo_set_source_rgba(cairo, 1.0, 1.0, 1.0, 1.0); cairo_scale(cairo, scale, scale); //cairo_select_font_face(cairo, "helvetica", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_BOLD); cairo_select_font_face(cairo, "DejaVu Sans Mono Book", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_BOLD); cairo_set_font_size(cairo, fontsize); surfshapes = cairo_image_surface_create(CAIRO_FORMAT_ARGB32, W, H); cairoshapes = cairo_create(surfshapes); cairo_set_line_join(cairoshapes, CAIRO_LINE_JOIN_BEVEL); cairo_set_antialias(cairoshapes, CAIRO_ANTIALIAS_GRAY); cairo_set_source_rgba(cairoshapes, 1.0, 1.0, 1.0, 1.0); cairo_scale(cairoshapes, scale, scale); cairo_select_font_face(cairoshapes, "DejaVu Sans Mono Book", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_BOLD); cairo_set_font_size(cairoshapes, fontsize); surfshapesmask = cairo_image_surface_create(CAIRO_FORMAT_A8, W, H); cairoshapesmask = cairo_create(surfshapesmask); cairo_set_line_join(cairoshapesmask, CAIRO_LINE_JOIN_BEVEL); cairo_set_antialias(cairoshapesmask, CAIRO_ANTIALIAS_GRAY); cairo_set_source_rgba(cairoshapesmask, 1.0, 1.0, 1.0, 1.0); cairo_scale(cairoshapesmask, scale, scale); cairo_select_font_face(cairoshapesmask, "DejaVu Sans Mono Book", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_BOLD); cairo_set_font_size(cairoshapesmask, fontsize); cairo_paint(cairoshapesmask); cairo_stroke(cairoshapesmask); surfbg = cairo_image_surface_create(CAIRO_FORMAT_A8, W, H); cairobg = cairo_create(surfbg); cairo_set_line_join(cairobg, CAIRO_LINE_JOIN_BEVEL); cairo_set_antialias(cairobg, CAIRO_ANTIALIAS_GRAY); cairo_set_source_rgba(cairobg, 0, 0, 0, 1); cairo_scale(cairobg, scale, scale); cairo_select_font_face(cairobg, "DejaVu Sans Mono Book", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_BOLD); cairo_set_font_size(cairobg, fontsize); cairos->bg = cairobg; cairos->fg = cairo; cairos->shapes = cairoshapes; cairos->shapesmask = cairoshapesmask; cairos->imgW = (float)W/scale; cairos->imgH = (float)H/scale; // } if (grid) { double ramin, ramax, decmin, decmax; double ra, dec; double rastep = gridspacing / 60.0; double decstep = gridspacing / 60.0; // how many line segments int N = 10; double px, py; int i; cairo_set_source_rgba(cairo, gridcolor[0], gridcolor[1], gridcolor[2], 1.0); sip_get_radec_bounds(&sip, 100, &ramin, &ramax, &decmin, &decmax); logverb("Plotting grid lines from RA=%g to %g in steps of %g; Dec=%g to %g in steps of %g\n", ramin, ramax, rastep, decmin, decmax, decstep); for (dec = decstep * floor(decmin / decstep); dec<=decmax; dec+=decstep) { logverb(" dec=%g\n", dec); for (i=0; i<=N; i++) { ra = ramin + ((double)i / (double)N) * (ramax - ramin); if (!sip_radec2pixelxy(&sip, ra, dec, &px, &py)) continue; // first time, move_to; else line_to ((ra == ramin) ? cairo_move_to : cairo_line_to)(cairo, px, py); } cairo_stroke(cairo); } for (ra = rastep * floor(ramin / rastep); ra <= ramax; ra += rastep) { //for (dec=decmin; dec<=decmax; dec += (decmax - decmin)/(double)N) { logverb(" ra=%g\n", ra); for (i=0; i<=N; i++) { dec = decmin + ((double)i / (double)N) * (decmax - decmin); if (!sip_radec2pixelxy(&sip, ra, dec, &px, &py)) continue; // first time, move_to; else line_to ((dec == decmin) ? cairo_move_to : cairo_line_to)(cairo, px, py); } cairo_stroke(cairo); } cairo_set_source_rgba(cairo, 1.0, 1.0, 1.0, 1.0); } } if (constell) { N = constellations_n(); logverb("Checking %i constellations.\n", N); for (c=0; c<N; c++) { const char* shortname = NULL; const char* longname; il* lines; il* uniqstars; il* inboundstars; float r,g,b; int Ninbounds; int Nunique; cairo_text_extents_t textents; double cmass[3]; uniqstars = constellations_get_unique_stars(c); inboundstars = il_new(16); Nunique = il_size(uniqstars); debug("%s: %zu unique stars.\n", shortname, il_size(uniqstars)); // Count the number of unique stars belonging to this contellation // that are within the image bounds Ninbounds = 0; for (i=0; i<il_size(uniqstars); i++) { int star; star = il_get(uniqstars, i); constellations_get_star_radec(star, &ra, &dec); debug("star %i: ra,dec (%g,%g)\n", il_get(uniqstars, i), ra, dec); if (!sip_radec2pixelxy(&sip, ra, dec, &px, &py)) continue; if (px < 0 || py < 0 || px*scale > W || py*scale > H) continue; Ninbounds++; il_append(inboundstars, star); } il_free(uniqstars); debug("%i are in-bounds.\n", Ninbounds); // Only draw this constellation if at least 2 of its stars // are within the image bounds. if (Ninbounds < 2) { il_free(inboundstars); continue; } // Set the color based on the location of the first in-bounds star. // This is a hack -- we have two different constellation // definitions with different numbering schemes! if (!justlist && (il_size(inboundstars) > 0)) { // This is helpful for videos: ensuring that the same // color is chosen for a constellation in each frame. int star = il_get(inboundstars, 0); constellations_get_star_radec(star, &ra, &dec); if (whitetext) { r = g = b = 1; } else { color_for_radec(ra, dec, &r, &g, &b); } cairo_set_source_rgba(cairoshapes, r,g,b,0.8); cairo_set_line_width(cairoshapes, cw); cairo_set_source_rgba(cairo, r,g,b,0.8); cairo_set_line_width(cairo, cw); } // Draw circles around each star. // Find center of mass (of the in-bounds stars) cmass[0] = cmass[1] = cmass[2] = 0.0; for (i=0; i<il_size(inboundstars); i++) { double xyz[3]; int star = il_get(inboundstars, i); constellations_get_star_radec(star, &ra, &dec); if (!sip_radec2pixelxy(&sip, ra, dec, &px, &py)) continue; if (px < 0 || py < 0 || px*scale > W || py*scale > H) continue; if (!justlist) { cairo_arc(cairobg, px, py, crad+1.0, 0.0, 2.0*M_PI); cairo_stroke(cairobg); cairo_arc(cairoshapes, px, py, crad, 0.0, 2.0*M_PI); cairo_stroke(cairoshapes); } radecdeg2xyzarr(ra, dec, xyz); cmass[0] += xyz[0]; cmass[1] += xyz[1]; cmass[2] += xyz[2]; } cmass[0] /= il_size(inboundstars); cmass[1] /= il_size(inboundstars); cmass[2] /= il_size(inboundstars); xyzarr2radecdeg(cmass, &ra, &dec); il_free(inboundstars); if (!sip_radec2pixelxy(&sip, ra, dec, &px, &py)) continue; shortname = constellations_get_shortname(c); longname = constellations_get_longname(c); assert(shortname && longname); logverb("%s at (%g, %g)\n", longname, px, py); if (Ninbounds == Nunique) { printf("The constellation %s (%s)\n", longname, shortname); } else { printf("Part of the constellation %s (%s)\n", longname, shortname); } if (justlist) continue; // If the label will be off-screen, move it back on. cairo_text_extents(cairo, shortname, &textents); if (px < 0) px = 0; if (py < textents.height) py = textents.height; if ((px + textents.width)*scale > W) px = W/scale - textents.width; if ((py+textents.height)*scale > H) py = H/scale - textents.height; logverb("%s at (%g, %g)\n", shortname, px, py); add_text(cairos, longname, px, py, halign, valign); // Draw the lines. cairo_set_line_width(cairo, lw); lines = constellations_get_lines(c); for (i=0; i<il_size(lines)/2; i++) { int star1, star2; double ra1, dec1, ra2, dec2; double px1, px2, py1, py2; double dx, dy; double dist; double gapfrac; star1 = il_get(lines, i*2+0); star2 = il_get(lines, i*2+1); constellations_get_star_radec(star1, &ra1, &dec1); constellations_get_star_radec(star2, &ra2, &dec2); if (!sip_radec2pixelxy(&sip, ra1, dec1, &px1, &py1) || !sip_radec2pixelxy(&sip, ra2, dec2, &px2, &py2)) continue; dx = px2 - px1; dy = py2 - py1; dist = hypot(dx, dy); gapfrac = endgap / dist; cairo_move_to(cairoshapes, px1 + dx*gapfrac, py1 + dy*gapfrac); cairo_line_to(cairoshapes, px1 + dx*(1.0-gapfrac), py1 + dy*(1.0-gapfrac)); cairo_stroke(cairoshapes); } il_free(lines); } logverb("done constellations.\n"); } if (bright) { double dy = 0; cairo_font_extents_t extents; pl* brightstars = pl_new(16); if (!justlist) { cairo_set_source_rgba(cairoshapes, 0.75, 0.75, 0.75, 0.8); cairo_font_extents(cairo, &extents); dy = extents.ascent * 0.5; cairo_set_line_width(cairoshapes, cw); } N = bright_stars_n(); logverb("Checking %i bright stars.\n", N); for (i=0; i<N; i++) { const brightstar_t* bs = bright_stars_get(i); if (!sip_radec2pixelxy(&sip, bs->ra, bs->dec, &px, &py)) continue; if (px < 0 || py < 0 || px*scale > W || py*scale > H) continue; if (!(bs->name && strlen(bs->name))) continue; if (common_only && !(bs->common_name && strlen(bs->common_name))) continue; if (strcmp(bs->common_name, "Maia") == 0) continue; pl_append(brightstars, bs); } // keep only the Nbright brightest? if (Nbright && (pl_size(brightstars) > Nbright)) { pl_sort(brightstars, sort_by_mag); pl_remove_index_range(brightstars, Nbright, pl_size(brightstars)-Nbright); } for (i=0; i<pl_size(brightstars); i++) { char* text; const brightstar_t* bs = pl_get(brightstars, i); if (!sip_radec2pixelxy(&sip, bs->ra, bs->dec, &px, &py)) continue; if (bs->common_name && strlen(bs->common_name)) if (print_common_only || common_only) text = strdup(bs->common_name); else asprintf_safe(&text, "%s (%s)", bs->common_name, bs->name); else text = strdup(bs->name); logverb("%s at (%g, %g)\n", text, px, py); if (json) { sl* names = sl_new(4); char* namearr; if (bs->common_name && strlen(bs->common_name)) sl_append(names, bs->common_name); if (bs->name) sl_append(names, bs->name); namearr = sl_join(names, "\", \""); sl_appendf(json, "{ \"type\" : \"star\", " " \"pixelx\": %g, " " \"pixely\": %g, " " \"name\" : \"%s\", " " \"names\" : [ \"%s\" ] } " , px, py, (bs->common_name && strlen(bs->common_name)) ? bs->common_name : bs->name, namearr); free(namearr); sl_free2(names); } if (bs->common_name && strlen(bs->common_name)) printf("The star %s (%s)\n", bs->common_name, bs->name); else printf("The star %s\n", bs->name); if (!justlist) { float r,g,b; // set color based on RA,Dec to match constellations above. if (whitetext) { r = g = b = 1; } else { color_for_radec(bs->ra, bs->dec, &r, &g, &b); } cairo_set_source_rgba(cairoshapes, r,g,b,0.8); cairo_set_source_rgba(cairo, r,g,b, 0.8); } if (!justlist) add_text(cairos, text, px + label_offset, py + dy, halign, valign); free(text); if (!justlist) { // plot a black circle behind the light circle... cairo_arc(cairobg, px, py, crad+1.0, 0.0, 2.0*M_PI); cairo_stroke(cairobg); cairo_arc(cairoshapes, px, py, crad, 0.0, 2.0*M_PI); cairo_stroke(cairoshapes); } } pl_free(brightstars); } if (NGC) { double imscale; double imsize; double dy = 0; cairo_font_extents_t extents; if (!justlist) { cairo_set_source_rgb(cairoshapes, 1.0, 1.0, 1.0); cairo_set_source_rgb(cairo, 1.0, 1.0, 1.0); cairo_set_line_width(cairo, nw); cairo_font_extents(cairo, &extents); dy = extents.ascent * 0.5; } // arcsec/pixel imscale = sip_pixel_scale(&sip); // arcmin imsize = imscale * (imin(W, H) / scale) / 60.0; N = ngc_num_entries(); logverb("Checking %i NGC/IC objects.\n", N); for (i=0; i<N; i++) { ngc_entry* ngc = ngc_get_entry(i); sl* str; sl* names; double pixsize; float ara, adec; char* text; if (!ngc) break; if (ngc->size < imsize * ngc_fraction) continue; if (ngcic_accurate_get_radec(ngc->is_ngc, ngc->id, &ara, &adec) == 0) { ngc->ra = ara; ngc->dec = adec; } if (!sip_radec2pixelxy(&sip, ngc->ra, ngc->dec, &px, &py)) continue; if (px < 0 || py < 0 || px*scale > W || py*scale > H) continue; str = sl_new(4); //sl_appendf(str, "%s %i", (ngc->is_ngc ? "NGC" : "IC"), ngc->id); names = ngc_get_names(ngc, NULL); if (names) { int n; for (n=0; n<sl_size(names); n++) { if (only_messier && strncmp(sl_get(names, n), "M ", 2)) continue; sl_append(str, sl_get(names, n)); } } sl_free2(names); text = sl_implode(str, " / "); printf("%s\n", text); pixsize = ngc->size * 60.0 / imscale; if (!justlist) { // black circle behind the white one... cairo_arc(cairobg, px, py, pixsize/2.0+1.0, 0.0, 2.0*M_PI); cairo_stroke(cairobg); cairo_move_to(cairoshapes, px + pixsize/2.0, py); cairo_arc(cairoshapes, px, py, pixsize/2.0, 0.0, 2.0*M_PI); debug("size: %f arcsec, pixsize: %f pixels\n", ngc->size, pixsize); cairo_stroke(cairoshapes); add_text(cairos, text, px + label_offset, py + dy, halign, valign); } if (json) { char* namelist = sl_implode(str, "\", \""); sl_appendf(json, "{ \"type\" : \"ngc\", " " \"names\" : [ \"%s\" ], " " \"pixelx\" : %g, " " \"pixely\" : %g, " " \"radius\" : %g }" , namelist, px, py, pixsize/2.0); free(namelist); } free(text); sl_free2(str); } } if (HD) { double rac, decc, ra2, dec2; double arcsec; hd_catalog_t* hdcat; bl* hdlist; int i; if (!justlist) cairo_set_source_rgb(cairo, 1.0, 1.0, 1.0); logverb("Reading HD catalog: %s\n", hdpath); hdcat = henry_draper_open(hdpath); if (!hdcat) { ERROR("Failed to open HD catalog"); exit(-1); } logverb("Got %i HD stars\n", henry_draper_n(hdcat)); sip_pixelxy2radec(&sip, W/(2.0*scale), H/(2.0*scale), &rac, &decc); sip_pixelxy2radec(&sip, 0.0, 0.0, &ra2, &dec2); arcsec = arcsec_between_radecdeg(rac, decc, ra2, dec2); // Fudge arcsec *= 1.1; hdlist = henry_draper_get(hdcat, rac, decc, arcsec); logverb("Found %zu HD stars within range (%g arcsec of RA,Dec %g,%g)\n", bl_size(hdlist), arcsec, rac, decc); for (i=0; i<bl_size(hdlist); i++) { double px, py; char* txt; hd_entry_t* hd = bl_access(hdlist, i); if (!sip_radec2pixelxy(&sip, hd->ra, hd->dec, &px, &py)) { continue; } if (px < 0 || py < 0 || px*scale > W || py*scale > H) { logverb(" HD %i at RA,Dec (%g, %g) -> pixel (%.1f, %.1f) is out of bounds\n", hd->hd, hd->ra, hd->dec, px, py); continue; } asprintf_safe(&txt, "HD %i", hd->hd); if (!justlist) { cairo_text_extents_t textents; cairo_text_extents(cairo, txt, &textents); cairo_arc(cairobg, px, py, crad+1.0, 0.0, 2.0*M_PI); cairo_stroke(cairobg); cairo_arc(cairoshapes, px, py, crad, 0.0, 2.0*M_PI); cairo_stroke(cairoshapes); px -= (textents.width * 0.5); py -= (crad + 4.0); add_text(cairos, txt, px, py, halign, valign); } if (json) sl_appendf(json, "{ \"type\" : \"hd\"," " \"pixelx\": %g, " " \"pixely\": %g, " " \"name\" : \"HD %i\" }" , px, py, hd->hd); printf("%s\n", txt); free(txt); } bl_free(hdlist); henry_draper_close(hdcat); } if (json) { FILE* fout = stderr; char* annstr = sl_implode(json, ",\n"); fprintf(fout, "{ \n"); fprintf(fout, " \"status\": \"solved\",\n"); fprintf(fout, " \"git-revision\": %s,\n", AN_GIT_REVISION); fprintf(fout, " \"git-date\": \"%s\",\n", AN_GIT_DATE); fprintf(fout, " \"annotations\": [\n%s\n]\n", annstr); fprintf(fout, "}\n"); free(annstr); } sl_free2(json); json = NULL; if (justlist) return 0; target = cairo_image_surface_create_for_data(img, CAIRO_FORMAT_ARGB32, W, H, W*4); cairot = cairo_create(target); cairo_set_source_rgba(cairot, 0, 0, 0, 1); // Here's where you set the background surface's properties... cairo_set_source_surface(cairot, surfbg, 0, 0); cairo_mask_surface(cairot, surfshapesmask, 0, 0); cairo_stroke(cairot); // Add on the shapes. cairo_set_source_surface(cairot, surfshapes, 0, 0); //cairo_mask_surface(cairot, surfshapes, 0, 0); cairo_mask_surface(cairot, surfshapesmask, 0, 0); cairo_stroke(cairot); // Add on the foreground. cairo_set_source_surface(cairot, surffg, 0, 0); cairo_mask_surface(cairot, surffg, 0, 0); cairo_stroke(cairot); // Convert image for output... cairoutils_argb32_to_rgba(img, W, H); if (pngformat) { if (cairoutils_write_png(outfn, img, W, H)) { ERROR("Failed to write PNG"); exit(-1); } } else { if (cairoutils_write_ppm(outfn, img, W, H)) { ERROR("Failed to write PPM"); exit(-1); } } cairo_surface_destroy(target); cairo_surface_destroy(surfshapesmask); cairo_surface_destroy(surffg); cairo_surface_destroy(surfbg); cairo_surface_destroy(surfshapes); cairo_destroy(cairo); cairo_destroy(cairot); cairo_destroy(cairobg); cairo_destroy(cairoshapes); cairo_destroy(cairoshapesmask); free(img); return 0; }
int hpquads(startree_t* starkd, codefile_t* codes, quadfile_t* quads, int Nside, double scale_min_arcmin, double scale_max_arcmin, int dimquads, int passes, int Nreuses, int Nloosen, int id, anbool scanoccupied, void* sort_data, int (*sort_func)(const void*, const void*), int sort_size, char** args, int argc) { hpquads_t myhpquads; hpquads_t* me = &myhpquads; int i; int pass; anbool circle = TRUE; double radius2; il* hptotry; int Nhptotry = 0; int nquads; double hprad; double quadscale; int skhp, sknside; qfits_header* qhdr; qfits_header* chdr; int N; int dimcodes; int quadsize; int NHP; memset(me, 0, sizeof(hpquads_t)); if (Nside > HP_MAX_INT_NSIDE) { ERROR("Error: maximum healpix Nside = %i", HP_MAX_INT_NSIDE); return -1; } if (Nreuses > 255) { ERROR("Error, reuse (-r) must be less than 256"); return -1; } me->Nside = Nside; me->dimquads = dimquads; NHP = 12 * Nside * Nside; dimcodes = dimquad2dimcode(dimquads); quadsize = sizeof(unsigned int) * dimquads; logmsg("Nside=%i. Nside^2=%i. Number of healpixes=%i. Healpix side length ~ %g arcmin.\n", me->Nside, me->Nside*me->Nside, NHP, healpix_side_length_arcmin(me->Nside)); me->sort_data = sort_data; me->sort_func = sort_func; me->sort_size = sort_size; tic(); me->starkd = starkd; N = startree_N(me->starkd); logmsg("Star tree contains %i objects.\n", N); // get the "HEALPIX" header from the skdt... skhp = qfits_header_getint(startree_header(me->starkd), "HEALPIX", -1); if (skhp == -1) { if (!qfits_header_getboolean(startree_header(me->starkd), "ALLSKY", FALSE)) { logmsg("Warning: skdt does not contain \"HEALPIX\" header. Code and quad files will not contain this header either.\n"); } } // likewise "HPNSIDE" sknside = qfits_header_getint(startree_header(me->starkd), "HPNSIDE", 1); if (sknside && Nside % sknside) { logerr("Error: Nside (-n) must be a multiple of the star kdtree healpixelisation: %i\n", sknside); return -1; } if (!scanoccupied && (N*(skhp == -1 ? 1 : sknside*sknside*12) < NHP)) { logmsg("\n\n"); logmsg("NOTE, your star kdtree is sparse (has only a fraction of the stars expected)\n"); logmsg(" so you probably will get much faster results by setting the \"-E\" command-line\n"); logmsg(" flag.\n"); logmsg("\n\n"); } quads->dimquads = me->dimquads; codes->dimcodes = dimcodes; quads->healpix = skhp; codes->healpix = skhp; quads->hpnside = sknside; codes->hpnside = sknside; if (id) { quads->indexid = id; codes->indexid = id; } qhdr = quadfile_get_header(quads); chdr = codefile_get_header(codes); add_headers(qhdr, args, argc, startree_header(me->starkd), circle, passes); add_headers(chdr, args, argc, startree_header(me->starkd), circle, passes); if (quadfile_write_header(quads)) { ERROR("Couldn't write headers to quad file"); return -1; } if (codefile_write_header(codes)) { ERROR("Couldn't write headers to code file"); return -1; } quads->numstars = codes->numstars = N; me->quad_dist2_upper = arcmin2distsq(scale_max_arcmin); me->quad_dist2_lower = arcmin2distsq(scale_min_arcmin); codes->index_scale_upper = quads->index_scale_upper = distsq2rad(me->quad_dist2_upper); codes->index_scale_lower = quads->index_scale_lower = distsq2rad(me->quad_dist2_lower); me->nuses = calloc(N, sizeof(unsigned char)); // hprad = sqrt(2) * (healpix side length / 2.) hprad = arcmin2dist(healpix_side_length_arcmin(Nside)) * M_SQRT1_2; quadscale = 0.5 * sqrt(me->quad_dist2_upper); // 1.01 for a bit of safety. we'll look at a few extra stars. radius2 = square(1.01 * (hprad + quadscale)); me->radius2 = radius2; logmsg("Healpix radius %g arcsec, quad scale %g arcsec, total %g arcsec\n", distsq2arcsec(hprad*hprad), distsq2arcsec(quadscale*quadscale), distsq2arcsec(radius2)); hptotry = il_new(1024); if (scanoccupied) { logmsg("Scanning %i input stars...\n", N); for (i=0; i<N; i++) { double xyz[3]; int j; if (startree_get(me->starkd, i, xyz)) { ERROR("Failed to get star %i", i); return -1; } j = xyzarrtohealpix(xyz, Nside); il_insert_unique_ascending(hptotry, j); if (log_get_level() > LOG_VERB) { double ra,dec; if (startree_get_radec(me->starkd, i, &ra, &dec)) { ERROR("Failed to get RA,Dec for star %i\n", i); return -1; } logdebug("star %i: RA,Dec %g,%g; xyz %g,%g,%g; hp %i\n", i, ra, dec, xyz[0], xyz[1], xyz[2], j); } } logmsg("Will check %zu healpixes.\n", il_size(hptotry)); if (log_get_level() > LOG_VERB) { logdebug("Checking healpixes: [ "); for (i=0; i<il_size(hptotry); i++) logdebug("%i ", il_get(hptotry, i)); logdebug("]\n"); } } else { if (skhp == -1) { // Try all healpixes. il_free(hptotry); hptotry = NULL; Nhptotry = NHP; } else { // The star kdtree may itself be healpixed int starhp, starx, stary; // In that case, the healpixes we are interested in form a rectangle // within a big healpix. These are the coords (in [0, Nside)) of // that rectangle. int x0, x1, y0, y1; int x, y; healpix_decompose_xy(skhp, &starhp, &starx, &stary, sknside); x0 = starx * (Nside / sknside); x1 = (starx+1) * (Nside / sknside); y0 = stary * (Nside / sknside); y1 = (stary+1) * (Nside / sknside); for (y=y0; y<y1; y++) { for (x=x0; x<x1; x++) { int j = healpix_compose_xy(starhp, x, y, Nside); il_append(hptotry, j); } } assert(il_size(hptotry) == (Nside/sknside) * (Nside/sknside)); } } if (hptotry) Nhptotry = il_size(hptotry); me->quadlist = bl_new(65536, quadsize); if (Nloosen) me->retryhps = il_new(1024); for (pass=0; pass<passes; pass++) { char key[64]; int nthispass; logmsg("Pass %i of %i.\n", pass+1, passes); logmsg("Trying %i healpixes.\n", Nhptotry); nthispass = build_quads(me, Nhptotry, hptotry, Nreuses); logmsg("Made %i quads (out of %i healpixes) this pass.\n", nthispass, Nhptotry); logmsg("Made %i quads so far.\n", (me->bigquadlist ? bt_size(me->bigquadlist) : 0) + (int)bl_size(me->quadlist)); sprintf(key, "PASS%i", pass+1); fits_header_mod_int(chdr, key, nthispass, "quads created in this pass"); fits_header_mod_int(qhdr, key, nthispass, "quads created in this pass"); logmsg("Merging quads...\n"); if (!me->bigquadlist) me->bigquadlist = bt_new(quadsize, 256); for (i=0; i<bl_size(me->quadlist); i++) { void* q = bl_access(me->quadlist, i); bt_insert2(me->bigquadlist, q, FALSE, compare_quads, &me->dimquads); } bl_remove_all(me->quadlist); } il_free(hptotry); hptotry = NULL; if (Nloosen) { int R; for (R=Nreuses+1; R<=Nloosen; R++) { il* trylist; int nthispass; logmsg("Loosening reuse maximum to %i...\n", R); logmsg("Trying %zu healpixes.\n", il_size(me->retryhps)); if (!il_size(me->retryhps)) break; trylist = me->retryhps; me->retryhps = il_new(1024); nthispass = build_quads(me, il_size(trylist), trylist, R); logmsg("Made %i quads (out of %zu healpixes) this pass.\n", nthispass, il_size(trylist)); il_free(trylist); for (i=0; i<bl_size(me->quadlist); i++) { void* q = bl_access(me->quadlist, i); bt_insert2(me->bigquadlist, q, FALSE, compare_quads, &me->dimquads); } bl_remove_all(me->quadlist); } } if (me->retryhps) il_free(me->retryhps); kdtree_free_query(me->res); me->res = NULL; me->inds = NULL; me->stars = NULL; free(me->nuses); me->nuses = NULL; logmsg("Writing quads...\n"); // add the quads from the big-quadlist nquads = bt_size(me->bigquadlist); for (i=0; i<nquads; i++) { unsigned int* q = bt_access(me->bigquadlist, i); quad_write(codes, quads, q, me->starkd, me->dimquads, dimcodes); } // add the quads that were made during the final round. for (i=0; i<bl_size(me->quadlist); i++) { unsigned int* q = bl_access(me->quadlist, i); quad_write(codes, quads, q, me->starkd, me->dimquads, dimcodes); } // fix output file headers. if (quadfile_fix_header(quads)) { ERROR("Failed to fix quadfile headers"); return -1; } if (codefile_fix_header(codes)) { ERROR("Failed to fix codefile headers"); return -1; } bl_free(me->quadlist); bt_free(me->bigquadlist); toc(); logmsg("Done.\n"); return 0; }
int plot_healpix_plot(const char* command, cairo_t* cairo, plot_args_t* pargs, void* baton) { plothealpix_t* args = (plothealpix_t*)baton; double ra,dec,rad; il* hps; int i; double hpstep; int minx[12], maxx[12], miny[12], maxy[12]; plotstuff_builtin_apply(cairo, pargs); if (plotstuff_get_radec_center_and_radius(pargs, &ra, &dec, &rad)) { ERROR("Failed to get RA,Dec center and radius"); return -1; } hps = healpix_rangesearch_radec(ra, dec, rad, args->nside, NULL); logmsg("Found %zu healpixes in range.\n", il_size(hps)); hpstep = args->nside * args->stepsize * plotstuff_pixel_scale(pargs) / 60.0 / healpix_side_length_arcmin(args->nside); hpstep = MIN(1, hpstep); logmsg("Taking steps of %g in healpix space\n", hpstep); // For each of the 12 top-level healpixes, find the range of healpixes covered by this image. for (i=0; i<12; i++) { maxx[i] = maxy[i] = -1; minx[i] = miny[i] = args->nside+1; } for (i=0; i<il_size(hps); i++) { int hp = il_get(hps, i); int hpx, hpy; int bighp; healpix_decompose_xy(hp, &bighp, &hpx, &hpy, args->nside); logverb(" hp %i: bighp %i, x,y (%i,%i)\n", i, bighp, hpx, hpy); minx[bighp] = MIN(minx[bighp], hpx); maxx[bighp] = MAX(maxx[bighp], hpx); miny[bighp] = MIN(miny[bighp], hpy); maxy[bighp] = MAX(maxy[bighp], hpy); } il_free(hps); for (i=0; i<12; i++) { int hx,hy; int hp; double d, frac; double x,y; if (maxx[i] == -1) continue; logverb("Big healpix %i: x range [%i, %i], y range [%i, %i]\n", i, minx[i], maxx[i], miny[i], maxy[i]); for (hy = miny[i]; hy <= maxy[i]; hy++) { logverb(" y=%i\n", hy); for (d=minx[i]; d<=maxx[i]; d+=hpstep) { hx = floor(d); frac = d - hx; hp = healpix_compose_xy(i, hx, hy, args->nside); healpix_to_radecdeg(hp, args->nside, frac, 0.0, &ra, &dec); if (!plotstuff_radec2xy(pargs, ra, dec, &x, &y)) continue; if (d == minx[i]) cairo_move_to(pargs->cairo, x, y); else cairo_line_to(pargs->cairo, x, y); } cairo_stroke(pargs->cairo); } for (hx = minx[i]; hx <= maxx[i]; hx++) { for (d=miny[i]; d<=maxy[i]; d+=hpstep) { hy = floor(d); frac = d - hy; hp = healpix_compose_xy(i, hx, hy, args->nside); healpix_to_radecdeg(hp, args->nside, 0.0, frac, &ra, &dec); if (!plotstuff_radec2xy(pargs, ra, dec, &x, &y)) continue; if (d == miny[i]) cairo_move_to(pargs->cairo, x, y); else cairo_line_to(pargs->cairo, x, y); } cairo_stroke(pargs->cairo); } } return 0; }
int main(int argc, char *argv[]) { int argchar; char* infn = NULL; char* outfn = NULL; anbool tostdout = FALSE; FILE* fin = NULL; FILE* fout = NULL; il* exts; int i; char* progname = argv[0]; anbool inblocks = FALSE; anbool inmegs = FALSE; int allexts = 0; int Next = -1; anbool dataonly = FALSE; anbool headeronly = FALSE; anqfits_t* anq = NULL; int loglvl = LOG_MSG; exts = il_new(16); while ((argchar = getopt (argc, argv, OPTIONS)) != -1) switch (argchar) { case 'v': loglvl++; break; case 'D': dataonly = TRUE; break; case 'H': headeronly = TRUE; break; case 'a': allexts = 1; break; case 'b': inblocks = TRUE; break; case 'M': inmegs = TRUE; break; case 'e': il_append(exts, atoi(optarg)); break; case 'i': infn = optarg; break; case 'o': outfn = optarg; break; case '?': case 'h': printHelp(progname); return 0; default: return -1; } if (headeronly && dataonly) { fprintf(stderr, "Can't write data blocks only AND header blocks only!\n"); exit(-1); } if (inblocks && inmegs) { fprintf(stderr, "Can't write sizes in FITS blocks and megabytes.\n"); exit(-1); } fits_use_error_system(); log_init(loglvl); log_to(stderr); errors_log_to(stderr); if (infn) { anq = anqfits_open(infn); if (!anq) { ERROR("Failed to open input file \"%s\"", infn); exit(-1); } Next = anqfits_n_ext(anq); fprintf(stderr, "File %s contains %i FITS extensions.\n", infn, Next); } if (infn && !outfn) { for (i=0; i<Next; i++) { off_t hdrstart, hdrlen, datastart, datalen; hdrstart = anqfits_header_start(anq, i); hdrlen = anqfits_header_size(anq, i); datastart = anqfits_data_start(anq, i); datalen = anqfits_data_size(anq, i); if (inblocks) { off_t block = (off_t)FITS_BLOCK_SIZE; fprintf(stderr, "Extension %i : header start %zu , length %zu ; data start %zu , length %zu blocks.\n", i, (size_t)(hdrstart / block), (size_t)(hdrlen / block), (size_t)(datastart / block), (size_t)(datalen / block)); } else if (inmegs) { off_t meg = 1024*1024; fprintf(stderr, "Extension %i : header start %zu , length %zu ; data start %zu , length %zu megabytes.\n", i, (size_t)(hdrstart/meg), (size_t)(hdrlen/meg), (size_t)(datastart/meg), (size_t)(datalen/meg)); } else { fprintf(stderr, "Extension %i : header start %zu , length %zu ; data start %zu , length %zu .\n", i, (size_t)hdrstart, (size_t)hdrlen, (size_t)datastart, (size_t)datalen); } } anqfits_close(anq); exit(0); } if (!infn || !outfn || !(il_size(exts) || allexts)) { printHelp(progname); exit(-1); } if (!strcmp(outfn, "-")) { tostdout = TRUE; if (allexts) { fprintf(stderr, "Specify all extensions (-a) and outputting to stdout (-o -) doesn't make much sense...\n"); exit(-1); } } if (infn) { fin = fopen(infn, "rb"); if (!fin) { fprintf(stderr, "Failed to open input file %s: %s\n", infn, strerror(errno)); exit(-1); } } if (tostdout) fout = stdout; else { if (allexts) for (i=0; i<Next; i++) il_append(exts, i); else { // open the (single) output file. fout = fopen(outfn, "wb"); if (!fout) { fprintf(stderr, "Failed to open output file %s: %s\n", outfn, strerror(errno)); exit(-1); } } } for (i=0; i<il_size(exts); i++) { off_t hdrstart, hdrlen, datastart, datalen; int ext = il_get(exts, i); if (allexts) { char fn[256]; snprintf(fn, sizeof(fn), outfn, ext); fout = fopen(fn, "wb"); if (!fout) { fprintf(stderr, "Failed to open output file %s: %s\n", fn, strerror(errno)); exit(-1); } } hdrstart = anqfits_header_start(anq, ext); hdrlen = anqfits_header_size(anq, ext); datastart = anqfits_data_start(anq, ext); datalen = anqfits_data_size(anq, ext); if (inblocks) { off_t block = (off_t)FITS_BLOCK_SIZE; fprintf(stderr, "Writing extension %i : header start %zu , length %zu ; data start %zu , length %zu blocks.\n", ext, (size_t)(hdrstart / block), (size_t)(hdrlen / block), (size_t)(datastart / block), (size_t)(datalen / block)); } else if (inmegs) { off_t meg = 1024*1024; fprintf(stderr, "Writing extension %i : header start %zu , length %zu ; data start %zu , length %zu megabytes.\n", ext, (size_t)(hdrstart/meg), (size_t)(hdrlen/meg), (size_t)(datastart/meg), (size_t)(datalen/meg)); } else { fprintf(stderr, "Writing extension %i : header start %zu , length %zu ; data start %zu , length %zu .\n", ext, (size_t)hdrstart, (size_t)hdrlen, (size_t)datastart, (size_t)datalen); } if (hdrlen && !dataonly) { if (pipe_file_offset(fin, hdrstart, hdrlen, fout)) { fprintf(stderr, "Failed to write header for extension %i: %s\n", ext, strerror(errno)); exit(-1); } } if (datalen && !headeronly) { if (pipe_file_offset(fin, datastart, datalen, fout)) { fprintf(stderr, "Failed to write data for extension %i: %s\n", ext, strerror(errno)); exit(-1); } } if (allexts) if (fclose(fout)) { fprintf(stderr, "Failed to close output file: %s\n", strerror(errno)); exit(-1); } } fclose(fin); if (!allexts && !tostdout) fclose(fout); il_free(exts); anqfits_close(anq); return 0; }
static void dualtree_rs_recurse(kdtree_t* xtree, kdtree_t* ytree, il* xnodes, il* xleaves, bl* xnodebbs, bl* xleafbbs, int ynode, ttype* ybb, double maxd2, rangesearch_callback cb, void* baton) { int leafmarker; il* childnodes; int i, N; ttype oldbbval; ttype splitval; uint8_t splitdim; // if the query node is a leaf... if (KD_IS_LEAF(ytree, ynode)) { // ... then run the result function on each x node /* if (callbacks->start_results) callbacks->start_results(callbacks->start_extra, ytree, ynode); */ if (cb) { // non-leaf nodes N = il_size(xnodes); for (i=0; i<N; i++) dtrs_nodes(xtree, ytree, il_get(xnodes, i), ynode, maxd2, cb, baton); // leaf nodes N = il_size(xleaves); for (i=0; i<N; i++) dtrs_nodes(xtree, ytree, il_get(xleaves, i), ynode, maxd2, cb, baton); } /* if (callbacks->end_results) callbacks->end_results(callbacks->end_extra, ytree, ynode); */ return; } // if there are search leaves but no search nodes, run the result // function on each leaf. (Note that the query node is not a leaf!) if (!il_size(xnodes)) { /* result_function result = callbacks->result; void* result_extra = callbacks->result_extra; if (callbacks->start_results) callbacks->start_results(callbacks->start_extra, ytree, ynode); */ // leaf nodes if (result) { N = il_size(xleaves); for (i=0; i<N; i++) dtrs_nodes(xtree, ytree, il_get(xleaves, i), ynode, maxd2, cb, baton); //result(result_extra, xtree, il_get(leaves, i), ytree, ynode); } /* if (callbacks->end_results) callbacks->end_results(callbacks->end_extra, ytree, ynode); */ return; } leafmarker = il_size(leaves); childnodes = il_new(256); #define BBLO(bb, d) ((bb)[2*(d)]) #define BBHI(bb, d) ((bb)[(2*(d))+1]) N = il_size(xnodes); for (i=0; i<N; i++) { int child1, child2; int xnode = il_get(xnodes, i); ttype* xbb = bl_access(xnodebbs, i); ttype* leftbb; ttype* rightbb; /* node-node range... if (!decision(decision_extra, xtree, xnode, ytree, ynode)) continue; */ split_dim_and_value(xtree, xnode, &splitdim, &splitval); child1 = KD_CHILD_LEFT(xnode); if (KD_IS_LEAF(xtree, child1)) { il_append(xleaves, child1); il_append(xleaves, child2); leftbb = bl_append(xleafbbs, xbb); rightbb = bl_append(xleafbbs, xbb); } else { il_append(childnodes, child1); il_append(childnodes, child2); leftbb = bl_append(xnodebbs, xbb); rightbb = bl_append(xnodebbs, xbb); } BBHI(leftbb, splitdim) = splitval; BBLO(rightbb, splitdim) = splitval; } printf("dualtree: start left child of y node %i: %i\n", ynode, KD_CHILD_LEFT(ynode)); // recurse on the Y children! split_dim_and_value(ytree, ynode, &splitdim, &splitval); // update y bb for the left child: max(splitdim) = splitval oldbbval = BBHI(ybb, splitdim); BBHI(ybb, splitdim) = splitval; dualtree_recurse(xtree, ytree, childnodes, leaves, KD_CHILD_LEFT(ynode), callbacks); BBHI(ybb, splitdim) = oldbbval; printf("dualtree: done left child of y node %i: %i\n", ynode, KD_CHILD_LEFT(ynode)); printf("dualtree: start right child of y node %i: %i\n", ynode, KD_CHILD_RIGHT(ynode)); // update y bb for the right child: min(splitdim) = splitval oldbbval = BBLO(ybb, splitdim); BBLO(ybb, splitdim) = splitval; dualtree_recurse(xtree, ytree, childnodes, leaves, KD_CHILD_RIGHT(ynode), callbacks); BBLO(ybb, splitdim) = oldbbval; printf("dualtree: done right child of y node %i: %i\n", ynode, KD_CHILD_LEFT(ynode)); // put the "leaves" list back the way it was... il_remove_index_range(leaves, leafmarker, il_size(leaves)-leafmarker); il_free(childnodes); }
int main(int argc, char** args) { int c; FILE* fconst = NULL; uint32_t nstars; size_t mapsize; void* map; unsigned char* hip; FILE* fhip = NULL; int i; pl* cstars; il* alluniqstars; sl* shortnames; while ((c = getopt(argc, args, OPTIONS)) != -1) { switch (c) { case 'h': print_help(args[0]); exit(0); } } if (optind != argc) { print_help(args[0]); exit(-1); } for (i=0; i<sizeof(const_dirs)/sizeof(char*); i++) { char fn[256]; snprintf(fn, sizeof(fn), "%s/%s", const_dirs[i], constfn); fprintf(stderr, "render_constellation: Trying file: %s\n", fn); fconst = fopen(fn, "rb"); if (fconst) break; } if (!fconst) { fprintf(stderr, "render_constellation: couldn't open any constellation files.\n"); return -1; } for (i=0; i<sizeof(hip_dirs)/sizeof(char*); i++) { char fn[256]; snprintf(fn, sizeof(fn), "%s/%s", hip_dirs[i], hipparcos_fn); fprintf(stderr, "render_constellation: Trying hip file: %s\n", fn); fhip = fopen(fn, "rb"); if (fhip) break; } if (!fhip) { fprintf(stderr, "render_constellation: unhip\n"); return -1; } // first 32-bit int: if (fread(&nstars, 4, 1, fhip) != 1) { fprintf(stderr, "render_constellation: failed to read nstars.\n"); return -1; } v32_letoh(&nstars); fprintf(stderr, "render_constellation: Found %i Hipparcos stars\n", nstars); mapsize = nstars * HIP_SIZE + HIP_OFFSET; map = mmap(0, mapsize, PROT_READ, MAP_SHARED, fileno(fhip), 0); hip = ((unsigned char*)map) + HIP_OFFSET; // for each constellation, its il* of lines. cstars = pl_new(16); alluniqstars = il_new(16); shortnames = sl_new(16); for (c=0;; c++) { char shortname[16]; int nlines; int i; il* stars; if (feof(fconst)) break; if (fscanf(fconst, "%s %d ", shortname, &nlines) != 2) { fprintf(stderr, "failed to parse name+nlines (constellation %i)\n", c); fprintf(stderr, "file offset: %i (%x)\n", (int)ftello(fconst), (int)ftello(fconst)); return -1; } //fprintf(stderr, "Name: %s. Nlines %i.\n", shortname, nlines); stars = il_new(16); sl_append(shortnames, shortname); pl_append(cstars, stars); for (i=0; i<nlines; i++) { int star1, star2; if (fscanf(fconst, " %d %d", &star1, &star2) != 2) { fprintf(stderr, "failed parse star1+star2\n"); return -1; } il_insert_unique_ascending(alluniqstars, star1); il_insert_unique_ascending(alluniqstars, star2); il_append(stars, star1); il_append(stars, star2); } fscanf(fconst, "\n"); } fprintf(stderr, "render_constellations: Read %i constellations.\n", c); printf("static const int constellations_N = %i;\n", sl_size(shortnames)); /* for (c=0; c<sl_size(shortnames); c++) { printf("static const char* shortname_%i = \"%s\";\n", c, sl_get(shortnames, c)); } printf("static const char* shortnames[] = {"); for (c=0; c<sl_size(shortnames); c++) { printf("shortname_%i,", c); } printf("};\n"); */ printf("static const char* shortnames[] = {"); for (c=0; c<sl_size(shortnames); c++) { printf("\"%s\",", sl_get(shortnames, c)); } printf("};\n"); printf("static const int constellation_nlines[] = {"); for (c=0; c<pl_size(cstars); c++) { il* stars = pl_get(cstars, c); printf("%i,", il_size(stars)/2); } printf("};\n"); for (c=0; c<pl_size(cstars); c++) { il* stars = pl_get(cstars, c); printf("static const int constellation_lines_%i[] = {", c); for (i=0; i<il_size(stars); i++) { int s = il_get(stars, i); int ms = il_index_of(alluniqstars, s); printf("%s%i", (i?",":""), ms); } printf("};\n"); } printf("static const int* constellation_lines[] = {"); for (c=0; c<pl_size(cstars); c++) { printf("constellation_lines_%i,", c); } printf("};\n"); printf("static const int stars_N = %i;\n", il_size(alluniqstars)); printf("static const double star_positions[] = {"); for (i=0; i<il_size(alluniqstars); i++) { int s = il_get(alluniqstars, i); double ra, dec; hip_get_radec(hip, s, &ra, &dec); printf("%g,%g,", ra, dec); } printf("};\n"); munmap(map, mapsize); fclose(fconst); fclose(fhip); return 0; }
int plot_index_plot(const char* command, cairo_t* cairo, plot_args_t* pargs, void* baton) { plotindex_t* args = (plotindex_t*)baton; int i; double ra, dec, radius; double xyz[3]; double r2; pad_qidxes(args); plotstuff_builtin_apply(cairo, pargs); if (plotstuff_get_radec_center_and_radius(pargs, &ra, &dec, &radius)) { ERROR("Failed to get RA,Dec center and radius"); return -1; } radecdeg2xyzarr(ra, dec, xyz); r2 = deg2distsq(radius); logmsg("Field RA,Dec,radius = (%g,%g), %g deg\n", ra, dec, radius); logmsg("distsq: %g\n", r2); for (i=0; i<pl_size(args->indexes); i++) { index_t* index = pl_get(args->indexes, i); int j, N; int DQ; double px,py; if (args->stars) { // plot stars double* radecs = NULL; startree_search_for(index->starkd, xyz, r2, NULL, &radecs, NULL, &N); if (N) { assert(radecs); } logmsg("Found %i stars in range in index %s\n", N, index->indexname); for (j=0; j<N; j++) { logverb(" RA,Dec (%g,%g) -> x,y (%g,%g)\n", radecs[2*j], radecs[2*j+1], px, py); if (!plotstuff_radec2xy(pargs, radecs[j*2], radecs[j*2+1], &px, &py)) { ERROR("Failed to convert RA,Dec %g,%g to pixels\n", radecs[j*2], radecs[j*2+1]); continue; } cairoutils_draw_marker(cairo, pargs->marker, px, py, pargs->markersize); cairo_stroke(cairo); } free(radecs); } if (args->quads) { DQ = index_get_quad_dim(index); qidxfile* qidx = pl_get(args->qidxes, i); if (qidx) { int* stars; int Nstars; il* quadlist = il_new(256); // find stars in range. startree_search_for(index->starkd, xyz, r2, NULL, NULL, &stars, &Nstars); logmsg("Found %i stars in range of index %s\n", N, index->indexname); logmsg("Using qidx file.\n"); // find quads that each star is a member of. for (j=0; j<Nstars; j++) { uint32_t* quads; int Nquads; int k; if (qidxfile_get_quads(qidx, stars[j], &quads, &Nquads)) { ERROR("Failed to get quads for star %i\n", stars[j]); return -1; } for (k=0; k<Nquads; k++) il_insert_unique_ascending(quadlist, quads[k]); } for (j=0; j<il_size(quadlist); j++) { plotquad(cairo, pargs, args, index, il_get(quadlist, j), DQ); } } else { // plot quads N = index_nquads(index); for (j=0; j<N; j++) { plotquad(cairo, pargs, args, index, j, DQ); } } } } return 0; }
int main(int argc, char *argv[]) { int argchar; char* infn = NULL; char* outfn = NULL; anbool tostdout = FALSE; FILE* fin = NULL; FILE* fout = NULL; il* exts; il* sizes; int i; char* progname = argv[0]; int Next; anqfits_t* anq; exts = il_new(16); sizes = il_new(16); while ((argchar = getopt (argc, argv, OPTIONS)) != -1) switch (argchar) { case 'e': il_append(exts, atoi(optarg)); break; case 's': il_append(sizes, atoi(optarg)); break; case 'i': infn = optarg; break; case 'o': outfn = optarg; break; case '?': case 'h': printHelp(progname); return 0; default: return -1; } log_init(LOG_MSG); if (!infn || !outfn || !il_size(exts) || (il_size(exts) != il_size(sizes))) { printHelp(progname); exit(-1); } if (infn) { fin = fopen(infn, "rb"); if (!fin) { SYSERROR("Failed to open input file %s", infn); exit(-1); } } anq = anqfits_open(infn); if (!anq) { ERROR("Failed to open input file %s", infn); exit(-1); } Next = anqfits_n_ext(anq); if (Next == -1) { ERROR("Couldn't determine how many extensions are in file %s", infn); exit(-1); } else { logverb("File %s contains %i FITS extensions.\n", infn, Next); } for (i=0; i<il_size(exts); i++) { int e = il_get(exts, i); int s = il_get(sizes, i); if (e < 0 || e >= Next) { logerr("Extension %i is not valid: must be in [%i, %i]\n", e, 0, Next); exit(-1); } if (s != 2 && s != 4 && s != 8) { logerr("Invalid byte size %i: must be 2, 4, or 8.\n", s); exit(-1); } } if (!strcmp(outfn, "-")) tostdout = TRUE; if (tostdout) fout = stdout; else { fout = fopen(outfn, "wb"); if (!fout) { SYSERROR("Failed to open output file %s", outfn); exit(-1); } } for (i=0; i<Next; i++) { int hdrstart, hdrlen, datastart, datalen; int ind; int size; ind = il_index_of(exts, i); if (ind == -1) { size = 0; } else { size = il_get(sizes, ind); } hdrstart = anqfits_header_start(anq, i); hdrlen = anqfits_header_size (anq, i); datastart = anqfits_data_start(anq, i); datalen = anqfits_data_size (anq, i); if (hdrlen) { if (pipe_file_offset(fin, hdrstart, hdrlen, fout)) { ERROR("Failed to write header for extension %i", i); exit(-1); } } if (!datalen) continue; if (size) { int Nitems = datalen / size; int j; char buf[size]; logmsg("Extension %i: flipping words of length %i bytes.\n", i, size); for (j=0; j<Nitems; j++) { if (fread(buf, size, 1, fin) != 1) { SYSERROR("Failed to read data element %i from extension %i", j, i); exit(-1); } endian_swap(buf, size); if (fwrite(buf, size, 1, fout) != 1) { SYSERROR("Failed to write data element %i to extension %i", j, i); exit(-1); } } } else { logmsg("Extension %i: copying verbatim.\n", i); // passthrough if (pipe_file_offset(fin, datastart, datalen, fout)) { ERROR("Failed to write data for extension %i", i); exit(-1); } } } fclose(fin); anqfits_close(anq); if (!tostdout) fclose(fout); il_free(exts); il_free(sizes); return 0; }