示例#1
0
void test_il_dupe(CuTest* tc) {
	int i, N=63;
	il* x = il_new(4), *y;
	for (i=0;i<N;i++) 
		il_push(x,i);
	y = il_dupe(x);
	for (i=0;i<N;i++) 
		CuAssertIntEquals(tc, i, il_get(y, i));
	for (i=0;i<N;i++) 
		il_pop(x);
	CuAssertIntEquals(tc, N, il_size(y));
	CuAssertIntEquals(tc, il_check_consistency(x), 0);
	il_free(x);
	il_free(y);
}
示例#2
0
void test_il_insert_descending(CuTest* tc) {
	int i;
	il* x = il_new(4);
	il_insert_descending(x,2);
	il_insert_descending(x,4);
	il_insert_descending(x,8);
	il_insert_descending(x,5);
	il_insert_descending(x,6);
	il_insert_descending(x,7);
	il_insert_descending(x,1);
	il_insert_descending(x,3);
	il_insert_descending(x,0);
	CuAssertIntEquals(tc, il_check_consistency(x), 0);
	CuAssertIntEquals(tc, il_check_sorted_descending(x, 0), 0);
	for (i=0;i<il_size(x);i++)
		CuAssertIntEquals(tc, il_size(x)-i-1, il_get(x, i));
	il_free(x);
}
示例#3
0
static int build_quads(hpquads_t* me, int Nhptotry, il* hptotry, int R) {
	int nthispass = 0;
	int lastgrass = 0;
	int i;

	for (i=0; i<Nhptotry; i++) {
		anbool ok;
		int hp;
		if ((i * 80 / Nhptotry) != lastgrass) {
			printf(".");
			fflush(stdout);
			lastgrass = i * 80 / Nhptotry;
		}
		if (hptotry)
			hp = il_get(hptotry, i);
		else
			hp = i;
		me->hp = hp;
		me->quad_created = FALSE;
		ok = find_stars(me, me->radius2, R);
		if (ok)
			create_quad(me, TRUE);

		if (me->quad_created)
			nthispass++;
		else {
			if (R && me->Nstars && me->retryhps)
				// there were some stars, and we're counting how many times stars are used.
				//il_insert_unique_ascending(me->retryhps, hp);
				// we don't mind hps showing up multiple times because we want to make up for the lost
				// passes during loosening...
				il_append(me->retryhps, hp);
			// FIXME -- could also track which hps are worth visiting in a future pass
		}
	}
	printf("\n");
	return nthispass;
}
示例#4
0
static dimage_label_t relabel_image(il* on_pixels,
                                    int maxlabel,
                                    dimage_label_t* equivs,
                                    int* object) {
    int i;
    dimage_label_t maxcontiguouslabel = 0;
    dimage_label_t *number;
    number = malloc(sizeof(dimage_label_t) * maxlabel);
    assert(number);
    for (i = 0; i < maxlabel; i++)
        number[i] = LABEL_MAX;
    for (i=0; i<il_size(on_pixels); i++) {
        int onpix;
        int minlabel;
        onpix = il_get(on_pixels, i);
        minlabel = collapsing_find_minlabel(object[onpix], equivs);
        if (number[minlabel] == LABEL_MAX)
            number[minlabel] = maxcontiguouslabel++;
        object[onpix] = number[minlabel];
    }
    free(number);
    return maxcontiguouslabel;
}
示例#5
0
int main(int argc, char** args) {
    char* filename = NULL;
    int npoints;
    int i, j;
    int* healpixes;
    int argchar;
    char* progname = args[0];
    il** lists;
    anbool quiet = FALSE;
    rdlist* rdls;
    int Nside = 1;
    int N;

    while ((argchar = getopt (argc, args, OPTIONS)) != -1)
        switch (argchar) {
        case 'N':
            Nside = atoi(optarg);
            break;
        case 'f':
            filename = optarg;
            break;
        case 'h':
            printHelp(progname);
            exit(0);
        case 'q':
            quiet = TRUE;
            break;
        case '?':
            fprintf(stderr, "Unknown option `-%c'.\n", optopt);
        default:
            exit(-1);
        }

    if (!filename) {
        printHelp(progname);
        exit(-1);
    }

    fprintf(stderr, "Opening RDLS file %s...\n", filename);
    rdls = rdlist_open(filename);
    if (!rdls) {
        fprintf(stderr, "Failed to open RDLS file.\n");
        exit(-1);
    }

    N = 12 * Nside * Nside;

    healpixes = malloc(N * sizeof(int));
    lists     = calloc(N,  sizeof(il*));

    /*
     for (i=0; i<N; i++) {
     lists[i] = il_new(256);
     }
     */

    for (j=1; j<=rdls_n_fields(rdls); j++) {
        rd* points;

        points = rdlist_get_field(rdls, j);
        if (!points) {
            fprintf(stderr, "error reading field %i\n", j);
            break;
        }

        memset(healpixes, 0, N * sizeof(int));

        npoints = rd_size(points);

        for (i=0; i<npoints; i++) {
            double ra, dec;
            int hp;

            ra  = deg2rad(rd_refra (points, i));
            dec = deg2rad(rd_refdec(points, i));

            if (Nside > 1)
                hp = radectohealpix_nside(ra, dec, Nside);
            else
                hp = radectohealpix(ra, dec);
            if ((hp < 0) || (hp >= N)) {
                printf("hp=%i\n", hp);
                continue;
            }
            healpixes[hp] = 1;
        }
        if (!quiet) {
            printf("Field %i: healpixes  ", j);
            for (i=0; i<N; i++) {
                if (healpixes[i])
                    printf("%i  ", i);
            }
            printf("\n");
            fflush(stdout);
        }

        for (i=0; i<N; i++)
            if (healpixes[i]) {
                if (!lists[i])
                    lists[i] = il_new(256);
                il_append(lists[i], j);
            }

        free_rd(points);
    }

    for (i=0; i<N; i++) {
        int N;
        if (!lists[i]) 
            continue;
        printf("HP %i: ", i);
        N = il_size(lists[i]);
        for (j=0; j<N; j++)
            printf("%i ", il_get(lists[i], j));
        il_free(lists[i]);
        printf("\n");
    }

    free(lists);
    free(healpixes);

    rdlist_close(rdls);
    return 0;
}
示例#6
0
int main(int argc, char *argv[]) {
    int argchar;
	char* progname = argv[0];
	sl* infns = sl_new(16);
	char* outfnpat = NULL;
	char* racol = "RA";
	char* deccol = "DEC";
	char* tempdir = "/tmp";
	anbool gzip = FALSE;
	sl* cols = sl_new(16);
	int loglvl = LOG_MSG;
	int nside = 1;
	double margin = 0.0;
	int NHP;
	double md;
	char* backref = NULL;
	
	fitstable_t* intable;
	fitstable_t** outtables;

	char** myargs;
	int nmyargs;
	int i;

    while ((argchar = getopt (argc, argv, OPTIONS)) != -1)
        switch (argchar) {
		case 'b':
			backref = optarg;
			break;
		case 't':
			tempdir = optarg;
			break;
		case 'c':
			sl_append(cols, optarg);
			break;
		case 'g':
			gzip = TRUE;
			break;
		case 'o':
			outfnpat = optarg;
			break;
		case 'r':
			racol = optarg;
			break;
		case 'd':
			deccol = optarg;
			break;
		case 'n':
			nside = atoi(optarg);
			break;
		case 'm':
			margin = atof(optarg);
			break;
		case 'v':
			loglvl++;
			break;
        case '?':
            fprintf(stderr, "Unknown option `-%c'.\n", optopt);
        case 'h':
			printHelp(progname);
            return 0;
        default:
            return -1;
        }

	if (sl_size(cols) == 0) {
		sl_free2(cols);
		cols = NULL;
	}

	nmyargs = argc - optind;
	myargs = argv + optind;

	for (i=0; i<nmyargs; i++)
		sl_append(infns, myargs[i]);
	
	if (!sl_size(infns)) {
		printHelp(progname);
		printf("Need input filenames!\n");
		exit(-1);
	}
	log_init(loglvl);
	fits_use_error_system();

	NHP = 12 * nside * nside;
	logmsg("%i output healpixes\n", NHP);
	outtables = calloc(NHP, sizeof(fitstable_t*));
	assert(outtables);

	md = deg2dist(margin);

	/**
	 About the mincaps/maxcaps:

	 These have a center and radius-squared, describing the region
	 inside a small circle on the sphere.

	 The "mincaps" describe the regions that are definitely owned by a
	 single healpix -- ie, more than MARGIN distance from any edge.
	 That is, the mincap is the small circle centered at (0.5, 0.5) in
	 the healpix and with radius = the distance to the closest healpix
	 boundary, MINUS the margin distance.

	 Below, we first check whether a new star is within the "mincap"
	 of any healpix.  If so, we stick it in that healpix and continue.

	 Otherwise, we check all the "maxcaps" -- these are the healpixes
	 it could *possibly* be in.  We then refine with
	 healpix_within_range_of_xyz.  The maxcap distance is the distance
	 to the furthest boundary point, PLUS the margin distance.
	 */


	cap_t* mincaps = malloc(NHP * sizeof(cap_t));
	cap_t* maxcaps = malloc(NHP * sizeof(cap_t));
	for (i=0; i<NHP; i++) {
		// center
		double r2;
		double xyz[3];
		double* cxyz;
		double step = 1e-3;
		double v;
		double r2b, r2a;

		cxyz = mincaps[i].xyz;
		healpix_to_xyzarr(i, nside, 0.5, 0.5, mincaps[i].xyz);
		memcpy(maxcaps[i].xyz, cxyz, 3 * sizeof(double));
		logverb("Center of HP %i: (%.3f, %.3f, %.3f)\n", i, cxyz[0], cxyz[1], cxyz[2]);

		// radius-squared:
		// max is the easy one: max of the four corners (I assume)
		r2 = 0.0;
		healpix_to_xyzarr(i, nside, 0.0, 0.0, xyz);
		logverb("  HP %i corner 1: (%.3f, %.3f, %.3f), distsq %.3f\n", i, xyz[0], xyz[1], xyz[2], distsq(xyz, cxyz, 3));
		r2 = MAX(r2, distsq(xyz, cxyz, 3));
		healpix_to_xyzarr(i, nside, 1.0, 0.0, xyz);
		logverb("  HP %i corner 1: (%.3f, %.3f, %.3f), distsq %.3f\n", i, xyz[0], xyz[1], xyz[2], distsq(xyz, cxyz, 3));
		r2 = MAX(r2, distsq(xyz, cxyz, 3));
		healpix_to_xyzarr(i, nside, 0.0, 1.0, xyz);
		logverb("  HP %i corner 1: (%.3f, %.3f, %.3f), distsq %.3f\n", i, xyz[0], xyz[1], xyz[2], distsq(xyz, cxyz, 3));
		r2 = MAX(r2, distsq(xyz, cxyz, 3));
		healpix_to_xyzarr(i, nside, 1.0, 1.0, xyz);
		logverb("  HP %i corner 1: (%.3f, %.3f, %.3f), distsq %.3f\n", i, xyz[0], xyz[1], xyz[2], distsq(xyz, cxyz, 3));
		r2 = MAX(r2, distsq(xyz, cxyz, 3));
		logverb("  max distsq: %.3f\n", r2);
		logverb("  margin dist: %.3f\n", md);
		maxcaps[i].r2 = square(sqrt(r2) + md);
		logverb("  max cap distsq: %.3f\n", maxcaps[i].r2);
		r2a = r2;

		r2 = 1.0;
		r2b = 0.0;
		for (v=0; v<=1.0; v+=step) {
			healpix_to_xyzarr(i, nside, 0.0, v, xyz);
			r2 = MIN(r2, distsq(xyz, cxyz, 3));
			r2b = MAX(r2b, distsq(xyz, cxyz, 3));
			healpix_to_xyzarr(i, nside, 1.0, v, xyz);
			r2 = MIN(r2, distsq(xyz, cxyz, 3));
			r2b = MAX(r2b, distsq(xyz, cxyz, 3));
			healpix_to_xyzarr(i, nside, v, 0.0, xyz);
			r2 = MIN(r2, distsq(xyz, cxyz, 3));
			r2b = MAX(r2b, distsq(xyz, cxyz, 3));
			healpix_to_xyzarr(i, nside, v, 1.0, xyz);
			r2 = MIN(r2, distsq(xyz, cxyz, 3));
			r2b = MAX(r2b, distsq(xyz, cxyz, 3));
		}
		mincaps[i].r2 = square(MAX(0, sqrt(r2) - md));
		logverb("\nhealpix %i: min rad    %g\n", i, sqrt(r2));
		logverb("healpix %i: max rad    %g\n", i, sqrt(r2a));
		logverb("healpix %i: max rad(b) %g\n", i, sqrt(r2b));
		assert(r2a >= r2b);
	}

	if (backref) {
		fitstable_t* tab = fitstable_open_for_writing(backref);
		int maxlen = 0;
		char* buf;
		for (i=0; i<sl_size(infns); i++) {
			char* infn = sl_get(infns, i);
			maxlen = MAX(maxlen, strlen(infn));
		}
		fitstable_add_write_column_array(tab, fitscolumn_char_type(), maxlen,
										 "filename", NULL);
		fitstable_add_write_column(tab, fitscolumn_i16_type(), "index", NULL);
		if (fitstable_write_primary_header(tab) ||
			fitstable_write_header(tab)) {
			ERROR("Failed to write header of backref table \"%s\"", backref);
			exit(-1);
		}
		buf = malloc(maxlen+1);
		assert(buf);

		for (i=0; i<sl_size(infns); i++) {
			char* infn = sl_get(infns, i);
			int16_t ind;
			memset(buf, 0, maxlen);
			strcpy(buf, infn);
			ind = i;
			if (fitstable_write_row(tab, buf, &ind)) {
				ERROR("Failed to write row %i of backref table: %s = %i",
					  i, buf, ind);
				exit(-1);
			}
		}
		if (fitstable_fix_header(tab) ||
			fitstable_close(tab)) {
			ERROR("Failed to fix header & close backref table");
			exit(-1);
		}
		logmsg("Wrote backref table %s\n", backref);
		free(buf);
	}

	for (i=0; i<sl_size(infns); i++) {
		char* infn = sl_get(infns, i);
		char* originfn = infn;
		int r, NR;
		tfits_type any, dubl;
		il* hps = NULL;
		bread_t* rowbuf;
		int R;
		char* tempfn = NULL;
		char* padrowdata = NULL;
		int ii;

		logmsg("Reading input \"%s\"...\n", infn);

		if (gzip) {
			char* cmd;
			int rtn;
			tempfn = create_temp_file("hpsplit", tempdir);
			asprintf_safe(&cmd, "gunzip -cd %s > %s", infn, tempfn);
			logmsg("Running: \"%s\"\n", cmd);
			rtn = run_command_get_outputs(cmd, NULL, NULL);
			if (rtn) {
				ERROR("Failed to run command: \"%s\"", cmd);
				exit(-1);
			}
			free(cmd);
			infn = tempfn;
		}

		intable = fitstable_open(infn);
		if (!intable) {
			ERROR("Couldn't read catalog %s", infn);
			exit(-1);
		}
		NR = fitstable_nrows(intable);
		logmsg("Got %i rows\n", NR);

		any = fitscolumn_any_type();
		dubl = fitscolumn_double_type();

		fitstable_add_read_column_struct(intable, dubl, 1, 0, any, racol, TRUE);
		fitstable_add_read_column_struct(intable, dubl, 1, sizeof(double), any, deccol, TRUE);

		fitstable_use_buffered_reading(intable, 2*sizeof(double), 1000);

		R = fitstable_row_size(intable);
		rowbuf = buffered_read_new(R, 1000, NR, refill_rowbuffer, intable);

		if (fitstable_read_extension(intable, 1)) {
			ERROR("Failed to find RA and DEC columns (called \"%s\" and \"%s\" in the FITS file)", racol, deccol);
			exit(-1);
		}

		for (r=0; r<NR; r++) {
			int hp = -1;
			double ra, dec;
			int j;
			double* rd;
			void* rowdata;
			void* rdata;

			if (r && ((r % 100000) == 0)) {
			  logmsg("Reading row %i of %i\n", r, NR);
			}

			//printf("reading RA,Dec for row %i\n", r);
			rd = fitstable_next_struct(intable);
			ra = rd[0];
			dec = rd[1];

			logverb("row %i: ra,dec %g,%g\n", r, ra, dec);
			if (margin == 0) {
				hp = radecdegtohealpix(ra, dec, nside);
				logverb("  --> healpix %i\n", hp);
			} else {

				double xyz[3];
				anbool gotit = FALSE;
				double d2;
				if (!hps)
					hps = il_new(4);
				radecdeg2xyzarr(ra, dec, xyz);
				for (j=0; j<NHP; j++) {
					d2 = distsq(xyz, mincaps[j].xyz, 3);
					if (d2 <= mincaps[j].r2) {
						logverb("  -> in mincap %i  (dist %g vs %g)\n", j, sqrt(d2), sqrt(mincaps[j].r2));
						il_append(hps, j);
						gotit = TRUE;
						break;
					}
				}
				if (!gotit) {
					for (j=0; j<NHP; j++) {
						d2 = distsq(xyz, maxcaps[j].xyz, 3);
						if (d2 <= maxcaps[j].r2) {
							logverb("  -> in maxcap %i  (dist %g vs %g)\n", j, sqrt(d2), sqrt(maxcaps[j].r2));
							if (healpix_within_range_of_xyz(j, nside, xyz, margin)) {
								logverb("  -> and within range.\n");
								il_append(hps, j);
							}
						}
					}
				}

				//hps = healpix_rangesearch_radec(ra, dec, margin, nside, hps);

				logverb("  --> healpixes: [");
				for (j=0; j<il_size(hps); j++)
					logverb(" %i", il_get(hps, j));
				logverb(" ]\n");
			}

			//printf("Reading rowdata for row %i\n", r);
			rowdata = buffered_read(rowbuf);
			assert(rowdata);


			j=0;
			while (1) {
				if (hps) {
					if (j >= il_size(hps))
						break;
					hp = il_get(hps, j);
					j++;
				}
				assert(hp < NHP);
				assert(hp >= 0);

				if (!outtables[hp]) {
					char* outfn;
					fitstable_t* out;

					// MEMLEAK the output filename.  You'll live.
					asprintf_safe(&outfn, outfnpat, hp);
					logmsg("Opening output file \"%s\"...\n", outfn);
					out = fitstable_open_for_writing(outfn);
					if (!out) {
						ERROR("Failed to open output table \"%s\"", outfn);
						exit(-1);
					}
					// Set the output table structure.
					if (cols) {
					  fitstable_add_fits_columns_as_struct3(intable, out, cols, 0);
					} else
						fitstable_add_fits_columns_as_struct2(intable, out);

					if (backref) {
						tfits_type i16type;
						tfits_type i32type;
						// R = fitstable_row_size(intable);
						int off = R;
						i16type = fitscolumn_i16_type();
						i32type = fitscolumn_i32_type();
						fitstable_add_read_column_struct(out, i16type, 1, off,
														 i16type, "backref_file", TRUE);
						off += sizeof(int16_t);
						fitstable_add_read_column_struct(out, i32type, 1, off,
														 i32type, "backref_index", TRUE);
					}

					//printf("Output table:\n");
					//fitstable_print_columns(out);

					if (fitstable_write_primary_header(out) ||
						fitstable_write_header(out)) {
						ERROR("Failed to write output file headers for \"%s\"", outfn);
						exit(-1);
					}
					outtables[hp] = out;
				}

				if (backref) {
					int16_t brfile;
					int32_t brind;
					if (!padrowdata) {
						padrowdata = malloc(R + sizeof(int16_t) + sizeof(int32_t));
						assert(padrowdata);
					}
					// convert to FITS endian
					brfile = htons(i);
					brind  = htonl(r);
					// add backref data to rowdata
					memcpy(padrowdata, rowdata, R);
					memcpy(padrowdata + R, &brfile, sizeof(int16_t));
					memcpy(padrowdata + R + sizeof(int16_t), &brind, sizeof(int32_t));
					rdata = padrowdata;
				} else {
					rdata = rowdata;
				}

				if (cols) {
				  if (fitstable_write_struct_noflip(outtables[hp], rdata)) {
				    ERROR("Failed to copy a row of data from input table \"%s\" to output healpix %i", infn, hp);
				  }
				} else {
				  if (fitstable_write_row_data(outtables[hp], rdata)) {
				    ERROR("Failed to copy a row of data from input table \"%s\" to output healpix %i", infn, hp);
				  }
				}

				if (!hps)
					break;
			}
			if (hps)
				il_remove_all(hps);

		}
		buffered_read_free(rowbuf);
		// wack... buffered_read_free() just frees its internal buffer,
		// not the "rowbuf" struct itself.
		// who wrote this crazy code?  Oh, me of 5 years ago.  Jerk.
		free(rowbuf);

		fitstable_close(intable);
		il_free(hps);

		if (tempfn) {
			logverb("Removing temp file %s\n", tempfn);
			if (unlink(tempfn)) {
				SYSERROR("Failed to unlink() temp file \"%s\"", tempfn);
			}
			tempfn = NULL;
		}

		// fix headers so that the files are valid at this point.
		for (ii=0; ii<NHP; ii++) {
		  if (!outtables[ii])
		    continue;
		  off_t offset = ftello(outtables[ii]->fid);
		  if (fitstable_fix_header(outtables[ii])) {
		    ERROR("Failed to fix header for healpix %i after reading input file \"%s\"", ii, originfn);
		    exit(-1);
		  }
		  fseeko(outtables[ii]->fid, offset, SEEK_SET);
		}

		if (padrowdata) {
			free(padrowdata);
			padrowdata = NULL;
		}

	}

	for (i=0; i<NHP; i++) {
		if (!outtables[i])
			continue;
		if (fitstable_fix_header(outtables[i]) ||
			fitstable_fix_primary_header(outtables[i]) ||
			fitstable_close(outtables[i])) {
			ERROR("Failed to close output table for healpix %i", i);
			exit(-1);
		}
	}

	free(outtables);
	sl_free2(infns);
	sl_free2(cols);

	free(mincaps);
	free(maxcaps);

    return 0;
}
示例#7
0
int handle_request(FILE* fid) {
	char buf[256];
	char fn[256];
	int set;
	int get;
	int getall;
	int filenum;
	int fieldnum;
	int lastfieldnum;
	int maxfields;
	char* nextword;

	//printf("Fileno %i:\n", fileno(fid));
	if (!fgets(buf, 256, fid)) {
		fprintf(stderr, "Error: failed to read a line of input.\n");
		fflush(stderr);
		fclose(fid);
		return -1;
	}
	//printf("Got request %s\n", buf);
	get = set = getall = 0;
	if (is_word(buf, "get ", &nextword)) {
		get = 1;
	} else if (is_word(buf, "set ", &nextword)) {
		set = 1;
	} else if (is_word(buf, "getall ", &nextword)) {
		getall = 1;
	}

	if (!(get || set || getall)) {
		fprintf(stderr, "Error: malformed command.\n");
		fclose(fid);
		return -1;
	}

	if (get || set) {
		if (sscanf(nextword, "%i %i", &filenum, &fieldnum) != 2) {
			fprintf(stderr, "Error: malformed request: %s\n", buf);
			fflush(stderr);
			fclose(fid);
			return -1;
		}
	} else if (getall) {
		if (sscanf(nextword, "%i %i %i %i", &filenum, &fieldnum, &lastfieldnum, &maxfields) != 4) {
			fprintf(stderr, "Error: malformed request: %s\n", buf);
			fflush(stderr);
			fclose(fid);
			return -1;
		}
		if (lastfieldnum < fieldnum) {
			fprintf(stderr, "Error: invalid \"getall\" request: lastfieldnum must be >= firstfieldnum.\n");
			fflush(stderr);
			fclose(fid);
			return -1;
		}
	}

	sprintf(fn, solvedfnpattern, filenum);

	if (get) {
		int val;
		printf("Get %s [%i].\n", fn, fieldnum);
		fflush(stdout);
		val = solvedfile_get(fn, fieldnum);
		if (val == -1) {
			fclose(fid);
			return -1;
		} else {
			fprintf(fid, "%s %i %i\n", (val ? "solved" : "unsolved"),
					filenum, fieldnum);
			fflush(fid);
		}
		return 0;
	} else if (set) {
		printf("Set %s [%i].\n", fn, fieldnum);
		fflush(stdout);
		if (solvedfile_set(fn, fieldnum)) {
			fclose(fid);
			return -1;
		}
		fprintf(fid, "ok\n");
		fflush(fid);
		return 0;
	} else if (getall) {
		int i;
		il* list;
		printf("Getall %s [%i : %i], max %i.\n", fn, fieldnum, lastfieldnum, maxfields);
		fflush(stdout);
		fprintf(fid, "unsolved %i", filenum);
		list = solvedfile_getall(fn, fieldnum, lastfieldnum, maxfields);
		if (list) {
			for (i=0; i<il_size(list); i++)
				fprintf(fid, " %i", il_get(list, i));
			il_free(list);
		}
		fprintf(fid, "\n");
		fflush(fid);
		return 0;
	}
	return -1;
}
示例#8
0
static PyObject* spherematch_match(PyObject* self, PyObject* args) {
    size_t i, N;
    long p1, p2;
    kdtree_t *kd1, *kd2;
    double rad;
    struct dualtree_results dtresults;
    PyArrayObject* inds;
    npy_intp dims[2];
    PyArrayObject* dists;
	anbool notself;
	anbool permute;
	PyObject* rtn;
	
	// So that ParseTuple("b") with a C "anbool" works
	assert(sizeof(anbool) == sizeof(unsigned char));

    if (!PyArg_ParseTuple(args, "lldbb", &p1, &p2, &rad, &notself, &permute)) {
        PyErr_SetString(PyExc_ValueError, "spherematch_c.match: need five args: two kdtree identifiers (ints), search radius (float), notself (boolean), permuted (boolean)");
        return NULL;
    }
	//printf("Notself = %i\n", (int)notself);
    // Nasty!
    kd1 = (kdtree_t*)p1;
    kd2 = (kdtree_t*)p2;

    dtresults.inds1 = il_new(256);
    dtresults.inds2 = il_new(256);
    dtresults.dists = dl_new(256);
    dualtree_rangesearch(kd1, kd2, 0.0, rad, notself, NULL,
                         callback_dualtree, &dtresults,
                         NULL, NULL);

    N = il_size(dtresults.inds1);
    dims[0] = N;
    dims[1] = 2;

    inds =  (PyArrayObject*)PyArray_SimpleNew(2, dims, PyArray_INT);
    dims[1] = 1;
    dists = (PyArrayObject*)PyArray_SimpleNew(2, dims, PyArray_DOUBLE);
    for (i=0; i<N; i++) {
      int index;
      int* iptr;
      double* dptr;
      iptr = PyArray_GETPTR2(inds, i, 0);
      index = il_get(dtresults.inds1, i);
      if (permute)
        index = kdtree_permute(kd1, index);
      *iptr = index;
      iptr = PyArray_GETPTR2(inds, i, 1);
      index = il_get(dtresults.inds2, i);
      if (permute)
        index = kdtree_permute(kd2, index);
      *iptr = index;
      dptr = PyArray_GETPTR2(dists, i, 0);
      *dptr = dl_get(dtresults.dists, i);
    }

    il_free(dtresults.inds1);
    il_free(dtresults.inds2);
    dl_free(dtresults.dists);

    rtn = Py_BuildValue("(OO)", inds, dists);
    Py_DECREF(inds);
    Py_DECREF(dists);
    return rtn;
}
示例#9
0
int wcs_rd2xy(const char* wcsfn, int wcsext,
			  const char* rdlsfn, const char* xylsfn,
              const char* racol, const char* deccol,
			  anbool forcetan, anbool forcewcslib,
              il* fields) {
	xylist_t* xyls = NULL;
	rdlist_t* rdls = NULL;
	anwcs_t* wcs = NULL;
	int i;
    anbool alloced_fields = FALSE;
    int rtn = -1;

	// read WCS.
	if (forcewcslib) {
		wcs = anwcs_open_wcslib(wcsfn, wcsext);
	} else if (forcetan) {
		wcs = anwcs_open_tan(wcsfn, wcsext);
	} else {
		wcs = anwcs_open(wcsfn, wcsext);
	}
	if (!wcs) {
		ERROR("Failed to read WCS file \"%s\", extension %i", wcsfn, wcsext);
		return -1;
	}

	// read RDLS.
	rdls = rdlist_open(rdlsfn);
	if (!rdls) {
		ERROR("Failed to read an RA,Dec list from file %s", rdlsfn);
        goto bailout;
	}
	if (racol)
        rdlist_set_raname(rdls, racol);
	if (deccol)
		rdlist_set_decname(rdls, deccol);

	// write XYLS.
	xyls = xylist_open_for_writing(xylsfn);
	if (!xyls) {
		ERROR("Failed to open file %s to write XYLS", xylsfn);
        goto bailout;
	}
	if (xylist_write_primary_header(xyls)) {
		ERROR("Failed to write header to XYLS file %s", xylsfn);
        goto bailout;
	}

    if (!fields) {
        alloced_fields = TRUE;
        fields = il_new(16);
    }
	if (!il_size(fields)) {
		// add all fields.
		int NF = rdlist_n_fields(rdls);
		for (i=1; i<=NF; i++)
			il_append(fields, i);
	}

	for (i=0; i<il_size(fields); i++) {
		int fieldnum = il_get(fields, i);
		int j;
        starxy_t xy;
        rd_t rd;

        if (!rdlist_read_field_num(rdls, fieldnum, &rd)) {
			ERROR("Failed to read rdls file \"%s\" field %i", rdlsfn, fieldnum);
            goto bailout;
        }

        starxy_alloc_data(&xy, rd_n(&rd), FALSE, FALSE);

		if (xylist_write_header(xyls)) {
			ERROR("Failed to write xyls field header");
            goto bailout;
		}

		for (j=0; j<rd_n(&rd); j++) {
			double x, y, ra, dec;
            ra  = rd_getra (&rd, j);
            dec = rd_getdec(&rd, j);
			if (anwcs_radec2pixelxy(wcs, ra, dec, &x, &y)) {
				ERROR("Point RA,Dec = (%g,%g) projects to the opposite side of the sphere", ra, dec);
				starxy_set(&xy, j, NAN, NAN);
				continue;
			}
            starxy_set(&xy, j, x, y);
		}
        if (xylist_write_field(xyls, &xy)) {
            ERROR("Failed to write xyls field");
            goto bailout;
        }
		if (xylist_fix_header(xyls)) {
            ERROR("Failed to fix xyls field header");
            goto bailout;
		}
        xylist_next_field(xyls);

        starxy_free_data(&xy);
        rd_free_data(&rd);
	}

	if (xylist_fix_primary_header(xyls) ||
		xylist_close(xyls)) {
		ERROR("Failed to fix header of XYLS file");
        goto bailout;
	}
    xyls = NULL;

	if (rdlist_close(rdls)) {
		ERROR("Failed to close RDLS file");
        goto bailout;
	}
    rdls = NULL;

    rtn = 0;

 bailout:
    if (alloced_fields)
        il_free(fields);
    if (rdls)
        rdlist_close(rdls);
    if (xyls)
        xylist_close(xyls);
	if (wcs)
		anwcs_free(wcs);
    return rtn;
}
示例#10
0
int wcs_xy2rd(const char* wcsfn, int ext,
			  const char* xylsfn, const char* rdlsfn,
              const char* xcol, const char* ycol,
			  int forcetan,
			  int forcewcslib,
              il* fields) {
	rdlist_t* rdls = NULL;
	xylist_t* xyls = NULL;
	anwcs_t* wcs = NULL;
	int i;
    int rtn = -1;
    anbool alloced_fields = FALSE;

	// read WCS.
	if (forcewcslib) {
		wcs = anwcs_open_wcslib(wcsfn, ext);
	} else if (forcetan) {
		wcs = anwcs_open_tan(wcsfn, ext);
	} else {
		wcs = anwcs_open(wcsfn, ext);
	}
	if (!wcs) {
		ERROR("Failed to read WCS file \"%s\", extension %i", wcsfn, ext);
		return -1;
	}

	// read XYLS.
	xyls = xylist_open(xylsfn);
	if (!xyls) {
		ERROR("Failed to read an xylist from file %s", xylsfn);
		goto bailout;
	}
    xylist_set_include_flux(xyls, FALSE);
    xylist_set_include_background(xyls, FALSE);
	if (xcol)
		xylist_set_xname(xyls, xcol);
	if (ycol)
		xylist_set_yname(xyls, ycol);

	// write RDLS.
	rdls = rdlist_open_for_writing(rdlsfn);
	if (!rdls) {
		ERROR("Failed to open file %s to write RDLS.\n", rdlsfn);
		goto bailout;
	}
	if (rdlist_write_primary_header(rdls)) {
		ERROR("Failed to write header to RDLS file %s.\n", rdlsfn);
		goto bailout;
	}

    if (!fields) {
        alloced_fields = TRUE;
        fields = il_new(16);
    }
	if (!il_size(fields)) {
		// add all fields.
		int NF = xylist_n_fields(xyls);
		for (i=1; i<=NF; i++)
			il_append(fields, i);
	}

	logverb("Processing %zu extensions...\n", il_size(fields));
	for (i=0; i<il_size(fields); i++) {
		int fieldind = il_get(fields, i);
        starxy_t xy;
        rd_t rd;
		int j;

        if (!xylist_read_field_num(xyls, fieldind, &xy)) {
			ERROR("Failed to read xyls file %s, field %i", xylsfn, fieldind);
			goto bailout;
        }

		if (rdlist_write_header(rdls)) {
			ERROR("Failed to write rdls field header to %s", rdlsfn);
			goto bailout;
		}

        rd_alloc_data(&rd, starxy_n(&xy));

		for (j=0; j<starxy_n(&xy); j++) {
            double x, y, ra, dec;
            x = starxy_getx(&xy, j);
            y = starxy_gety(&xy, j);
			anwcs_pixelxy2radec(wcs, x, y, &ra, &dec);
            rd_setra (&rd, j, ra);
            rd_setdec(&rd, j, dec);
		}

        if (rdlist_write_field(rdls, &rd)) {
            ERROR("Failed to write rdls field to %s", rdlsfn);
			goto bailout;
        }
        rd_free_data(&rd);
        starxy_free_data(&xy);

		if (rdlist_fix_header(rdls)) {
			ERROR("Failed to fix rdls field header for %s", rdlsfn);
			goto bailout;
		}

        rdlist_next_field(rdls);
	}

	if (rdlist_fix_primary_header(rdls) ||
		rdlist_close(rdls)) {
		ERROR("Failed to fix header of RDLS file %s", rdlsfn);
		goto bailout;
	}
	rdls = NULL;

	if (xylist_close(xyls)) {
		ERROR("Failed to close XYLS file %s", xylsfn);
		goto bailout;
	}
	xyls = NULL;
	rtn = 0;

 bailout:
    if (alloced_fields)
        il_free(fields);
    if (rdls)
        rdlist_close(rdls);
    if (xyls)
        xylist_close(xyls);
	if (wcs)
		anwcs_free(wcs);
    return rtn;
}
示例#11
0
int main(int argc, char** args) {
    int argchar;
	char* progname = args[0];

	char* outfn = NULL;
	char* outwcsfn = NULL;
	int outwcsext = 0;

	anwcs_t* outwcs;

	sl* inimgfns = sl_new(16);
	sl* inwcsfns = sl_new(16);
	sl* inwtfns = sl_new(16);
	il* inimgexts = il_new(16);
	il* inwcsexts = il_new(16);
	il* inwtexts = il_new(16);

	int i;
	int loglvl = LOG_MSG;
	int order = 3;

	coadd_t* coadd;
	lanczos_args_t largs;

	double sigma = 0.0;
	anbool nearest = FALSE;
	anbool divweight = FALSE;

	int plane = 0;

    while ((argchar = getopt(argc, args, OPTIONS)) != -1)
        switch (argchar) {
		case '?':
        case 'h':
			printHelp(progname);
			exit(0);
		case 'D':
			divweight = TRUE;
			break;
		case 'p':
			plane = atoi(optarg);
			break;
		case 'N':
			nearest = TRUE;
			break;
		case 's':
			sigma = atof(optarg);
			break;
		case 'v':
			loglvl++;
			break;
		case 'e':
			outwcsext = atoi(optarg);
			break;
		case 'w':
			outwcsfn = optarg;
			break;
		case 'o':
			outfn = optarg;
			break;
		case 'O':
			order = atoi(optarg);
			break;
		}

	log_init(loglvl);
	fits_use_error_system();

	args += optind;
	argc -= optind;
	if (argc == 0 || argc % 6) {
		printHelp(progname);
		exit(-1);
	}

	for (i=0; i<argc/6; i++) {
		sl_append(inimgfns, args[6*i+0]);
		il_append(inimgexts, atoi(args[6*i+1]));
		sl_append(inwtfns, args[6*i+2]);
		il_append(inwtexts, atoi(args[6*i+3]));
		sl_append(inwcsfns, args[6*i+4]);
		il_append(inwcsexts, atoi(args[6*i+5]));
	}

	logmsg("Reading output WCS file %s\n", outwcsfn);
	outwcs = anwcs_open(outwcsfn, outwcsext);
	if (!outwcs) {
		ERROR("Failed to read WCS from file: %s ext %i\n", outwcsfn, outwcsext);
		exit(-1);
	}

	logmsg("Output image will be %i x %i\n", (int)anwcs_imagew(outwcs), (int)anwcs_imageh(outwcs));

	coadd = coadd_new(anwcs_imagew(outwcs), anwcs_imageh(outwcs));

	coadd->wcs = outwcs;

	if (nearest) {
		coadd->resample_func = nearest_resample_f;
		coadd->resample_token = NULL;
	} else {
		coadd->resample_func = lanczos_resample_f;
		largs.order = order;
		coadd->resample_token = &largs;
	}

	for (i=0; i<sl_size(inimgfns); i++) {
        anqfits_t* anq;
        anqfits_t* wanq;
		float* img;
		float* wt = NULL;
		anwcs_t* inwcs;
		char* fn;
		int ext;
		float overallwt = 1.0;
        int W, H;

		fn = sl_get(inimgfns, i);
		ext = il_get(inimgexts, i);
		logmsg("Reading input image \"%s\" ext %i\n", fn, ext);

        anq = anqfits_open(fn);
        if (!anq) {
            ERROR("Failed to open file \"%s\"\n", fn);
            exit(-1);
        }

        img = anqfits_readpix(anq, ext, 0, 0, 0, 0, plane,
                              PTYPE_FLOAT, NULL, &W, &H);
        if (!img) {
            ERROR("Failed to read image from ext %i of %s\n", ext, fn);
            exit(-1);
        }
        anqfits_close(anq);
		logmsg("Read image: %i x %i.\n", W, H);

		if (sigma > 0.0) {
			int k0, nk;
			float* kernel;
			logmsg("Smoothing by Gaussian with sigma=%g\n", sigma);
			kernel = convolve_get_gaussian_kernel_f(sigma, 4, &k0, &nk);
			convolve_separable_f(img, W, H, kernel, k0, nk, img, NULL);
			free(kernel);
		}

		fn = sl_get(inwcsfns, i);
		ext = il_get(inwcsexts, i);
		logmsg("Reading input WCS file \"%s\" ext %i\n", fn, ext);

		inwcs = anwcs_open(fn, ext);
		if (!inwcs) {
			ERROR("Failed to read WCS from file \"%s\" ext %i\n", fn, ext);
			exit(-1);
		}
		if (anwcs_pixel_scale(inwcs) == 0) {
			ERROR("Pixel scale from the WCS file is zero.  Usually this means the image has no valid WCS header.\n");
			exit(-1);
		}
		if (anwcs_imagew(inwcs) != W || anwcs_imageh(inwcs) != H) {
			ERROR("Size mismatch between image and WCS!");
			exit(-1);
		}

		fn = sl_get(inwtfns, i);
		ext = il_get(inwtexts, i);
		if (streq(fn, "none")) {
			logmsg("Not using weight image.\n");
			wt = NULL;
		} else if (file_exists(fn)) {
			logmsg("Reading input weight image \"%s\" ext %i\n", fn, ext);
            wanq = anqfits_open(fn);
            if (!wanq) {
                ERROR("Failed to open file \"%s\"\n", fn);
                exit(-1);
            }
            int wtW, wtH;
            wt = anqfits_readpix(anq, ext, 0, 0, 0, 0, 0,
                              PTYPE_FLOAT, NULL, &wtW, &wtH);
            if (!wt) {
                ERROR("Failed to read image from ext %i of %s\n", ext, fn);
                exit(-1);
            }
            anqfits_close(wanq);
			logmsg("Read image: %i x %i.\n", wtW, wtH);
			if (wtW != W || wtH != H) {
				ERROR("Size mismatch between image and weight!");
				exit(-1);
			}
		} else {
			char* endp;
			overallwt = strtod(fn, &endp);
			if (endp == fn) {
				ERROR("Weight: \"%s\" is neither a file nor a double.\n", fn);
				exit(-1);
			}
			logmsg("Parsed weight value \"%g\"\n", overallwt);
		}

		if (divweight && wt) {
			int j;
			logmsg("Dividing image by weight image...\n");
			for (j=0; j<(W*H); j++)
				img[j] /= wt[j];
		}

		coadd_add_image(coadd, img, wt, overallwt, inwcs);

		anwcs_free(inwcs);
        free(img);
		if (wt)
			free(wt);
	}

	//
	logmsg("Writing output: %s\n", outfn);

	coadd_divide_by_weight(coadd, 0.0);

	/*
	 if (fits_write_float_image_hdr(coadd->img, coadd->W, coadd->H, outfn)) {
	 ERROR("Failed to write output image %s", outfn);
	 exit(-1);
	 }
	 */
	/*
	 if (fits_write_float_image(coadd->img, coadd->W, coadd->H, outfn)) {
	 ERROR("Failed to write output image %s", outfn);
	 exit(-1);
	 }
	 */
	{
		qfitsdumper qoutimg;
		qfits_header* hdr;
		hdr = anqfits_get_header2(outwcsfn, outwcsext);
		if (!hdr) {
			ERROR("Failed to read WCS file \"%s\" ext %i\n", outwcsfn, outwcsext);
			exit(-1);
		}
		fits_header_mod_int(hdr, "NAXIS", 2, NULL);
		fits_header_set_int(hdr, "NAXIS1", coadd->W, "image width");
		fits_header_set_int(hdr, "NAXIS2", coadd->H, "image height");
		fits_header_modf(hdr, "BITPIX", "-32", "32-bit floats");
		memset(&qoutimg, 0, sizeof(qoutimg));
		qoutimg.filename = outfn;
		qoutimg.npix = coadd->W * coadd->H;
		qoutimg.fbuf = coadd->img;
		qoutimg.ptype = PTYPE_FLOAT;
		qoutimg.out_ptype = BPP_IEEE_FLOAT;
		if (fits_write_header_and_image(NULL, &qoutimg, coadd->W)) {
			ERROR("Failed to write FITS image to file \"%s\"", outfn);
			exit(-1);
		}
		qfits_header_destroy(hdr);
	}

	coadd_free(coadd);
	sl_free2(inimgfns);
	sl_free2(inwcsfns);
	sl_free2(inwtfns);
	il_free(inimgexts);
	il_free(inwcsexts);
	il_free(inwtexts);
	anwcs_free(outwcs);


	return 0;
}
示例#12
0
void test_big_list(CuTest* tc) {
    // Test size_t sizes and indices of bl's.
    // Test ptrdiff_t as -1 or index
    CuAssertTrue(tc, -1 == BL_NOT_FOUND);
    CuAssertTrue(tc, BL_NOT_FOUND < 0);
    CuAssertTrue(tc, sizeof(size_t) == sizeof(ptrdiff_t));

    // Create a fake list so we don't have to allocate 16 GB of list to test.
    int blocksize = 1048576;
    il* big = il_new(blocksize);
    // that's 1<<20 ~ 1e6 elements per block

    // now need 1<<12 ~ 4096 blocks to overflow a 32-bit int
    int i;
    int N = 4096;
    bl_node* nodes = calloc(N, sizeof(bl_node));
    for (i=1; i<N; i++) {
        nodes[i-1].next = nodes+i;
        nodes[i-1].N = blocksize;
    }
    nodes[N-1].N = blocksize;
    big->head = nodes;
    big->tail = nodes + (N-1);
    big->N = (size_t)blocksize * (size_t)N;

    bl_print_structure(big);

    printf("N %zu\n", il_size(big));
    printf("check: %s\n", (bl_check_consistency(big) ? "bad" : "ok"));

    int* p = il_append(big, 42);
    printf("appended: %i\n", *p);
    CuAssertIntEquals(tc, 42, *p);
    CuAssertTrue(tc, 4294967297L == il_size(big));

    size_t index = 4294967296L;
    int v = il_get(big, index);
    CuAssertIntEquals(tc, 42, v);

    big->last_access = NULL;
    big->last_access_n = 0;

    v = il_get(big, index);
    CuAssertIntEquals(tc, 42, v);

    for (i=0; i<blocksize*2; i++) {
        il_push(big, i);
    }

    il* split = il_new(1024);

    bl_split(big, split, (size_t)blocksize * (size_t)N);

    printf("split: %zu, %zu\n", il_size(big), il_size(split));
    CuAssertIntEquals(tc, 42, il_get(split, 0));
    CuAssertIntEquals(tc, 3, il_get(split, 4));

    il_append_list(big, split);

    CuAssertTrue(tc, 4297064449L == il_size(big));

    int* arr = calloc(1024, sizeof(int));

    bl_copy(big, (size_t)blocksize * (size_t)N, 1024, arr);

    CuAssertIntEquals(tc, 42, arr[0]);
    CuAssertIntEquals(tc,  3, arr[4]);
}
示例#13
0
int main(int argc, char **argv) {
    int argchar;
	startree_t* starkd;
	double ra=0.0, dec=0.0, radius=0.0;
	sl* tag = sl_new(4);
	anbool tagall = FALSE;
	char* starfn = NULL;
	int loglvl = LOG_MSG;
	char** myargs;
	int nmyargs;
	anbool getinds = FALSE;
	double* radec;
	int* inds;
	int N;
	int i;
	char* rdfn = NULL;
	pl* tagdata = pl_new(16);
	il* tagsizes = il_new(16);
	fitstable_t* tagalong = NULL;

    while ((argchar = getopt (argc, argv, OPTIONS)) != -1)
        switch (argchar) {
		case 'o':
			rdfn = optarg;
			break;
		case 'I':
			getinds = TRUE;
			break;
		case 'r':
			ra = atof(optarg);
			break;
		case 'd':
			dec = atof(optarg);
			break;
		case 'R':
			radius = atof(optarg);
			break;
		case 't':
			sl_append(tag, optarg);
			break;
		case 'T':
			tagall = TRUE;
			break;
		case 'v':
			loglvl++;
			break;
        case '?':
            fprintf(stderr, "Unknown option `-%c'.\n", optopt);
		case 'h':
			printHelp(argv[0]);
			break;
		default:
			return -1;
		}

	nmyargs = argc - optind;
	myargs = argv + optind;

	if (nmyargs != 1) {
		ERROR("Got %i arguments; expected 1.\n", nmyargs);
		printHelp(argv[0]);
		exit(-1);
	}
	starfn = myargs[0];

	log_init(loglvl);

	starkd = startree_open(starfn);
	if (!starkd) {
		ERROR("Failed to open star kdtree");
		exit(-1);
	}

	logmsg("Searching kdtree %s at RA,Dec = (%g,%g), radius %g deg.\n",
		   starfn, ra, dec, radius);

	startree_search_for_radec(starkd, ra, dec, radius,
							  NULL, &radec, &inds, &N);

	logmsg("Got %i results.\n", N);

	if (!N)
		goto done;

	if (tagall) {
		int j, M;
		M = startree_get_tagalong_N_columns(starkd); 
		for (j=0; j<M; j++)
			sl_append(tag, startree_get_tagalong_column_name(starkd, j));
	}

	if (sl_size(tag)) {
		tagalong = startree_get_tagalong(starkd);
		if (!tagalong) {
			ERROR("Failed to find tag-along table in index");
			exit(-1);
		}
	}

	if (rdfn) {
		rdlist_t* rd = rdlist_open_for_writing(rdfn);
		il* colnums = il_new(16);

		if (!rd) {
			ERROR("Failed to open output file %s", rdfn);
			exit(-1);
		}
		if (rdlist_write_primary_header(rd)) {
			ERROR("Failed to write header to output file %s", rdfn);
			exit(-1);
		}

		for (i=0; i<sl_size(tag); i++) {
			const char* col = sl_get(tag, i);
			char* units;
			tfits_type type;
			int arraysize;
			void* data;
			int colnum;
			int itemsize;

			if (fitstable_find_fits_column(tagalong, col, &units, &type, &arraysize)) {
				ERROR("Failed to find column \"%s\" in index", col);
				exit(-1);
			}
			itemsize = fits_get_atom_size(type) * arraysize;
			data = fitstable_read_column_array_inds(tagalong, col, type, inds, N, NULL);
			if (!data) {
				ERROR("Failed to read data for column \"%s\" in index", col);
				exit(-1);
			}
			colnum = rdlist_add_tagalong_column(rd, type, arraysize, type, col, NULL);

			il_append(colnums, colnum);
			il_append(tagsizes, itemsize);
			pl_append(tagdata, data);
		}
		if (rdlist_write_header(rd)) {
			ERROR("Failed to write header to output file %s", rdfn);
			exit(-1);
		}

		for (i=0; i<N; i++) {
			if (rdlist_write_one_radec(rd, radec[i*2+0], radec[i*2+1])) {
				ERROR("Failed to write RA,Dec to output file %s", rdfn);
				exit(-1);
			}
		}
		for (i=0; i<sl_size(tag); i++) {
			int col = il_get(colnums, i);
			void* data = pl_get(tagdata, i);
			int itemsize = il_get(tagsizes, i);

			if (rdlist_write_tagalong_column(rd, col, 0, N, data, itemsize)) {
				ERROR("Failed to write tag-along data column %s", sl_get(tag, i));
				exit(-1);
			}
		}
		if (rdlist_fix_header(rd) ||
			rdlist_fix_primary_header(rd) ||
			rdlist_close(rd)) {
			ERROR("Failed to close output file %s", rdfn);
			exit(-1);
		}
		il_free(colnums);

	} else {
		// Header
		printf("# RA, Dec");
		if (getinds)
			printf(", index");
		for (i=0; i<sl_size(tag); i++)
			printf(", %s", sl_get(tag, i));
		printf("\n");

		for (i=0; i<sl_size(tag); i++) {
			const char* col = sl_get(tag, i);
			char* units;
			tfits_type type;
			int arraysize;
			void* data;
			int itemsize;

			if (fitstable_find_fits_column(tagalong, col, &units, &type, &arraysize)) {
				ERROR("Failed to find column \"%s\" in index", col);
				exit(-1);
			}
			itemsize = fits_get_atom_size(type) * arraysize;
			data = fitstable_read_column_array_inds(tagalong, col, type, inds, N, NULL);
			if (!data) {
				ERROR("Failed to read data for column \"%s\" in index", col);
				exit(-1);
			}
			il_append(tagsizes, itemsize);
			pl_append(tagdata, data);
		}

		for (i=0; i<N; i++) {
			//int j;
			printf("%g, %g", radec[i*2+0], radec[i*2+1]);
			if (getinds)
				printf(", %i", inds[i]);

			//// FIXME -- print tag-along data of generic type.
			/*
			 for (j=0; j<pl_size(tagdata); j++) {
			 double* data = pl_get(tagdata, j);
			 printf(", %g", data[i]);
			 }
			 */

			printf("\n");
		}
	}

 done:
	free(radec);
	free(inds);
	for (i=0; i<pl_size(tagdata); i++)
		free(pl_get(tagdata, i));
	pl_free(tagdata);
	il_free(tagsizes);

	return 0;
}
示例#14
0
int main(int argc, char** args) {
    int argchar;
    char* progname = args[0];
    char** inputfiles = NULL;
    int ninputfiles = 0;
    int i;
    char* outfile = NULL;
    int N;
    anbool* solved;
    int noerr = 0;

    while ((argchar = getopt (argc, args, OPTIONS)) != -1) {
        switch (argchar) {
        case 'o':
            outfile = optarg;
            break;
        case 'e':
            noerr = 1;
            break;
        case 'h':
        default:
            printHelp(progname);
            exit(-1);
        }
    }
    if (optind < argc) {
        ninputfiles = argc - optind;
        inputfiles = args + optind;
    } else {
        printHelp(progname);
        exit(-1);
    }

    N = 0;
    for (i=0; i<ninputfiles; i++) {
        int n = solvedfile_getsize(inputfiles[i]);
        if (n == -1) {
            if (!noerr) {
                fprintf(stderr, "Failed to get size of input file %s.\n", inputfiles[i]);
                exit(-1);
            }
        }
        if (n > N) N = n;
    }

    solved = calloc(N, sizeof(anbool));
    for (i=0; i<ninputfiles; i++) {
        il* slist;
        int j;
        slist = solvedfile_getall_solved(inputfiles[i], 1, N, 0);
        for (j=0; j<il_size(slist); j++)
            solved[il_get(slist, j) - 1] = TRUE;
        il_free(slist);
    }
    if (solvedfile_set_file(outfile, solved, N)) {
        fprintf(stderr, "Failed to set values in output file.\n");
        exit(-1);
    }

    free(solved);
    return 0;
}
示例#15
0
static void plot_constellations(cairo_t* cairo, plot_args_t* pargs, plotann_t* ann) {
	int i, N;
	double ra,dec,radius;
	double xyzf[3];
	// Find the field center and radius
	anwcs_get_radec_center_and_radius(pargs->wcs, &ra, &dec, &radius);
	logverb("Plotting constellations: field center %g,%g, radius %g\n",
			ra, dec, radius);
	radecdeg2xyzarr(ra, dec, xyzf);
	radius = deg2dist(radius);

	N = constellations_n();
	for (i=0; i<N; i++) {
		int j, k;
		// Find the approximate center and radius of this constellation
		// and see if it overlaps with the field.
		il* stars = constellations_get_unique_stars(i);
		double xyzj[3];
		double xyzc[3];
		double maxr2 = 0;
		dl* rds;
		xyzc[0] = xyzc[1] = xyzc[2] = 0.0;
		xyzj[0] = xyzj[1] = xyzj[2] = 0.0;
		for (j=0; j<il_size(stars); j++) {
			constellations_get_star_radec(il_get(stars, j), &ra, &dec);
			radecdeg2xyzarr(ra, dec, xyzj);
			for (k=0; k<3; k++)
				xyzc[k] += xyzj[k];
		}
		normalize_3(xyzc);
		for (j=0; j<il_size(stars); j++) {
			constellations_get_star_radec(il_get(stars, j), &ra, &dec);
			maxr2 = MAX(maxr2, distsq(xyzc, xyzj, 3));
		}
		il_free(stars);
		maxr2 = square(sqrt(maxr2) + radius);
		if (distsq(xyzf, xyzc, 3) > maxr2) {
			xyzarr2radecdeg(xyzc, &ra, &dec);
			logverb("Constellation %s (center %g,%g, radius %g) out of bounds\n",
					constellations_get_shortname(i), ra, dec,
					dist2deg(sqrt(maxr2) - radius));
			logverb("  dist from field center to constellation center is %g deg\n",
					distsq2deg(distsq(xyzf, xyzc, 3)));
			logverb("  max radius: %g\n", distsq2deg(maxr2));
			continue;
		}

        if (ann->constellation_pastel) {
            float r,g,b;
            xyzarr2radecdeg(xyzc, &ra, &dec);
            color_for_radec(ra, dec, &r,&g,&b);
            plotstuff_set_rgba2(pargs, r,g,b, 0.8);
            plotstuff_builtin_apply(cairo, pargs);
        }

		// Phew, plot it.
		if (ann->constellation_lines) {
			rds = constellations_get_lines_radec(i);
			logverb("Constellation %s: plotting %zu lines\n",
					constellations_get_shortname(i), dl_size(rds)/4);
			for (j=0; j<dl_size(rds)/4; j++) {
				double r1,d1,r2,d2;
				double r3,d3,r4,d4;
                double off = ann->constellation_lines_offset;
				r1 = dl_get(rds, j*4+0);
				d1 = dl_get(rds, j*4+1);
				r2 = dl_get(rds, j*4+2);
				d2 = dl_get(rds, j*4+3);
				if (anwcs_find_discontinuity(pargs->wcs, r1, d1, r2, d2,
											 &r3, &d3, &r4, &d4)) {
					logverb("Discontinuous: %g,%g -- %g,%g\n", r1, d1, r2, d2);
					logverb("  %g,%g == %g,%g\n", r3,d3, r4,d4);
                    plot_offset_line_rd(NULL, pargs, r1,d1,r3,d3, off, 0.);
                    plot_offset_line_rd(NULL, pargs, r4,d4,r2,d2, 0., off);
				} else {
                    plot_offset_line_rd(NULL, pargs, r1,d1,r2,d2, off, off);
				}
				plotstuff_stroke(pargs);
			}
			dl_free(rds);
		}

		if (ann->constellation_labels ||
			ann->constellation_markers) {
			// Put the label at the center of mass of the stars that
			// are in-bounds
			int Nin = 0;
			stars = constellations_get_unique_stars(i);
			xyzc[0] = xyzc[1] = xyzc[2] = 0.0;
			logverb("Labeling %s: %zu stars\n", constellations_get_shortname(i),
					il_size(stars));
			for (j=0; j<il_size(stars); j++) {
				constellations_get_star_radec(il_get(stars, j), &ra, &dec);
				if (!anwcs_radec_is_inside_image(pargs->wcs, ra, dec))
					continue;
				if (ann->constellation_markers)
					plotstuff_marker_radec(pargs, ra, dec);
				radecdeg2xyzarr(ra, dec, xyzj);
				for (k=0; k<3; k++)
					xyzc[k] += xyzj[k];
				Nin++;
			}
			logverb("  %i stars in-bounds\n", Nin);
			if (ann->constellation_labels && Nin) {
				const char* label;
				normalize_3(xyzc);
				xyzarr2radecdeg(xyzc, &ra, &dec);
				if (ann->constellation_labels_long)
					label = constellations_get_longname(i);
				else
					label = constellations_get_shortname(i);
				plotstuff_text_radec(pargs, ra, dec, label);
			}
			il_free(stars);
		}
	}
}
示例#16
0
static int write_to_file(startree_t* s, const char* fn, anbool flipped,
						 FILE* fid) {
    bl* chunks;
    il* wordsizes = NULL;
    int i;
    kdtree_fits_t* io = NULL;

	// just haven't bothered...
	assert(!(flipped && fid));

	if (fn) {
		io = kdtree_fits_open_for_writing(fn);
		if (!io) {
			ERROR("Failed to open file \"%s\" for writing kdtree", fn);
			return -1;
		}
	}
    if (flipped) {
        if (kdtree_fits_write_tree_flipped(io, s->tree, s->header)) {
            ERROR("Failed to write (flipped) kdtree to file \"%s\"", fn);
            return -1;
        }
    } else {
		if (fid) {
			if (kdtree_fits_append_tree_to(s->tree, s->header, fid)) {
				ERROR("Failed to write star kdtree");
				return -1;
			}
		} else {
			if (kdtree_fits_write_tree(io, s->tree, s->header)) {
				ERROR("Failed to write kdtree to file \"%s\"", fn);
				return -1;
			}
		}
    }

    if (flipped)
        wordsizes = il_new(4);

    chunks = get_chunks(s, wordsizes);
    for (i=0; i<bl_size(chunks); i++) {
        fitsbin_chunk_t* chunk = bl_access(chunks, i);
        if (!chunk->data)
            continue;
        if (flipped)
            kdtree_fits_write_chunk_flipped(io, chunk, il_get(wordsizes, i));
        else {
			if (fid) {
				kdtree_fits_write_chunk_to(chunk, fid);
			} else {
				kdtree_fits_write_chunk(io, chunk);
			}
		}
		fitsbin_chunk_clean(chunk);
	}
	bl_free(chunks);

    if (flipped)
        il_free(wordsizes);
    
	if (io)
		kdtree_fits_io_close(io);
    return 0;
}
示例#17
0
int main(int argc, char** args) {
    int c;
    char* wcsfn = NULL;
    char* outfn = NULL;
    char* infn = NULL;
    sip_t sip;
    double scale = 1.0;
    anbool pngformat = TRUE;

    char* hdpath = NULL;
    anbool HD = FALSE;

    cairos_t thecairos;
    cairos_t* cairos = &thecairos;

    cairo_surface_t* target = NULL;
    cairo_t* cairot = NULL;

    cairo_surface_t* surfbg = NULL;
    cairo_t* cairobg = NULL;

    cairo_surface_t* surfshapes = NULL;
    cairo_t* cairoshapes = NULL;

    cairo_surface_t* surfshapesmask = NULL;
    cairo_t* cairoshapesmask = NULL;

    cairo_surface_t* surffg = NULL;
    cairo_t* cairo = NULL;

    double lw = 2.0;
    // circle linewidth.
    double cw = 2.0;

    double ngc_fraction = 0.02;

    // NGC linewidth
    double nw = 2.0;

    // leave a gap short of connecting the points.
    double endgap = 5.0;
    // circle radius.
    double crad = endgap;

    double fontsize = 14.0;

    double label_offset = 15.0;

    int W = 0, H = 0;
    unsigned char* img = NULL;

    anbool NGC = FALSE, constell = FALSE;
    anbool bright = FALSE;
    anbool common_only = FALSE;
    anbool print_common_only = FALSE;
    int Nbright = 0;
    double ra, dec, px, py;
    int i, N;
    anbool justlist = FALSE;
    anbool only_messier = FALSE;

    anbool grid = FALSE;
    double gridspacing = 0.0;
    double gridcolor[3] = { 0.2, 0.2, 0.2 };

    int loglvl = LOG_MSG;

	char halign = 'L';
	char valign = 'C';
    sl* json = NULL;

    anbool whitetext = FALSE;

    while ((c = getopt(argc, args, OPTIONS)) != -1) {
        switch (c) {
		case 'V':
			valign = optarg[0];
			break;
		case 'O':
			halign = optarg[0];
			break;
        case 'F':
            ngc_fraction = atof(optarg);
            break;
        case 'h':
            print_help(args[0]);
            exit(0);
        case 'J':
            json = sl_new(4);
            break;
        case 'G':
            gridspacing = atof(optarg);
            break;
        case 'g':
            {
            char *tail = NULL;
            gridcolor[0] = strtod(optarg,&tail);
            if (*tail) { tail++; gridcolor[1] = strtod(tail,&tail); }
            if (*tail) { tail++; gridcolor[2] = strtod(tail,&tail); }
            }
            break;
        case 'D':
            HD = TRUE;
            break;
        case 'd':
            hdpath = optarg;
            break;
        case 'M':
            only_messier = TRUE;
            break;
        case 'n':
            nw = atof(optarg);
            break;
        case 'f':
            fontsize = atof(optarg);
            break;
        case 'L':
            justlist = TRUE;
            outfn = NULL;
            break;
        case 'x':
        	whitetext = TRUE;
        	break;
        case 'v':
            loglvl++;
            break;
            break;
        case 'j':
            print_common_only = TRUE;
            break;
        case 'c':
            common_only = TRUE;
            break;
        case 'b':
            Nbright = atoi(optarg);
            break;
        case 'B':
            bright = TRUE;
            break;
        case 'N':
            NGC = TRUE;
            break;
        case 'C':
            constell = TRUE;
            break;
        case 'p':
            pngformat = FALSE;
            break;
        case 's':
            scale = atof(optarg);
            break;
        case 'o':
            outfn = optarg;
            break;
        case 'i':
            infn = optarg;
            break;
        case 'w':
            wcsfn = optarg;
            break;
        case 'W':
            W = atoi(optarg);
            break;
        case 'H':
            H = atoi(optarg);
            break;
        }
    }

    log_init(loglvl);
    log_to(stderr);
    fits_use_error_system();

    if (optind != argc) {
        print_help(args[0]);
        exit(-1);
    }

    if (!(outfn || justlist) || !wcsfn) {
        logerr("Need (-o or -L) and -w args.\n");
        print_help(args[0]);
        exit(-1);
    }

    // read WCS.
    logverb("Trying to parse SIP/TAN header from %s...\n", wcsfn);
    if (!file_exists(wcsfn)) {
        ERROR("No such file: \"%s\"", wcsfn);
        exit(-1);
    }
    if (sip_read_header_file(wcsfn, &sip)) {
        logverb("Got SIP header.\n");
    } else {
        ERROR("Failed to parse SIP/TAN header from %s", wcsfn);
        exit(-1);
    }

    if (!(NGC || constell || bright || HD || grid)) {
        logerr("Neither constellations, bright stars, HD nor NGC/IC overlays selected!\n");
        print_help(args[0]);
        exit(-1);
    }

    if (gridspacing > 0.0)
        grid = TRUE;

    // adjust for scaling...
    lw /= scale;
    cw /= scale;
    nw /= scale;
    crad /= scale;
    endgap /= scale;
    fontsize /= scale;
    label_offset /= scale;

    if (!W || !H) {
        W = sip.wcstan.imagew;
        H = sip.wcstan.imageh;
    }
    if (!(infn || (W && H))) {
        logerr("Image width/height unspecified, and no input image given.\n");
        exit(-1);
    }


    if (infn) {
		cairoutils_fake_ppm_init();
        img = cairoutils_read_ppm(infn, &W, &H);
        if (!img) {
            ERROR("Failed to read input image %s", infn);
            exit(-1);
        }
        cairoutils_rgba_to_argb32(img, W, H);
    } else if (!justlist) {
        // Allocate a black image.
        img = calloc(4 * W * H, 1);
        if (!img) {
            SYSERROR("Failed to allocate a blank image on which to plot!");
            exit(-1);
        }
    }

    if (HD && !hdpath) {
        logerr("If you specify -D (plot Henry Draper objs), you also have to give -d (path to Henry Draper catalog)\n");
        exit(-1);
    }

    if (!justlist) {
        /*
         Cairo layers:

         -background: surfbg / cairobg
         --> gets drawn first, in black, masked by surfshapesmask

         -shapes: surfshapes / cairoshapes
         --> gets drawn second, masked by surfshapesmask

         -foreground/text: surffg / cairo
         --> gets drawn last.
         */
        surffg = cairo_image_surface_create(CAIRO_FORMAT_ARGB32, W, H);
        cairo = cairo_create(surffg);
        cairo_set_line_join(cairo, CAIRO_LINE_JOIN_BEVEL);
        cairo_set_antialias(cairo, CAIRO_ANTIALIAS_GRAY);
        cairo_set_source_rgba(cairo, 1.0, 1.0, 1.0, 1.0);
        cairo_scale(cairo, scale, scale);
        //cairo_select_font_face(cairo, "helvetica", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_BOLD);
        cairo_select_font_face(cairo, "DejaVu Sans Mono Book", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_BOLD);
        cairo_set_font_size(cairo, fontsize);

        surfshapes = cairo_image_surface_create(CAIRO_FORMAT_ARGB32, W, H);
        cairoshapes = cairo_create(surfshapes);
        cairo_set_line_join(cairoshapes, CAIRO_LINE_JOIN_BEVEL);
        cairo_set_antialias(cairoshapes, CAIRO_ANTIALIAS_GRAY);
        cairo_set_source_rgba(cairoshapes, 1.0, 1.0, 1.0, 1.0);
        cairo_scale(cairoshapes, scale, scale);
        cairo_select_font_face(cairoshapes, "DejaVu Sans Mono Book", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_BOLD);
        cairo_set_font_size(cairoshapes, fontsize);

        surfshapesmask = cairo_image_surface_create(CAIRO_FORMAT_A8, W, H);
        cairoshapesmask = cairo_create(surfshapesmask);
        cairo_set_line_join(cairoshapesmask, CAIRO_LINE_JOIN_BEVEL);
        cairo_set_antialias(cairoshapesmask, CAIRO_ANTIALIAS_GRAY);
        cairo_set_source_rgba(cairoshapesmask, 1.0, 1.0, 1.0, 1.0);
        cairo_scale(cairoshapesmask, scale, scale);
        cairo_select_font_face(cairoshapesmask, "DejaVu Sans Mono Book", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_BOLD);
        cairo_set_font_size(cairoshapesmask, fontsize);
        cairo_paint(cairoshapesmask);
        cairo_stroke(cairoshapesmask);

        surfbg = cairo_image_surface_create(CAIRO_FORMAT_A8, W, H);
        cairobg = cairo_create(surfbg);
        cairo_set_line_join(cairobg, CAIRO_LINE_JOIN_BEVEL);
        cairo_set_antialias(cairobg, CAIRO_ANTIALIAS_GRAY);
        cairo_set_source_rgba(cairobg, 0, 0, 0, 1);
        cairo_scale(cairobg, scale, scale);
        cairo_select_font_face(cairobg, "DejaVu Sans Mono Book", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_BOLD);
        cairo_set_font_size(cairobg, fontsize);

        cairos->bg = cairobg;
        cairos->fg = cairo;
        cairos->shapes = cairoshapes;
        cairos->shapesmask = cairoshapesmask;
        cairos->imgW = (float)W/scale;
        cairos->imgH = (float)H/scale;
//    }

    if (grid) {
        double ramin, ramax, decmin, decmax;
        double ra, dec;
        double rastep = gridspacing / 60.0;
        double decstep = gridspacing / 60.0;
        // how many line segments
        int N = 10;
        double px, py;
        int i;

        cairo_set_source_rgba(cairo, gridcolor[0], gridcolor[1], gridcolor[2], 1.0);

        sip_get_radec_bounds(&sip, 100, &ramin, &ramax, &decmin, &decmax);
		logverb("Plotting grid lines from RA=%g to %g in steps of %g; Dec=%g to %g in steps of %g\n",
				ramin, ramax, rastep, decmin, decmax, decstep);
        for (dec = decstep * floor(decmin / decstep); dec<=decmax; dec+=decstep) {
			logverb("  dec=%g\n", dec);
            for (i=0; i<=N; i++) {
                ra = ramin + ((double)i / (double)N) * (ramax - ramin);
                if (!sip_radec2pixelxy(&sip, ra, dec, &px, &py))
                    continue;
                // first time, move_to; else line_to
                ((ra == ramin) ? cairo_move_to : cairo_line_to)(cairo, px, py);
            }
            cairo_stroke(cairo);
        }
        for (ra = rastep * floor(ramin / rastep); ra <= ramax; ra += rastep) {
            //for (dec=decmin; dec<=decmax; dec += (decmax - decmin)/(double)N) {
			logverb("  ra=%g\n", ra);
            for (i=0; i<=N; i++) {
                dec = decmin + ((double)i / (double)N) * (decmax - decmin);
                if (!sip_radec2pixelxy(&sip, ra, dec, &px, &py))
                    continue;
                // first time, move_to; else line_to
                ((dec == decmin) ? cairo_move_to : cairo_line_to)(cairo, px, py);
            }
            cairo_stroke(cairo);
        }

        cairo_set_source_rgba(cairo, 1.0, 1.0, 1.0, 1.0);
    }
  }

    if (constell) {
        N = constellations_n();

        logverb("Checking %i constellations.\n", N);
        for (c=0; c<N; c++) {
            const char* shortname = NULL;
            const char* longname;
            il* lines;
            il* uniqstars;
            il* inboundstars;
            float r,g,b;
            int Ninbounds;
            int Nunique;
            cairo_text_extents_t textents;
            double cmass[3];

            uniqstars = constellations_get_unique_stars(c);
            inboundstars = il_new(16);

            Nunique = il_size(uniqstars);
            debug("%s: %zu unique stars.\n", shortname, il_size(uniqstars));

            // Count the number of unique stars belonging to this contellation
            // that are within the image bounds
            Ninbounds = 0;
            for (i=0; i<il_size(uniqstars); i++) {
                int star;
                star = il_get(uniqstars, i);
                constellations_get_star_radec(star, &ra, &dec);
                debug("star %i: ra,dec (%g,%g)\n", il_get(uniqstars, i), ra, dec);
                if (!sip_radec2pixelxy(&sip, ra, dec, &px, &py))
                    continue;
                if (px < 0 || py < 0 || px*scale > W || py*scale > H)
                    continue;
                Ninbounds++;
                il_append(inboundstars, star);
            }
            il_free(uniqstars);
            debug("%i are in-bounds.\n", Ninbounds);
            // Only draw this constellation if at least 2 of its stars
            // are within the image bounds.
            if (Ninbounds < 2) {
                il_free(inboundstars);
                continue;
            }

            // Set the color based on the location of the first in-bounds star.
            // This is a hack -- we have two different constellation
            // definitions with different numbering schemes!
            if (!justlist && (il_size(inboundstars) > 0)) {
                // This is helpful for videos: ensuring that the same
                // color is chosen for a constellation in each frame.
                int star = il_get(inboundstars, 0);
                constellations_get_star_radec(star, &ra, &dec);
                if (whitetext) {
                	r = g = b = 1;
                } else {
                	color_for_radec(ra, dec, &r, &g, &b);
                }
                cairo_set_source_rgba(cairoshapes, r,g,b,0.8);
                cairo_set_line_width(cairoshapes, cw);
                cairo_set_source_rgba(cairo, r,g,b,0.8);
                cairo_set_line_width(cairo, cw);
            }

            // Draw circles around each star.
            // Find center of mass (of the in-bounds stars)
            cmass[0] = cmass[1] = cmass[2] = 0.0;
            for (i=0; i<il_size(inboundstars); i++) {
                double xyz[3];
                int star = il_get(inboundstars, i);
                constellations_get_star_radec(star, &ra, &dec);
                if (!sip_radec2pixelxy(&sip, ra, dec, &px, &py))
                    continue;
                if (px < 0 || py < 0 || px*scale > W || py*scale > H)
                    continue;
                if (!justlist) {
                    cairo_arc(cairobg, px, py, crad+1.0, 0.0, 2.0*M_PI);
                    cairo_stroke(cairobg);
                    cairo_arc(cairoshapes, px, py, crad, 0.0, 2.0*M_PI);
                    cairo_stroke(cairoshapes);
                }
                radecdeg2xyzarr(ra, dec, xyz);
                cmass[0] += xyz[0];
                cmass[1] += xyz[1];
                cmass[2] += xyz[2];
            }
            cmass[0] /= il_size(inboundstars);
            cmass[1] /= il_size(inboundstars);
            cmass[2] /= il_size(inboundstars);
            xyzarr2radecdeg(cmass, &ra, &dec);

            il_free(inboundstars);

            if (!sip_radec2pixelxy(&sip, ra, dec, &px, &py))
                continue;

            shortname = constellations_get_shortname(c);
            longname = constellations_get_longname(c);
            assert(shortname && longname);

            logverb("%s at (%g, %g)\n", longname, px, py);

            if (Ninbounds == Nunique) {
                printf("The constellation %s (%s)\n", longname, shortname);
            } else {
                printf("Part of the constellation %s (%s)\n", longname, shortname);
            }

            if (justlist)
                continue;

            // If the label will be off-screen, move it back on.
            cairo_text_extents(cairo, shortname, &textents);
			
            if (px < 0)
                px = 0;
            if (py < textents.height)
                py = textents.height;
            if ((px + textents.width)*scale > W)
                px = W/scale - textents.width;
            if ((py+textents.height)*scale > H)
                py = H/scale - textents.height;
            logverb("%s at (%g, %g)\n", shortname, px, py);

            add_text(cairos, longname, px, py, halign, valign);

            // Draw the lines.
            cairo_set_line_width(cairo, lw);
            lines = constellations_get_lines(c);
            for (i=0; i<il_size(lines)/2; i++) {
                int star1, star2;
                double ra1, dec1, ra2, dec2;
                double px1, px2, py1, py2;
                double dx, dy;
                double dist;
                double gapfrac;
                star1 = il_get(lines, i*2+0);
                star2 = il_get(lines, i*2+1);
                constellations_get_star_radec(star1, &ra1, &dec1);
                constellations_get_star_radec(star2, &ra2, &dec2);
                if (!sip_radec2pixelxy(&sip, ra1, dec1, &px1, &py1) ||
                    !sip_radec2pixelxy(&sip, ra2, dec2, &px2, &py2))
                    continue;
                dx = px2 - px1;
                dy = py2 - py1;
                dist = hypot(dx, dy);
                gapfrac = endgap / dist;
                cairo_move_to(cairoshapes, px1 + dx*gapfrac, py1 + dy*gapfrac);
                cairo_line_to(cairoshapes, px1 + dx*(1.0-gapfrac), py1 + dy*(1.0-gapfrac));
                cairo_stroke(cairoshapes);
            }
            il_free(lines);
        }
        logverb("done constellations.\n");
    }

    if (bright) {
        double dy = 0;
        cairo_font_extents_t extents;
        pl* brightstars = pl_new(16);

        if (!justlist) {
            cairo_set_source_rgba(cairoshapes, 0.75, 0.75, 0.75, 0.8);
            cairo_font_extents(cairo, &extents);
            dy = extents.ascent * 0.5;
            cairo_set_line_width(cairoshapes, cw);
        }

        N = bright_stars_n();
        logverb("Checking %i bright stars.\n", N);

        for (i=0; i<N; i++) {
            const brightstar_t* bs = bright_stars_get(i);

            if (!sip_radec2pixelxy(&sip, bs->ra, bs->dec, &px, &py))
                continue;
            if (px < 0 || py < 0 || px*scale > W || py*scale > H)
                continue;
            if (!(bs->name && strlen(bs->name)))
                continue;
            if (common_only && !(bs->common_name && strlen(bs->common_name)))
                continue;

            if (strcmp(bs->common_name, "Maia") == 0)
                continue;

            pl_append(brightstars, bs);
        }

        // keep only the Nbright brightest?
        if (Nbright && (pl_size(brightstars) > Nbright)) {
            pl_sort(brightstars, sort_by_mag);
            pl_remove_index_range(brightstars, Nbright, pl_size(brightstars)-Nbright);
        }

        for (i=0; i<pl_size(brightstars); i++) {
            char* text;
            const brightstar_t* bs = pl_get(brightstars, i);

            if (!sip_radec2pixelxy(&sip, bs->ra, bs->dec, &px, &py))
                continue;
            if (bs->common_name && strlen(bs->common_name))
                if (print_common_only || common_only)
                    text = strdup(bs->common_name);
                else
                    asprintf_safe(&text, "%s (%s)", bs->common_name, bs->name);
            else
                text = strdup(bs->name);

            logverb("%s at (%g, %g)\n", text, px, py);

            if (json) {
                sl* names = sl_new(4);
                char* namearr;
                if (bs->common_name && strlen(bs->common_name))
                    sl_append(names, bs->common_name);
                if (bs->name)
					sl_append(names, bs->name);
				
                namearr = sl_join(names, "\", \"");

                sl_appendf(json,
                           "{ \"type\"  : \"star\", "
                           "  \"pixelx\": %g,       "
                           "  \"pixely\": %g,       "
                           "  \"name\"  : \"%s\",   "
                           "  \"names\" : [ \"%s\" ] } "
                           , px, py,
                           (bs->common_name && strlen(bs->common_name)) ? bs->common_name : bs->name,
                           namearr);
                free(namearr);
                sl_free2(names);
            }

            if (bs->common_name && strlen(bs->common_name))
                printf("The star %s (%s)\n", bs->common_name, bs->name);
            else
                printf("The star %s\n", bs->name);

            if (!justlist) {
                float r,g,b;
                // set color based on RA,Dec to match constellations above.
                if (whitetext) {
                	r = g = b = 1;
                } else {
                	color_for_radec(bs->ra, bs->dec, &r, &g, &b);
                }
                cairo_set_source_rgba(cairoshapes, r,g,b,0.8);
                cairo_set_source_rgba(cairo, r,g,b, 0.8);
            }

            if (!justlist)
                add_text(cairos, text, px + label_offset, py + dy,
						 halign, valign);

            free(text);

            if (!justlist) {
                // plot a black circle behind the light circle...
                cairo_arc(cairobg, px, py, crad+1.0, 0.0, 2.0*M_PI);
                cairo_stroke(cairobg);

                cairo_arc(cairoshapes, px, py, crad, 0.0, 2.0*M_PI);
                cairo_stroke(cairoshapes);
            }
        }
        pl_free(brightstars);
    }

    if (NGC) {
        double imscale;
        double imsize;
        double dy = 0;
        cairo_font_extents_t extents;

        if (!justlist) {
            cairo_set_source_rgb(cairoshapes, 1.0, 1.0, 1.0);
            cairo_set_source_rgb(cairo, 1.0, 1.0, 1.0);
            cairo_set_line_width(cairo, nw);
            cairo_font_extents(cairo, &extents);
            dy = extents.ascent * 0.5;
        }

        // arcsec/pixel
        imscale = sip_pixel_scale(&sip);
        // arcmin
        imsize = imscale * (imin(W, H) / scale) / 60.0;
        N = ngc_num_entries();

        logverb("Checking %i NGC/IC objects.\n", N);

        for (i=0; i<N; i++) {
            ngc_entry* ngc = ngc_get_entry(i);
            sl* str;
            sl* names;
            double pixsize;
            float ara, adec;
            char* text;

            if (!ngc)
                break;
            if (ngc->size < imsize * ngc_fraction)
                continue;

            if (ngcic_accurate_get_radec(ngc->is_ngc, ngc->id, &ara, &adec) == 0) {
                ngc->ra = ara;
                ngc->dec = adec;
            }

            if (!sip_radec2pixelxy(&sip, ngc->ra, ngc->dec, &px, &py))
                continue;
            if (px < 0 || py < 0 || px*scale > W || py*scale > H)
                continue;

            str = sl_new(4);
            //sl_appendf(str, "%s %i", (ngc->is_ngc ? "NGC" : "IC"), ngc->id);
            names = ngc_get_names(ngc, NULL);
            if (names) {
                int n;
                for (n=0; n<sl_size(names); n++) {
                    if (only_messier && strncmp(sl_get(names, n), "M ", 2))
                        continue;
                    sl_append(str, sl_get(names, n));
                }
            }
            sl_free2(names);

            text = sl_implode(str, " / ");

            printf("%s\n", text);

            pixsize = ngc->size * 60.0 / imscale;

            if (!justlist) {
                // black circle behind the white one...
                cairo_arc(cairobg, px, py, pixsize/2.0+1.0, 0.0, 2.0*M_PI);
                cairo_stroke(cairobg);

                cairo_move_to(cairoshapes, px + pixsize/2.0, py);
                cairo_arc(cairoshapes, px, py, pixsize/2.0, 0.0, 2.0*M_PI);
                debug("size: %f arcsec, pixsize: %f pixels\n", ngc->size, pixsize);
                cairo_stroke(cairoshapes);

                add_text(cairos, text, px + label_offset, py + dy,
						 halign, valign);
            }

            if (json) {
                char* namelist = sl_implode(str, "\", \"");
                sl_appendf(json,
                           "{ \"type\"   : \"ngc\", "
                           "  \"names\"  : [ \"%s\" ], "
                           "  \"pixelx\" : %g, "
                           "  \"pixely\" : %g, "
                           "  \"radius\" : %g }"
                           , namelist, px, py, pixsize/2.0);
                free(namelist);
            }

            free(text);
            sl_free2(str);
        }
    }

    if (HD) {
        double rac, decc, ra2, dec2;
        double arcsec;
        hd_catalog_t* hdcat;
        bl* hdlist;
        int i;

        if (!justlist)
            cairo_set_source_rgb(cairo, 1.0, 1.0, 1.0);

		logverb("Reading HD catalog: %s\n", hdpath);
        hdcat = henry_draper_open(hdpath);
        if (!hdcat) {
            ERROR("Failed to open HD catalog");
            exit(-1);
        }
		logverb("Got %i HD stars\n", henry_draper_n(hdcat));

        sip_pixelxy2radec(&sip, W/(2.0*scale), H/(2.0*scale), &rac, &decc);
        sip_pixelxy2radec(&sip, 0.0, 0.0, &ra2, &dec2);
        arcsec = arcsec_between_radecdeg(rac, decc, ra2, dec2);
        // Fudge
        arcsec *= 1.1;
        hdlist = henry_draper_get(hdcat, rac, decc, arcsec);
		logverb("Found %zu HD stars within range (%g arcsec of RA,Dec %g,%g)\n", bl_size(hdlist), arcsec, rac, decc);

        for (i=0; i<bl_size(hdlist); i++) {
            double px, py;
            char* txt;
            hd_entry_t* hd = bl_access(hdlist, i);
            if (!sip_radec2pixelxy(&sip, hd->ra, hd->dec, &px, &py)) {
                continue;
			}
            if (px < 0 || py < 0 || px*scale > W || py*scale > H) {
				logverb("  HD %i at RA,Dec (%g, %g) -> pixel (%.1f, %.1f) is out of bounds\n",
						hd->hd, hd->ra, hd->dec, px, py);
                continue;
			}
            asprintf_safe(&txt, "HD %i", hd->hd);
            if (!justlist) {
                cairo_text_extents_t textents;
                cairo_text_extents(cairo, txt, &textents);
                cairo_arc(cairobg, px, py, crad+1.0, 0.0, 2.0*M_PI);
                cairo_stroke(cairobg);
                cairo_arc(cairoshapes, px, py, crad, 0.0, 2.0*M_PI);
                cairo_stroke(cairoshapes);

                px -= (textents.width * 0.5);
                py -= (crad + 4.0);

                add_text(cairos, txt, px, py, halign, valign);
            }

            if (json)
                sl_appendf(json,
                           "{ \"type\"  : \"hd\","
                           "  \"pixelx\": %g, "
                           "  \"pixely\": %g, "
                           "  \"name\"  : \"HD %i\" }"
                           , px, py, hd->hd);

            printf("%s\n", txt);
            free(txt);
        }
        bl_free(hdlist);
        henry_draper_close(hdcat);
    }

    if (json) {
        FILE* fout = stderr;
        char* annstr = sl_implode(json, ",\n");
        fprintf(fout, "{ \n");
        fprintf(fout, "  \"status\": \"solved\",\n");
        fprintf(fout, "  \"git-revision\": %s,\n", AN_GIT_REVISION);
        fprintf(fout, "  \"git-date\": \"%s\",\n", AN_GIT_DATE);
        fprintf(fout, "  \"annotations\": [\n%s\n]\n", annstr);
        fprintf(fout, "}\n");
        free(annstr);
    }
    sl_free2(json);
    json = NULL;

    if (justlist)
        return 0;

    target = cairo_image_surface_create_for_data(img, CAIRO_FORMAT_ARGB32, W, H, W*4);
    cairot = cairo_create(target);
    cairo_set_source_rgba(cairot, 0, 0, 0, 1);

    // Here's where you set the background surface's properties...
    cairo_set_source_surface(cairot, surfbg, 0, 0);
    cairo_mask_surface(cairot, surfshapesmask, 0, 0);
    cairo_stroke(cairot);

    // Add on the shapes.
    cairo_set_source_surface(cairot, surfshapes, 0, 0);
    //cairo_mask_surface(cairot, surfshapes, 0, 0);
    cairo_mask_surface(cairot, surfshapesmask, 0, 0);
    cairo_stroke(cairot);

    // Add on the foreground.
    cairo_set_source_surface(cairot, surffg, 0, 0);
    cairo_mask_surface(cairot, surffg, 0, 0);
    cairo_stroke(cairot);

    // Convert image for output...
    cairoutils_argb32_to_rgba(img, W, H);

    if (pngformat) {
        if (cairoutils_write_png(outfn, img, W, H)) {
            ERROR("Failed to write PNG");
            exit(-1);
        }
    } else {
        if (cairoutils_write_ppm(outfn, img, W, H)) {
            ERROR("Failed to write PPM");
            exit(-1);
        }
    }

    cairo_surface_destroy(target);
    cairo_surface_destroy(surfshapesmask);
    cairo_surface_destroy(surffg);
    cairo_surface_destroy(surfbg);
    cairo_surface_destroy(surfshapes);
    cairo_destroy(cairo);
    cairo_destroy(cairot);
    cairo_destroy(cairobg);
    cairo_destroy(cairoshapes);
    cairo_destroy(cairoshapesmask);
    free(img);

    return 0;
}
示例#18
0
int hpquads(startree_t* starkd,
			codefile_t* codes,
			quadfile_t* quads,
			int Nside,
			double scale_min_arcmin,
			double scale_max_arcmin,
			int dimquads,
			int passes,
			int Nreuses,
			int Nloosen,
			int id,
			anbool scanoccupied,

			void* sort_data,
			int (*sort_func)(const void*, const void*),
			int sort_size,
			
			char** args, int argc) {
	hpquads_t myhpquads;
	hpquads_t* me = &myhpquads;

	int i;
	int pass;
	anbool circle = TRUE;
	double radius2;
	il* hptotry;
	int Nhptotry = 0;
	int nquads;
	double hprad;
	double quadscale;

	int skhp, sknside;

	qfits_header* qhdr;
	qfits_header* chdr;

	int N;
	int dimcodes;
	int quadsize;
	int NHP;

	memset(me, 0, sizeof(hpquads_t));

	if (Nside > HP_MAX_INT_NSIDE) {
		ERROR("Error: maximum healpix Nside = %i", HP_MAX_INT_NSIDE);
		return -1;
	}
	if (Nreuses > 255) {
		ERROR("Error, reuse (-r) must be less than 256");
		return -1;
	}

	me->Nside = Nside;
	me->dimquads = dimquads;
	NHP = 12 * Nside * Nside;
	dimcodes = dimquad2dimcode(dimquads);
	quadsize = sizeof(unsigned int) * dimquads;

	logmsg("Nside=%i.  Nside^2=%i.  Number of healpixes=%i.  Healpix side length ~ %g arcmin.\n",
		   me->Nside, me->Nside*me->Nside, NHP, healpix_side_length_arcmin(me->Nside));

	me->sort_data = sort_data;
	me->sort_func = sort_func;
	me->sort_size = sort_size;

	tic();
	me->starkd = starkd;
	N = startree_N(me->starkd);
	logmsg("Star tree contains %i objects.\n", N);

	// get the "HEALPIX" header from the skdt...
	skhp = qfits_header_getint(startree_header(me->starkd), "HEALPIX", -1);
	if (skhp == -1) {
		if (!qfits_header_getboolean(startree_header(me->starkd), "ALLSKY", FALSE)) {
			logmsg("Warning: skdt does not contain \"HEALPIX\" header.  Code and quad files will not contain this header either.\n");
		}
	}
    // likewise "HPNSIDE"
	sknside = qfits_header_getint(startree_header(me->starkd), "HPNSIDE", 1);

    if (sknside && Nside % sknside) {
        logerr("Error: Nside (-n) must be a multiple of the star kdtree healpixelisation: %i\n", sknside);
		return -1;
    }

	if (!scanoccupied && (N*(skhp == -1 ? 1 : sknside*sknside*12) < NHP)) {
		logmsg("\n\n");
		logmsg("NOTE, your star kdtree is sparse (has only a fraction of the stars expected)\n");
		logmsg("  so you probably will get much faster results by setting the \"-E\" command-line\n");
		logmsg("  flag.\n");
		logmsg("\n\n");
	}

	quads->dimquads = me->dimquads;
	codes->dimcodes = dimcodes;
	quads->healpix = skhp;
	codes->healpix = skhp;
	quads->hpnside = sknside;
	codes->hpnside = sknside;
	if (id) {
		quads->indexid = id;
		codes->indexid = id;
	}

	qhdr = quadfile_get_header(quads);
	chdr = codefile_get_header(codes);

	add_headers(qhdr, args, argc, startree_header(me->starkd), circle, passes);
	add_headers(chdr, args, argc, startree_header(me->starkd), circle, passes);

    if (quadfile_write_header(quads)) {
        ERROR("Couldn't write headers to quad file");
		return -1;
    }
    if (codefile_write_header(codes)) {
        ERROR("Couldn't write headers to code file");
		return -1;
    }

    quads->numstars = codes->numstars = N;
	me->quad_dist2_upper = arcmin2distsq(scale_max_arcmin);
	me->quad_dist2_lower = arcmin2distsq(scale_min_arcmin);
    codes->index_scale_upper = quads->index_scale_upper = distsq2rad(me->quad_dist2_upper);
    codes->index_scale_lower = quads->index_scale_lower = distsq2rad(me->quad_dist2_lower);
	
	me->nuses = calloc(N, sizeof(unsigned char));

	// hprad = sqrt(2) * (healpix side length / 2.)
	hprad = arcmin2dist(healpix_side_length_arcmin(Nside)) * M_SQRT1_2;
	quadscale = 0.5 * sqrt(me->quad_dist2_upper);
	// 1.01 for a bit of safety.  we'll look at a few extra stars.
	radius2 = square(1.01 * (hprad + quadscale));
	me->radius2 = radius2;

	logmsg("Healpix radius %g arcsec, quad scale %g arcsec, total %g arcsec\n",
		   distsq2arcsec(hprad*hprad),
		   distsq2arcsec(quadscale*quadscale),
		   distsq2arcsec(radius2));

	hptotry = il_new(1024);

	if (scanoccupied) {
		logmsg("Scanning %i input stars...\n", N);
		for (i=0; i<N; i++) {
			double xyz[3];
			int j;
			if (startree_get(me->starkd, i, xyz)) {
				ERROR("Failed to get star %i", i);
				return -1;
			}
			j = xyzarrtohealpix(xyz, Nside);
			il_insert_unique_ascending(hptotry, j);
			if (log_get_level() > LOG_VERB) {
				double ra,dec;
				if (startree_get_radec(me->starkd, i, &ra, &dec)) {
					ERROR("Failed to get RA,Dec for star %i\n", i);
					return -1;
				}
				logdebug("star %i: RA,Dec %g,%g; xyz %g,%g,%g; hp %i\n",
						 i, ra, dec, xyz[0], xyz[1], xyz[2], j);
			}
		}
		logmsg("Will check %zu healpixes.\n", il_size(hptotry));
		if (log_get_level() > LOG_VERB) {
			logdebug("Checking healpixes: [ ");
			for (i=0; i<il_size(hptotry); i++)
				logdebug("%i ", il_get(hptotry, i));
			logdebug("]\n");
		}

	} else {
		if (skhp == -1) {
			// Try all healpixes.
			il_free(hptotry);
			hptotry = NULL;
			Nhptotry = NHP;
		} else {
			// The star kdtree may itself be healpixed
			int starhp, starx, stary;
			// In that case, the healpixes we are interested in form a rectangle
			// within a big healpix.  These are the coords (in [0, Nside)) of
			// that rectangle.
			int x0, x1, y0, y1;
			int x, y;

			healpix_decompose_xy(skhp, &starhp, &starx, &stary, sknside);
			x0 =  starx    * (Nside / sknside);
			x1 = (starx+1) * (Nside / sknside);
			y0 =  stary    * (Nside / sknside);
			y1 = (stary+1) * (Nside / sknside);

			for (y=y0; y<y1; y++) {
				for (x=x0; x<x1; x++) {
					int j = healpix_compose_xy(starhp, x, y, Nside);
					il_append(hptotry, j);
				}
			}
			assert(il_size(hptotry) == (Nside/sknside) * (Nside/sknside));
		}
	}
	if (hptotry)
		Nhptotry = il_size(hptotry);

	me->quadlist = bl_new(65536, quadsize);

	if (Nloosen)
		me->retryhps = il_new(1024);

	for (pass=0; pass<passes; pass++) {
		char key[64];
		int nthispass;

		logmsg("Pass %i of %i.\n", pass+1, passes);
		logmsg("Trying %i healpixes.\n", Nhptotry);

		nthispass = build_quads(me, Nhptotry, hptotry, Nreuses);

		logmsg("Made %i quads (out of %i healpixes) this pass.\n", nthispass, Nhptotry);
		logmsg("Made %i quads so far.\n", (me->bigquadlist ? bt_size(me->bigquadlist) : 0) + (int)bl_size(me->quadlist));

		sprintf(key, "PASS%i", pass+1);
		fits_header_mod_int(chdr, key, nthispass, "quads created in this pass");
		fits_header_mod_int(qhdr, key, nthispass, "quads created in this pass");

		logmsg("Merging quads...\n");
		if (!me->bigquadlist)
			me->bigquadlist = bt_new(quadsize, 256);
		for (i=0; i<bl_size(me->quadlist); i++) {
			void* q = bl_access(me->quadlist, i);
			bt_insert2(me->bigquadlist, q, FALSE, compare_quads, &me->dimquads);
		}
		bl_remove_all(me->quadlist);
	}

	il_free(hptotry);
	hptotry = NULL;

	if (Nloosen) {
		int R;
		for (R=Nreuses+1; R<=Nloosen; R++) {
			il* trylist;
			int nthispass;

			logmsg("Loosening reuse maximum to %i...\n", R);
			logmsg("Trying %zu healpixes.\n", il_size(me->retryhps));
			if (!il_size(me->retryhps))
				break;

			trylist = me->retryhps;
			me->retryhps = il_new(1024);
			nthispass = build_quads(me, il_size(trylist), trylist, R);
			logmsg("Made %i quads (out of %zu healpixes) this pass.\n", nthispass, il_size(trylist));
			il_free(trylist);
			for (i=0; i<bl_size(me->quadlist); i++) {
				void* q = bl_access(me->quadlist, i);
				bt_insert2(me->bigquadlist, q, FALSE, compare_quads, &me->dimquads);
			}
			bl_remove_all(me->quadlist);
		}
	}
	if (me->retryhps)
		il_free(me->retryhps);

	kdtree_free_query(me->res);
	me->res = NULL;
	me->inds = NULL;
	me->stars = NULL;
	free(me->nuses);
	me->nuses = NULL;

	logmsg("Writing quads...\n");

	// add the quads from the big-quadlist
	nquads = bt_size(me->bigquadlist);
	for (i=0; i<nquads; i++) {
		unsigned int* q = bt_access(me->bigquadlist, i);
		quad_write(codes, quads, q, me->starkd, me->dimquads, dimcodes);
	}
	// add the quads that were made during the final round.
	for (i=0; i<bl_size(me->quadlist); i++) {
		unsigned int* q = bl_access(me->quadlist, i);
		quad_write(codes, quads, q, me->starkd, me->dimquads, dimcodes);
	}

	// fix output file headers.
	if (quadfile_fix_header(quads)) {
		ERROR("Failed to fix quadfile headers");
		return -1;
	}
	if (codefile_fix_header(codes)) {
		ERROR("Failed to fix codefile headers");
		return -1;
	}

	bl_free(me->quadlist);
	bt_free(me->bigquadlist);

	toc();
	logmsg("Done.\n");
	return 0;
}
示例#19
0
int plot_healpix_plot(const char* command,
					  cairo_t* cairo, plot_args_t* pargs, void* baton) {
	plothealpix_t* args = (plothealpix_t*)baton;
	double ra,dec,rad;
	il* hps;
	int i;
	double hpstep;
	int minx[12], maxx[12], miny[12], maxy[12];

	plotstuff_builtin_apply(cairo, pargs);

	if (plotstuff_get_radec_center_and_radius(pargs, &ra, &dec, &rad)) {
		ERROR("Failed to get RA,Dec center and radius");
		return -1;
	}
	hps = healpix_rangesearch_radec(ra, dec, rad, args->nside, NULL);
	logmsg("Found %zu healpixes in range.\n", il_size(hps));
	hpstep = args->nside * args->stepsize * plotstuff_pixel_scale(pargs) / 60.0 / healpix_side_length_arcmin(args->nside);
	hpstep = MIN(1, hpstep);
	logmsg("Taking steps of %g in healpix space\n", hpstep);

	// For each of the 12 top-level healpixes, find the range of healpixes covered by this image.
	for (i=0; i<12; i++) {
		maxx[i] = maxy[i] = -1;
		minx[i] = miny[i] = args->nside+1;
	}
	for (i=0; i<il_size(hps); i++) {
		int hp = il_get(hps, i);
		int hpx, hpy;
		int bighp;
		healpix_decompose_xy(hp, &bighp, &hpx, &hpy, args->nside);
		logverb("  hp %i: bighp %i, x,y (%i,%i)\n", i, bighp, hpx, hpy);
		minx[bighp] = MIN(minx[bighp], hpx);
		maxx[bighp] = MAX(maxx[bighp], hpx);
		miny[bighp] = MIN(miny[bighp], hpy);
		maxy[bighp] = MAX(maxy[bighp], hpy);
	}
	il_free(hps);

	for (i=0; i<12; i++) {
		int hx,hy;
		int hp;
		double d, frac;
		double x,y;

		if (maxx[i] == -1)
			continue;
		logverb("Big healpix %i: x range [%i, %i], y range [%i, %i]\n",
			   i, minx[i], maxx[i], miny[i], maxy[i]);

		for (hy = miny[i]; hy <= maxy[i]; hy++) {
			logverb("  y=%i\n", hy);
			for (d=minx[i]; d<=maxx[i]; d+=hpstep) {
				hx = floor(d);
				frac = d - hx;
				hp = healpix_compose_xy(i, hx, hy, args->nside);
				healpix_to_radecdeg(hp, args->nside, frac, 0.0, &ra, &dec);
				if (!plotstuff_radec2xy(pargs, ra, dec, &x, &y))
					continue;
				if (d == minx[i])
					cairo_move_to(pargs->cairo, x, y);
				else
					cairo_line_to(pargs->cairo, x, y);
			}
			cairo_stroke(pargs->cairo);
		}
		for (hx = minx[i]; hx <= maxx[i]; hx++) {
			for (d=miny[i]; d<=maxy[i]; d+=hpstep) {
				hy = floor(d);
				frac = d - hy;
				hp = healpix_compose_xy(i, hx, hy, args->nside);
				healpix_to_radecdeg(hp, args->nside, 0.0, frac, &ra, &dec);
				if (!plotstuff_radec2xy(pargs, ra, dec, &x, &y))
					continue;
				if (d == miny[i])
					cairo_move_to(pargs->cairo, x, y);
				else
					cairo_line_to(pargs->cairo, x, y);
			}
			cairo_stroke(pargs->cairo);
		}
	}
	return 0;
}
示例#20
0
int main(int argc, char *argv[]) {
  int argchar;

  char* infn = NULL;
  char* outfn = NULL;
  anbool tostdout = FALSE;
  FILE* fin = NULL;
  FILE* fout = NULL;
  il* exts;
  int i;
  char* progname = argv[0];
  anbool inblocks = FALSE;
  anbool inmegs = FALSE;
  int allexts = 0;
  int Next = -1;
  anbool dataonly = FALSE;
  anbool headeronly = FALSE;
  anqfits_t* anq = NULL;
  int loglvl = LOG_MSG;

  exts = il_new(16);

  while ((argchar = getopt (argc, argv, OPTIONS)) != -1)
    switch (argchar) {
    case 'v':
        loglvl++;
        break;
    case 'D':
      dataonly = TRUE;
      break;
    case 'H':
      headeronly = TRUE;
      break;
    case 'a':
      allexts = 1;
      break;
    case 'b':
      inblocks = TRUE;
      break;
    case 'M':
      inmegs = TRUE;
      break;
    case 'e':
      il_append(exts, atoi(optarg));
      break;
    case 'i':
      infn = optarg;
      break;
    case 'o':
      outfn = optarg;
      break;
    case '?':
    case 'h':
      printHelp(progname);
      return 0;
    default:
      return -1;
    }

  if (headeronly && dataonly) {
    fprintf(stderr, "Can't write data blocks only AND header blocks only!\n");
    exit(-1);
  }

  if (inblocks && inmegs) {
    fprintf(stderr, "Can't write sizes in FITS blocks and megabytes.\n");
    exit(-1);
  }

  fits_use_error_system();
  log_init(loglvl);
  log_to(stderr);
  errors_log_to(stderr);

  if (infn) {
    anq = anqfits_open(infn);
    if (!anq) {
      ERROR("Failed to open input file \"%s\"", infn);
      exit(-1);
    }
    Next = anqfits_n_ext(anq);
    fprintf(stderr, "File %s contains %i FITS extensions.\n", infn, Next);
  }

  if (infn && !outfn) {
    for (i=0; i<Next; i++) {
      off_t hdrstart, hdrlen, datastart, datalen;

      hdrstart  = anqfits_header_start(anq, i);
      hdrlen    = anqfits_header_size(anq, i);
      datastart = anqfits_data_start(anq, i);
      datalen   = anqfits_data_size(anq, i);

      if (inblocks) {
	off_t block = (off_t)FITS_BLOCK_SIZE;
	fprintf(stderr, "Extension %i : header start %zu , length %zu ; data start %zu , length %zu blocks.\n",
			i, (size_t)(hdrstart / block), (size_t)(hdrlen / block), (size_t)(datastart / block), (size_t)(datalen / block));
      } else if (inmegs) {
	off_t meg = 1024*1024;
	fprintf(stderr, "Extension %i : header start %zu , length %zu ; data start %zu , length %zu megabytes.\n",
			i, (size_t)(hdrstart/meg), (size_t)(hdrlen/meg), (size_t)(datastart/meg), (size_t)(datalen/meg));
      } else {
	fprintf(stderr, "Extension %i : header start %zu , length %zu ; data start %zu , length %zu .\n",
			i, (size_t)hdrstart, (size_t)hdrlen, (size_t)datastart, (size_t)datalen);
      }
    }
    anqfits_close(anq);
    exit(0);
  }

  if (!infn || !outfn || !(il_size(exts) || allexts)) {
    printHelp(progname);
    exit(-1);
  }

  if (!strcmp(outfn, "-")) {
    tostdout = TRUE;
    if (allexts) {
      fprintf(stderr, "Specify all extensions (-a) and outputting to stdout (-o -) doesn't make much sense...\n");
      exit(-1);
    }
  }

  if (infn) {
    fin = fopen(infn, "rb");
    if (!fin) {
      fprintf(stderr, "Failed to open input file %s: %s\n", infn, strerror(errno));
      exit(-1);
    }
  }

  if (tostdout)
    fout = stdout;
  else {
    if (allexts)
      for (i=0; i<Next; i++)
	il_append(exts, i);
    else {
      // open the (single) output file.
      fout = fopen(outfn, "wb");
      if (!fout) {
	fprintf(stderr, "Failed to open output file %s: %s\n", outfn, strerror(errno));
	exit(-1);
      }
    }
  }

  for (i=0; i<il_size(exts); i++) {
    off_t hdrstart, hdrlen, datastart, datalen;
    int ext = il_get(exts, i);

    if (allexts) {
      char fn[256];
      snprintf(fn, sizeof(fn), outfn, ext);
      fout = fopen(fn, "wb");
      if (!fout) {
	fprintf(stderr, "Failed to open output file %s: %s\n", fn, strerror(errno));
	exit(-1);
      }
    }

    hdrstart  = anqfits_header_start(anq, ext);
    hdrlen    = anqfits_header_size(anq, ext);
    datastart = anqfits_data_start(anq, ext);
    datalen   = anqfits_data_size(anq, ext);

    if (inblocks) {
      off_t block = (off_t)FITS_BLOCK_SIZE;
      fprintf(stderr, "Writing extension %i : header start %zu , length %zu ; data start %zu , length %zu blocks.\n",
			  ext, (size_t)(hdrstart / block), (size_t)(hdrlen / block), (size_t)(datastart / block), (size_t)(datalen / block));
    } else if (inmegs) {
      off_t meg = 1024*1024;
      fprintf(stderr, "Writing extension %i : header start %zu , length %zu ; data start %zu , length %zu megabytes.\n",
			  ext, (size_t)(hdrstart/meg), (size_t)(hdrlen/meg), (size_t)(datastart/meg), (size_t)(datalen/meg));
    } else {
      fprintf(stderr, "Writing extension %i : header start %zu , length %zu ; data start %zu , length %zu .\n",
	      ext, (size_t)hdrstart, (size_t)hdrlen, (size_t)datastart, (size_t)datalen);
    }

    if (hdrlen && !dataonly) {
      if (pipe_file_offset(fin, hdrstart, hdrlen, fout)) {
	fprintf(stderr, "Failed to write header for extension %i: %s\n", ext, strerror(errno));
	exit(-1);
      }
    }
    if (datalen && !headeronly) {
      if (pipe_file_offset(fin, datastart, datalen, fout)) {
	fprintf(stderr, "Failed to write data for extension %i: %s\n", ext, strerror(errno));
	exit(-1);
      }
    }

    if (allexts)
      if (fclose(fout)) {
	fprintf(stderr, "Failed to close output file: %s\n", strerror(errno));
	exit(-1);
      }
  }

  fclose(fin);
  if (!allexts && !tostdout)
    fclose(fout);
  il_free(exts);
  anqfits_close(anq);
  return 0;
}
static void dualtree_rs_recurse(kdtree_t* xtree, kdtree_t* ytree,
								il* xnodes, il* xleaves,
								bl* xnodebbs, bl* xleafbbs,
								int ynode,
								ttype* ybb,
								double maxd2,
								rangesearch_callback cb, void* baton) {
	int leafmarker;
	il* childnodes;
	int i, N;
	ttype oldbbval;
	ttype splitval;
	uint8_t splitdim;

	// if the query node is a leaf...
	if (KD_IS_LEAF(ytree, ynode)) {
		// ... then run the result function on each x node
		/*
		 if (callbacks->start_results)
		 callbacks->start_results(callbacks->start_extra, ytree, ynode);
		 */
		if (cb) {
			// non-leaf nodes
			N = il_size(xnodes);
			for (i=0; i<N; i++)
				dtrs_nodes(xtree, ytree, il_get(xnodes, i), ynode, maxd2, cb, baton);
		    // leaf nodes
			N = il_size(xleaves);
			for (i=0; i<N; i++)
				dtrs_nodes(xtree, ytree, il_get(xleaves, i), ynode, maxd2, cb, baton);
		}
		/*
		 if (callbacks->end_results)
		 callbacks->end_results(callbacks->end_extra, ytree, ynode);
		 */
		return;
	}

	// if there are search leaves but no search nodes, run the result
	// function on each leaf.  (Note that the query node is not a leaf!)
	if (!il_size(xnodes)) {
		/*
		 result_function result = callbacks->result;
		 void* result_extra = callbacks->result_extra;
		 if (callbacks->start_results)
		 callbacks->start_results(callbacks->start_extra, ytree, ynode);
		 */
		// leaf nodes
		if (result) {
			N = il_size(xleaves);
			for (i=0; i<N; i++)
				dtrs_nodes(xtree, ytree, il_get(xleaves, i), ynode, maxd2, cb, baton);
			//result(result_extra, xtree, il_get(leaves, i), ytree, ynode);
		}
		/*
		 if (callbacks->end_results)
		 callbacks->end_results(callbacks->end_extra, ytree, ynode);
		 */
		return;
	}

	leafmarker = il_size(leaves);
	childnodes = il_new(256);

#define BBLO(bb, d) ((bb)[2*(d)])
#define BBHI(bb, d) ((bb)[(2*(d))+1])

	N = il_size(xnodes);
	for (i=0; i<N; i++) {
		int child1, child2;
		int xnode = il_get(xnodes, i);
		ttype* xbb = bl_access(xnodebbs, i);
		ttype* leftbb;
		ttype* rightbb;

		/*
		 node-node range...
		 if (!decision(decision_extra, xtree, xnode, ytree, ynode))
		 continue;
		 */
		split_dim_and_value(xtree, xnode, &splitdim, &splitval);
		child1 = KD_CHILD_LEFT(xnode);
		if (KD_IS_LEAF(xtree, child1)) {
			il_append(xleaves, child1);
			il_append(xleaves, child2);
			leftbb  = bl_append(xleafbbs, xbb);
			rightbb = bl_append(xleafbbs, xbb);
		} else {
			il_append(childnodes, child1);
			il_append(childnodes, child2);
			leftbb  = bl_append(xnodebbs, xbb);
			rightbb = bl_append(xnodebbs, xbb);
		}
		BBHI(leftbb,  splitdim) = splitval;
		BBLO(rightbb, splitdim) = splitval;
	}

	printf("dualtree: start left child of y node %i: %i\n", ynode, KD_CHILD_LEFT(ynode));
	// recurse on the Y children!
	split_dim_and_value(ytree, ynode, &splitdim, &splitval);
	// update y bb for the left child: max(splitdim) = splitval
	oldbbval = BBHI(ybb, splitdim);
	BBHI(ybb, splitdim) = splitval;
	dualtree_recurse(xtree, ytree, childnodes, leaves,
					 KD_CHILD_LEFT(ynode), callbacks);
	BBHI(ybb, splitdim) = oldbbval;
	printf("dualtree: done left child of y node %i: %i\n", ynode, KD_CHILD_LEFT(ynode));

	printf("dualtree: start right child of y node %i: %i\n", ynode, KD_CHILD_RIGHT(ynode));
	// update y bb for the right child: min(splitdim) = splitval
	oldbbval = BBLO(ybb, splitdim);
	BBLO(ybb, splitdim) = splitval;
	dualtree_recurse(xtree, ytree, childnodes, leaves,
					 KD_CHILD_RIGHT(ynode), callbacks);
	BBLO(ybb, splitdim) = oldbbval;
	printf("dualtree: done right child of y node %i: %i\n", ynode, KD_CHILD_LEFT(ynode));

	// put the "leaves" list back the way it was...
	il_remove_index_range(leaves, leafmarker, il_size(leaves)-leafmarker);
	il_free(childnodes);
}
int main(int argc, char** args) {
    int c;
    FILE* fconst = NULL;
    uint32_t nstars;
    size_t mapsize;
    void* map;
    unsigned char* hip;
    FILE* fhip = NULL;
    int i;
	pl* cstars;
	il* alluniqstars;
	sl* shortnames;

    while ((c = getopt(argc, args, OPTIONS)) != -1) {
        switch (c) {
        case 'h':
            print_help(args[0]);
            exit(0);
        }
    }

    if (optind != argc) {
        print_help(args[0]);
        exit(-1);
    }

	for (i=0; i<sizeof(const_dirs)/sizeof(char*); i++) {
		char fn[256];
		snprintf(fn, sizeof(fn), "%s/%s", const_dirs[i], constfn);
		fprintf(stderr, "render_constellation: Trying file: %s\n", fn);
		fconst = fopen(fn, "rb");
		if (fconst)
			break;
	}
	if (!fconst) {
		fprintf(stderr, "render_constellation: couldn't open any constellation files.\n");
		return -1;
	}

	for (i=0; i<sizeof(hip_dirs)/sizeof(char*); i++) {
		char fn[256];
		snprintf(fn, sizeof(fn), "%s/%s", hip_dirs[i], hipparcos_fn);
		fprintf(stderr, "render_constellation: Trying hip file: %s\n", fn);
		fhip = fopen(fn, "rb");
		if (fhip)
			break;
	}
	if (!fhip) {
		fprintf(stderr, "render_constellation: unhip\n");
		return -1;
	}

	// first 32-bit int: 
	if (fread(&nstars, 4, 1, fhip) != 1) {
		fprintf(stderr, "render_constellation: failed to read nstars.\n");
		return -1;
	}
	v32_letoh(&nstars);
	fprintf(stderr, "render_constellation: Found %i Hipparcos stars\n", nstars);

	mapsize = nstars * HIP_SIZE + HIP_OFFSET;
	map = mmap(0, mapsize, PROT_READ, MAP_SHARED, fileno(fhip), 0);
	hip = ((unsigned char*)map) + HIP_OFFSET;

	// for each constellation, its il* of lines.
	cstars = pl_new(16);
	alluniqstars = il_new(16);
	shortnames = sl_new(16);

	for (c=0;; c++) {
		char shortname[16];
		int nlines;
		int i;
		il* stars;

		if (feof(fconst))
			break;

		if (fscanf(fconst, "%s %d ", shortname, &nlines) != 2) {
			fprintf(stderr, "failed to parse name+nlines (constellation %i)\n", c);
			fprintf(stderr, "file offset: %i (%x)\n",
					(int)ftello(fconst), (int)ftello(fconst));
			return -1;
		}
		//fprintf(stderr, "Name: %s.  Nlines %i.\n", shortname, nlines);

		stars = il_new(16);

		sl_append(shortnames, shortname);
		pl_append(cstars, stars);

		for (i=0; i<nlines; i++) {
			int star1, star2;

			if (fscanf(fconst, " %d %d", &star1, &star2) != 2) {
				fprintf(stderr, "failed parse star1+star2\n");
				return -1;
			}

			il_insert_unique_ascending(alluniqstars, star1);
			il_insert_unique_ascending(alluniqstars, star2);

			il_append(stars, star1);
			il_append(stars, star2);
		}
		fscanf(fconst, "\n");
	}
	fprintf(stderr, "render_constellations: Read %i constellations.\n", c);

	printf("static const int constellations_N = %i;\n", sl_size(shortnames));

	/*
	  for (c=0; c<sl_size(shortnames); c++) {
	  printf("static const char* shortname_%i = \"%s\";\n", c, sl_get(shortnames, c));
	  }
	  printf("static const char* shortnames[] = {");
	  for (c=0; c<sl_size(shortnames); c++) {
	  printf("shortname_%i,", c);
	  }
	  printf("};\n");
	*/
	printf("static const char* shortnames[] = {");
	for (c=0; c<sl_size(shortnames); c++) {
		printf("\"%s\",", sl_get(shortnames, c));
	}
	printf("};\n");

	printf("static const int constellation_nlines[] = {");
	for (c=0; c<pl_size(cstars); c++) {
		il* stars = pl_get(cstars, c);
		printf("%i,", il_size(stars)/2);
	}
	printf("};\n");

	for (c=0; c<pl_size(cstars); c++) {
		il* stars = pl_get(cstars, c);
		printf("static const int constellation_lines_%i[] = {", c);
		for (i=0; i<il_size(stars); i++) {
			int s = il_get(stars, i);
			int ms = il_index_of(alluniqstars, s);
			printf("%s%i", (i?",":""), ms);
		}
		printf("};\n");
	}

	printf("static const int* constellation_lines[] = {");
	for (c=0; c<pl_size(cstars); c++) {
		printf("constellation_lines_%i,", c);
	}
	printf("};\n");

	printf("static const int stars_N = %i;\n", il_size(alluniqstars));

	printf("static const double star_positions[] = {");
	for (i=0; i<il_size(alluniqstars); i++) {
		int s = il_get(alluniqstars, i);
		double ra, dec;
		hip_get_radec(hip, s, &ra, &dec);
		printf("%g,%g,", ra, dec);
	}
	printf("};\n");

	munmap(map, mapsize);
	
	fclose(fconst);
	fclose(fhip);

	return 0;
}
示例#23
0
int plot_index_plot(const char* command,
					cairo_t* cairo, plot_args_t* pargs, void* baton) {
	plotindex_t* args = (plotindex_t*)baton;
	int i;
	double ra, dec, radius;
	double xyz[3];
	double r2;

	pad_qidxes(args);

	plotstuff_builtin_apply(cairo, pargs);

	if (plotstuff_get_radec_center_and_radius(pargs, &ra, &dec, &radius)) {
		ERROR("Failed to get RA,Dec center and radius");
		return -1;
	}
	radecdeg2xyzarr(ra, dec, xyz);
	r2 = deg2distsq(radius);
	logmsg("Field RA,Dec,radius = (%g,%g), %g deg\n", ra, dec, radius);
	logmsg("distsq: %g\n", r2);

	for (i=0; i<pl_size(args->indexes); i++) {
		index_t* index = pl_get(args->indexes, i);
		int j, N;
		int DQ;
		double px,py;

		if (args->stars) {
			// plot stars
			double* radecs = NULL;
			startree_search_for(index->starkd, xyz, r2, NULL, &radecs, NULL, &N);
			if (N) {
				assert(radecs);
			}
			logmsg("Found %i stars in range in index %s\n", N, index->indexname);
			for (j=0; j<N; j++) {
				logverb("  RA,Dec (%g,%g) -> x,y (%g,%g)\n", radecs[2*j], radecs[2*j+1], px, py);
				if (!plotstuff_radec2xy(pargs, radecs[j*2], radecs[j*2+1], &px, &py)) {
					ERROR("Failed to convert RA,Dec %g,%g to pixels\n", radecs[j*2], radecs[j*2+1]);
					continue;
				}
				cairoutils_draw_marker(cairo, pargs->marker, px, py, pargs->markersize);
				cairo_stroke(cairo);
			}
			free(radecs);
		}
		if (args->quads) {
			DQ = index_get_quad_dim(index);
			qidxfile* qidx = pl_get(args->qidxes, i);
			if (qidx) {
				int* stars;
				int Nstars;
				il* quadlist = il_new(256);

				// find stars in range.
				startree_search_for(index->starkd, xyz, r2, NULL, NULL, &stars, &Nstars);
				logmsg("Found %i stars in range of index %s\n", N, index->indexname);
				logmsg("Using qidx file.\n");
				// find quads that each star is a member of.
				for (j=0; j<Nstars; j++) {
					uint32_t* quads;
					int Nquads;
					int k;
					if (qidxfile_get_quads(qidx, stars[j], &quads, &Nquads)) {
						ERROR("Failed to get quads for star %i\n", stars[j]);
						return -1;
					}
					for (k=0; k<Nquads; k++)
						il_insert_unique_ascending(quadlist, quads[k]);
				}
				for (j=0; j<il_size(quadlist); j++) {
					plotquad(cairo, pargs, args, index, il_get(quadlist, j), DQ);
				}

			} else {
				// plot quads
				N = index_nquads(index);
				for (j=0; j<N; j++) {
					plotquad(cairo, pargs, args, index, j, DQ);
				}
			}
		}
	}
	return 0;
}
示例#24
0
int main(int argc, char *argv[]) {
    int argchar;
    char* infn = NULL;
    char* outfn = NULL;
    anbool tostdout = FALSE;
    FILE* fin = NULL;
    FILE* fout = NULL;
    il* exts;
    il* sizes;
    int i;
    char* progname = argv[0];
    int Next;
    anqfits_t* anq;

    exts = il_new(16);
    sizes = il_new(16);

    while ((argchar = getopt (argc, argv, OPTIONS)) != -1)
        switch (argchar) {
        case 'e':
            il_append(exts, atoi(optarg));
            break;
        case 's':
            il_append(sizes, atoi(optarg));
            break;
        case 'i':
            infn = optarg;
            break;
        case 'o':
            outfn = optarg;
            break;
        case '?':
        case 'h':
            printHelp(progname);
            return 0;
        default:
            return -1;
        }

    log_init(LOG_MSG);

    if (!infn || !outfn || !il_size(exts) || (il_size(exts) != il_size(sizes))) {
        printHelp(progname);
        exit(-1);
    }

    if (infn) {
        fin = fopen(infn, "rb");
        if (!fin) {
            SYSERROR("Failed to open input file %s", infn);
            exit(-1);
        }
    }
    
    anq = anqfits_open(infn);
    if (!anq) {
        ERROR("Failed to open input file %s", infn);
        exit(-1);
    }
    Next = anqfits_n_ext(anq);
    if (Next == -1) {
        ERROR("Couldn't determine how many extensions are in file %s", infn);
        exit(-1);
    } else {
        logverb("File %s contains %i FITS extensions.\n", infn, Next);
    }

    for (i=0; i<il_size(exts); i++) {
        int e = il_get(exts, i);
        int s = il_get(sizes, i);
        if (e < 0 || e >= Next) {
            logerr("Extension %i is not valid: must be in [%i, %i]\n", e, 0, Next);
            exit(-1);
        }
        if (s != 2 && s != 4 && s != 8) {
            logerr("Invalid byte size %i: must be 2, 4, or 8.\n", s);
            exit(-1);
        }
    }

    if (!strcmp(outfn, "-"))
        tostdout = TRUE;

    if (tostdout)
        fout = stdout;
    else {
        fout = fopen(outfn, "wb");
        if (!fout) {
            SYSERROR("Failed to open output file %s", outfn);
            exit(-1);
        }
    }

    for (i=0; i<Next; i++) {
        int hdrstart, hdrlen, datastart, datalen;
        int ind;
        int size;
        ind = il_index_of(exts, i);
        if (ind == -1) {
            size = 0;
        } else {
            size = il_get(sizes, ind);
        }

        hdrstart = anqfits_header_start(anq, i);
        hdrlen   = anqfits_header_size (anq, i);
        datastart = anqfits_data_start(anq, i);
        datalen   = anqfits_data_size (anq, i);

        if (hdrlen) {
            if (pipe_file_offset(fin, hdrstart, hdrlen, fout)) {
                ERROR("Failed to write header for extension %i", i);
                exit(-1);
            }
        }
        if (!datalen)
            continue;

        if (size) {
            int Nitems = datalen / size;
            int j;
            char buf[size];
            logmsg("Extension %i: flipping words of length %i bytes.\n", i, size);
            for (j=0; j<Nitems; j++) {
                if (fread(buf, size, 1, fin) != 1) {
                    SYSERROR("Failed to read data element %i from extension %i", j, i);
                    exit(-1);
                }
                endian_swap(buf, size);
                if (fwrite(buf, size, 1, fout) != 1) {
                    SYSERROR("Failed to write data element %i to extension %i", j, i);
                    exit(-1);
                }
            }
        } else {
            logmsg("Extension %i: copying verbatim.\n", i);
            // passthrough
            if (pipe_file_offset(fin, datastart, datalen, fout)) {
                ERROR("Failed to write data for extension %i", i);
                exit(-1);
            }
        }
    }
    fclose(fin);
    anqfits_close(anq);
    if (!tostdout)
        fclose(fout);
    il_free(exts);
    il_free(sizes);
    return 0;
}