static void fillUpGraph(ReadSet * reads, KmerOccurenceTable * kmerTable, Graph * graph, boolean readTracking, boolean double_strand, ReferenceMapping * referenceMappings, Coordinate referenceMappingCount, IDnum refCount, char * roadmapFilename) { IDnum readIndex; RoadMapArray *roadmap = NULL; Coordinate *annotationOffset = NULL; struct timeval start, end, diff; if (referenceMappings) { roadmap = importRoadMapArray(roadmapFilename); annotationOffset = callocOrExit(reads->readCount, Coordinate); for (readIndex = 1; readIndex < reads->readCount; readIndex++) annotationOffset[readIndex] = annotationOffset[readIndex - 1] + getAnnotationCount(getRoadMapInArray(roadmap, readIndex - 1)); } resetNodeStatus(graph); // Allocate memory for the read pairs if (!readStartsAreActivated(graph)) activateReadStarts(graph); gettimeofday(&start, NULL); #ifdef OPENMP initSmallNodeListMemory(); createNodeLocks(graph); #pragma omp parallel for #endif for (readIndex = refCount; readIndex < reads->readCount; readIndex++) { Annotation * annotations = NULL; IDnum annotationCount = 0; Category category; boolean second_in_pair; if (readIndex % 1000000 == 0) velvetLog("Ghost Threading through reads %ld / %ld\n", (long) readIndex, (long) reads->readCount); category = reads->categories[readIndex]; second_in_pair = reads->categories[readIndex] & 1 && isSecondInPair(reads, readIndex); if (referenceMappings) { annotationCount = getAnnotationCount(getRoadMapInArray(roadmap, readIndex)); annotations = getAnnotationInArray(roadmap->annotations, annotationOffset[readIndex]); } ghostThreadSequenceThroughGraph(getTightStringInArray(reads->tSequences, readIndex), kmerTable, graph, readIndex + 1, category, readTracking, double_strand, referenceMappings, referenceMappingCount, refCount, annotations, annotationCount, second_in_pair); } createNodeReadStartArrays(graph); gettimeofday(&end, NULL); timersub(&end, &start, &diff); velvetLog(" === Ghost-Threaded in %ld.%06ld s\n", diff.tv_sec, diff.tv_usec); gettimeofday(&start, NULL); #ifdef OPENMP int threads = omp_get_max_threads(); if (threads > 32) threads = 32; #pragma omp parallel for num_threads(threads) #endif for (readIndex = 0; readIndex < reads->readCount; readIndex++) { Annotation * annotations = NULL; IDnum annotationCount = 0; Category category; boolean second_in_pair; if (readIndex % 1000000 == 0) velvetLog("Threading through reads %li / %li\n", (long) readIndex, (long) reads->readCount); category = reads->categories[readIndex]; second_in_pair = reads->categories[readIndex] % 2 && isSecondInPair(reads, readIndex); if (referenceMappings) { annotationCount = getAnnotationCount(getRoadMapInArray(roadmap, readIndex)); annotations = getAnnotationInArray(roadmap->annotations, annotationOffset[readIndex]); } threadSequenceThroughGraph(getTightStringInArray(reads->tSequences, readIndex), kmerTable, graph, readIndex + 1, category, readTracking, double_strand, referenceMappings, referenceMappingCount, refCount, annotations, annotationCount, second_in_pair); } gettimeofday(&end, NULL); timersub(&end, &start, &diff); velvetLog(" === Threaded in %ld.%06ld s\n", diff.tv_sec, diff.tv_usec); #ifdef OPENMP free(nodeLocks); nodeLocks = NULL; #endif if (referenceMappings) { destroyRoadMapArray(roadmap); free (annotationOffset); } orderNodeReadStartArrays(graph); destroySmallNodeListMemmory(); destroyKmerOccurenceTable(kmerTable); }
int main(int argc, char **argv) { ReadSet *sequences = NULL; RoadMapArray *rdmaps; PreGraph *preGraph; Graph *graph; char *directory, *graphFilename, *preGraphFilename, *seqFilename, *roadmapFilename; double coverageCutoff = -1; double maxCoverageCutoff = -1; double expectedCoverage = -1; int longMultCutoff = -1; Coordinate minContigLength = -1; Coordinate minContigKmerLength; boolean *dubious = NULL; Coordinate insertLength[CATEGORIES]; Coordinate insertLengthLong = -1; Coordinate std_dev[CATEGORIES]; Coordinate std_dev_long = -1; short int accelerationBits = 24; boolean readTracking = false; boolean exportAssembly = false; boolean unusedReads = false; boolean estimateCoverage = false; boolean estimateCutoff = false; FILE *file; int arg_index, arg_int; double arg_double; char *arg; Coordinate *sequenceLengths = NULL; Category cat; boolean scaffolding = true; int pebbleRounds = 1; long long longlong_var; short int short_var; setProgramName("velvetg"); for (cat = 0; cat < CATEGORIES; cat++) { insertLength[cat] = -1; std_dev[cat] = -1; } // Error message if (argc == 1) { puts("velvetg - de Bruijn graph construction, error removal and repeat resolution"); printf("Version %i.%i.%2.2i\n", VERSION_NUMBER, RELEASE_NUMBER, UPDATE_NUMBER); puts("\nCopyright 2007, 2008 Daniel Zerbino ([email protected])"); puts("This is free software; see the source for copying conditions. There is NO"); puts("warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n"); puts("Compilation settings:"); printf("CATEGORIES = %i\n", CATEGORIES); printf("MAXKMERLENGTH = %i\n", MAXKMERLENGTH); puts(""); printUsage(); return 1; } if (strcmp(argv[1], "--help") == 0) { printUsage(); return 0; } // Memory allocation directory = argv[1]; graphFilename = mallocOrExit(strlen(directory) + 100, char); preGraphFilename = mallocOrExit(strlen(directory) + 100, char); roadmapFilename = mallocOrExit(strlen(directory) + 100, char); seqFilename = mallocOrExit(strlen(directory) + 100, char); // Argument parsing for (arg_index = 2; arg_index < argc; arg_index++) { arg = argv[arg_index++]; if (arg_index >= argc) { puts("Unusual number of arguments!"); printUsage(); exit(1); } if (strcmp(arg, "-cov_cutoff") == 0) { if (strcmp(argv[arg_index], "auto") == 0) { estimateCutoff = true; } else { sscanf(argv[arg_index], "%lf", &coverageCutoff); } } else if (strcmp(arg, "-exp_cov") == 0) { if (strcmp(argv[arg_index], "auto") == 0) { estimateCoverage = true; readTracking = true; } else { sscanf(argv[arg_index], "%lf", &expectedCoverage); if (expectedCoverage > 0) readTracking = true; } } else if (strcmp(arg, "-ins_length") == 0) { sscanf(argv[arg_index], "%lli", &longlong_var); insertLength[0] = (Coordinate) longlong_var; if (insertLength[0] < 0) { printf("Invalid insert length: %lli\n", (long long) insertLength[0]); exit(1); } } else if (strcmp(arg, "-ins_length_sd") == 0) { sscanf(argv[arg_index], "%lli", &longlong_var); std_dev[0] = (Coordinate) longlong_var; if (std_dev[0] < 0) { printf("Invalid std deviation: %lli\n", (long long) std_dev[0]); exit(1); } } else if (strcmp(arg, "-ins_length_long") == 0) { sscanf(argv[arg_index], "%lli", &longlong_var); insertLengthLong = (Coordinate) longlong_var; } else if (strcmp(arg, "-ins_length_long_sd") == 0) { sscanf(argv[arg_index], "%lli", &longlong_var); std_dev_long = (Coordinate) longlong_var; } else if (strncmp(arg, "-ins_length", 11) == 0 && strchr(arg, 'd') == NULL) { sscanf(arg, "-ins_length%hi", &short_var); cat = (Category) short_var; if (cat < 1 || cat > CATEGORIES) { printf("Unknown option: %s\n", arg); exit(1); } sscanf(argv[arg_index], "%lli", &longlong_var); insertLength[cat - 1] = (Coordinate) longlong_var; if (insertLength[cat - 1] < 0) { printf("Invalid insert length: %lli\n", (long long) insertLength[cat - 1]); exit(1); } } else if (strncmp(arg, "-ins_length", 11) == 0) { sscanf(arg, "-ins_length%hi_sd", &short_var); cat = (Category) short_var; if (cat < 1 || cat > CATEGORIES) { printf("Unknown option: %s\n", arg); exit(1); } sscanf(argv[arg_index], "%lli", &longlong_var); std_dev[cat - 1] = (Coordinate) longlong_var; if (std_dev[cat - 1] < 0) { printf("Invalid std deviation: %lli\n", (long long) std_dev[cat - 1]); exit(1); } } else if (strcmp(arg, "-read_trkg") == 0) { readTracking = (strcmp(argv[arg_index], "yes") == 0); } else if (strcmp(arg, "-scaffolding") == 0) { scaffolding = (strcmp(argv[arg_index], "yes") == 0); } else if (strcmp(arg, "-amos_file") == 0) { exportAssembly = (strcmp(argv[arg_index], "yes") == 0); } else if (strcmp(arg, "-min_contig_lgth") == 0) { sscanf(argv[arg_index], "%lli", &longlong_var); minContigLength = (Coordinate) longlong_var; } else if (strcmp(arg, "-accel_bits") == 0) { sscanf(argv[arg_index], "%hi", &accelerationBits); if (accelerationBits < 0) { printf ("Illegal acceleration parameter: %s\n", argv[arg_index]); printUsage(); return -1; } } else if (strcmp(arg, "-max_branch_length") == 0) { sscanf(argv[arg_index], "%i", &arg_int); setMaxReadLength(arg_int); setLocalMaxReadLength(arg_int); } else if (strcmp(arg, "-max_divergence") == 0) { sscanf(argv[arg_index], "%lf", &arg_double); setMaxDivergence(arg_double); setLocalMaxDivergence(arg_double); } else if (strcmp(arg, "-max_gap_count") == 0) { sscanf(argv[arg_index], "%i", &arg_int); setMaxGaps(arg_int); setLocalMaxGaps(arg_int); } else if (strcmp(arg, "-min_pair_count") == 0) { sscanf(argv[arg_index], "%i", &arg_int); setUnreliableConnectionCutoff(arg_int); } else if (strcmp(arg, "-max_coverage") == 0) { sscanf(argv[arg_index], "%lf", &maxCoverageCutoff); } else if (strcmp(arg, "-long_mult_cutoff") == 0) { sscanf(argv[arg_index], "%i", &longMultCutoff); setMultiplicityCutoff(longMultCutoff); } else if (strcmp(arg, "-unused_reads") == 0) { unusedReads = (strcmp(argv[arg_index], "yes") == 0); if (unusedReads) readTracking = true; } else if (strcmp(arg, "--help") == 0) { printUsage(); return 0; } else { printf("Unknown option: %s;\n", arg); printUsage(); return 1; } } // Bookkeeping logInstructions(argc, argv, directory); strcpy(seqFilename, directory); strcat(seqFilename, "/Sequences"); strcpy(roadmapFilename, directory); strcat(roadmapFilename, "/Roadmaps"); strcpy(preGraphFilename, directory); strcat(preGraphFilename, "/PreGraph"); if (!readTracking) { strcpy(graphFilename, directory); strcat(graphFilename, "/Graph"); } else { strcpy(graphFilename, directory); strcat(graphFilename, "/Graph2"); } // Graph uploading or creation if ((file = fopen(graphFilename, "r")) != NULL) { fclose(file); graph = importGraph(graphFilename); } else if ((file = fopen(preGraphFilename, "r")) != NULL) { fclose(file); sequences = importReadSet(seqFilename); convertSequences(sequences); graph = importPreGraph(preGraphFilename, sequences, readTracking, accelerationBits); sequenceLengths = getSequenceLengths(sequences, getWordLength(graph)); correctGraph(graph, sequenceLengths); exportGraph(graphFilename, graph, sequences->tSequences); } else if ((file = fopen(roadmapFilename, "r")) != NULL) { fclose(file); rdmaps = importRoadMapArray(roadmapFilename); preGraph = newPreGraph_pg(rdmaps, seqFilename); clipTips_pg(preGraph); exportPreGraph_pg(preGraphFilename, preGraph); destroyPreGraph_pg(preGraph); sequences = importReadSet(seqFilename); convertSequences(sequences); graph = importPreGraph(preGraphFilename, sequences, readTracking, accelerationBits); sequenceLengths = getSequenceLengths(sequences, getWordLength(graph)); correctGraph(graph, sequenceLengths); exportGraph(graphFilename, graph, sequences->tSequences); } else { puts("No Roadmap file to build upon! Please run velveth (see manual)"); exit(1); } // Set insert lengths and their standard deviations for (cat = 0; cat < CATEGORIES; cat++) { if (insertLength[cat] > -1 && std_dev[cat] < 0) std_dev[cat] = insertLength[cat] / 10; setInsertLengths(graph, cat, insertLength[cat], std_dev[cat]); } if (insertLengthLong > -1 && std_dev_long < 0) std_dev_long = insertLengthLong / 10; setInsertLengths(graph, CATEGORIES, insertLengthLong, std_dev_long); // Coverage cutoff if (expectedCoverage < 0 && estimateCoverage == true) { expectedCoverage = estimated_cov(graph); if (coverageCutoff < 0) { coverageCutoff = expectedCoverage / 2; estimateCutoff = true; } } else { estimateCoverage = false; if (coverageCutoff < 0 && estimateCutoff) coverageCutoff = estimated_cov(graph) / 2; else estimateCutoff = false; } if (coverageCutoff < 0) { puts("WARNING: NO COVERAGE CUTOFF PROVIDED"); puts("Velvet will probably leave behind many detectable errors"); puts("See manual for instructions on how to set the coverage cutoff parameter"); } dubious = removeLowCoverageNodesAndDenounceDubiousReads(graph, coverageCutoff); removeHighCoverageNodes(graph, maxCoverageCutoff); clipTipsHard(graph); if (expectedCoverage > 0) { if (sequences == NULL) { sequences = importReadSet(seqFilename); convertSequences(sequences); } // Mixed length sequencing readCoherentGraph(graph, isUniqueSolexa, expectedCoverage, sequences); // Paired ends module createReadPairingArray(sequences); for (cat = 0; cat < CATEGORIES; cat++) if(pairUpReads(sequences, 2 * cat + 1)) pebbleRounds++; if (pairUpReads(sequences, 2 * CATEGORIES + 1)) pebbleRounds++; detachDubiousReads(sequences, dubious); activateGapMarkers(graph); for ( ;pebbleRounds > 0; pebbleRounds--) exploitShortReadPairs(graph, sequences, dubious, scaffolding); } else { puts("WARNING: NO EXPECTED COVERAGE PROVIDED"); puts("Velvet will be unable to resolve any repeats"); puts("See manual for instructions on how to set the expected coverage parameter"); } free(dubious); concatenateGraph(graph); if (minContigLength < 2 * getWordLength(graph)) minContigKmerLength = getWordLength(graph); else minContigKmerLength = minContigLength - getWordLength(graph) + 1; strcpy(graphFilename, directory); strcat(graphFilename, "/contigs.fa"); exportLongNodeSequences(graphFilename, graph, minContigKmerLength); strcpy(graphFilename, directory); strcat(graphFilename, "/stats.txt"); displayGeneralStatistics(graph, graphFilename); if (sequences == NULL) { sequences = importReadSet(seqFilename); convertSequences(sequences); } strcpy(graphFilename, directory); strcat(graphFilename, "/LastGraph"); exportGraph(graphFilename, graph, sequences->tSequences); if (exportAssembly) { strcpy(graphFilename, directory); strcat(graphFilename, "/velvet_asm.afg"); exportAMOSContigs(graphFilename, graph, minContigKmerLength, sequences); } if (unusedReads) exportUnusedReads(graph, sequences, minContigKmerLength, directory); if (estimateCoverage) printf("Estimated Coverage = %f\n", expectedCoverage); if (estimateCutoff) printf("Estimated Coverage cutoff = %f\n", coverageCutoff); logFinalStats(graph, minContigKmerLength, directory); destroyGraph(graph); free(graphFilename); free(preGraphFilename); free(seqFilename); free(roadmapFilename); destroyReadSet(sequences); return 0; }