static void
imxccm_attach(device_t parent, device_t self, void *aux)
{
	struct imxccm_softc * const sc = device_private(self);
	struct axi_attach_args *aa = aux;
	bus_space_tag_t iot = aa->aa_iot;

	ccm_softc = sc;
	sc->sc_dev = self;
	sc->sc_iot = iot;

	if (bus_space_map(iot, aa->aa_addr, CCMC_SIZE, 0, &sc->sc_ioh)) {
		aprint_error(": can't map registers\n");
		return;
	}

	for (u_int i=1; i <= IMX51_N_DPLLS; ++i) {
		if (bus_space_map(iot, DPLL_BASE(i), DPLL_SIZE, 0,
			&sc->sc_pll[i-1].pll_ioh)) {
			aprint_error(": can't map pll registers\n");
			return;
		}
	}

	aprint_normal(": Clock control module\n");
	aprint_naive("\n");

	imx51_get_pll_freq(1);
	imx51_get_pll_freq(2);
	imx51_get_pll_freq(3);

	aprint_verbose_dev(self, "CPU clock=%d, UART clock=%d\n",
	    imx51_get_clock(IMX51CLK_ARM_ROOT),
	    imx51_get_clock(IMX51CLK_UART_CLK_ROOT));
	aprint_verbose_dev(self, "PLL1 clock=%d, PLL2 clock=%d, PLL3 clock=%d\n",
	    imx51_get_clock(IMX51CLK_PLL1),
	    imx51_get_clock(IMX51CLK_PLL2),
	    imx51_get_clock(IMX51CLK_PLL3));
	aprint_verbose_dev(self,
	    "mainbus clock=%d, ahb clock=%d ipg clock=%d perclk=%d\n",
	    imx51_get_clock(IMX51CLK_MAIN_BUS_CLK),
	    imx51_get_clock(IMX51CLK_AHB_CLK_ROOT),
	    imx51_get_clock(IMX51CLK_IPG_CLK_ROOT),
	    imx51_get_clock(IMX51CLK_PERCLK_ROOT));
	aprint_verbose_dev(self, "ESDHC1 clock=%d\n",
	    imx51_get_clock(IMX51CLK_ESDHC1_CLK_ROOT));
}
void
imxpwm_attach(struct imxpwm_softc *sc, void *aux)
{
	struct axi_attach_args *aa = aux;

	if (aa->aa_size == AXICF_SIZE_DEFAULT)
		aa->aa_size = PWM_SIZE;
	sc->sc_iot = aa->aa_iot;
	sc->sc_intr = aa->aa_irq;
	sc->sc_freq = imx51_get_clock(IMX51CLK_IPG_CLK_ROOT);
	if (bus_space_map(aa->aa_iot, aa->aa_addr, aa->aa_size, 0, &sc->sc_ioh))
		panic("%s: couldn't map", device_xname(sc->sc_dev));
	imxpwm_attach_common(sc);
}
示例#3
0
int
imxclock_get_timerfreq(struct imxclock_softc *sc)
{
	unsigned int ipg_freq;
#if NIMXCCM > 0
	ipg_freq = imx51_get_clock(IMX51CLK_IPG_CLK_ROOT);
#else
#ifndef	IMX51_IPGCLK_FREQ
#error	IMX51_IPGCLK_FREQ need to be defined.
#endif
	ipg_freq = IMX51_IPGCLK_FREQ;
#endif

	return ipg_freq;
}
示例#4
0
static int
imx_gpt_attach(device_t dev)
{
	struct imx_gpt_softc *sc;
	int err;

	sc = device_get_softc(dev);

	if (bus_alloc_resources(dev, imx_gpt_spec, sc->res)) {
		device_printf(dev, "could not allocate resources\n");
		return (ENXIO);
	}

	sc->sc_dev = dev;
	sc->sc_clksrc = GPT_CR_CLKSRC_IPG;
	sc->sc_iot = rman_get_bustag(sc->res[0]);
	sc->sc_ioh = rman_get_bushandle(sc->res[0]);

	switch (sc->sc_clksrc) {
	case GPT_CR_CLKSRC_NONE:
		device_printf(dev, "can't run timer without clock source\n");
		return (EINVAL);
	case GPT_CR_CLKSRC_EXT:
		device_printf(dev, "Not implemented. Geve me the way to get "
		    "external clock source frequency\n");
		return (EINVAL);
	case GPT_CR_CLKSRC_32K:
		sc->clkfreq = 32768;
		break;
	case GPT_CR_CLKSRC_IPG_HIGH:
		sc->clkfreq = imx51_get_clock(IMX51CLK_IPG_CLK_ROOT) * 2;
		break;
	default:
		sc->clkfreq = imx51_get_clock(IMX51CLK_IPG_CLK_ROOT);
	}
	device_printf(dev, "Run on %dKHz clock.\n", sc->clkfreq / 1000);

	/* Reset */
	WRITE4(sc, IMX_GPT_CR, GPT_CR_SWR);
	/* Enable and setup counters */
	WRITE4(sc, IMX_GPT_CR,
	    GPT_CR_CLKSRC_IPG |	/* Use IPG clock */
	    GPT_CR_FRR |	/* Just count (FreeRunner mode) */
	    GPT_CR_STOPEN |	/* Run in STOP mode */
	    GPT_CR_WAITEN |	/* Run in WAIT mode */
	    GPT_CR_DBGEN);	/* Run in DEBUG mode */

	/* Disable interrupts */
	WRITE4(sc, IMX_GPT_IR, 0);

	/* Tick every 10us */
	/* XXX: must be calculated from clock source frequency */
	WRITE4(sc, IMX_GPT_PR, 665);
	/* Use 100 KHz */
	sc->clkfreq = 100000;

	/* Setup and enable the timer interrupt */
	err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, imx_gpt_intr,
	    NULL, sc, &sc->sc_ih);
	if (err != 0) {
		bus_release_resources(dev, imx_gpt_spec, sc->res);
		device_printf(dev, "Unable to setup the clock irq handler, "
		    "err = %d\n", err);
		return (ENXIO);
	}

	sc->et.et_name = "i.MXxxx GPT Eventtimer";
	sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC;
	sc->et.et_quality = 1000;
	sc->et.et_frequency = sc->clkfreq;
	sc->et.et_min_period = (MIN_PERIOD << 32) / sc->et.et_frequency;
	sc->et.et_max_period = (0xfffffffeLLU << 32) / sc->et.et_frequency;
	sc->et.et_start = imx_gpt_timer_start;
	sc->et.et_stop = imx_gpt_timer_stop;
	sc->et.et_priv = sc;
	et_register(&sc->et);

	/* Disable interrupts */
	WRITE4(sc, IMX_GPT_IR, 0);
	/* ACK any panding interrupts */
	WRITE4(sc, IMX_GPT_SR, (GPT_IR_ROV << 1) - 1);

	if (device_get_unit(dev) == 0)
	    imx_gpt_sc = sc;

	imx_gpt_timecounter.tc_frequency = sc->clkfreq;
	tc_init(&imx_gpt_timecounter);

	printf("clock: hz=%d stathz = %d\n", hz, stathz);

	device_printf(sc->sc_dev, "timer clock frequency %d\n", sc->clkfreq);

	imx_gpt_delay_count = imx51_get_clock(IMX51CLK_ARM_ROOT) / 4000000;

	SET4(sc, IMX_GPT_CR, GPT_CR_EN);

	return (0);
}
示例#5
0
static int
imx_gpt_attach(device_t dev)
{
	struct imx_gpt_softc *sc;
	int ctlreg, err;
	uint32_t basefreq, prescale;

	sc = device_get_softc(dev);

	if (bus_alloc_resources(dev, imx_gpt_spec, sc->res)) {
		device_printf(dev, "could not allocate resources\n");
		return (ENXIO);
	}

	sc->sc_dev = dev;
	sc->sc_iot = rman_get_bustag(sc->res[0]);
	sc->sc_ioh = rman_get_bushandle(sc->res[0]);

	/*
	 * For now, just automatically choose a good clock for the hardware
	 * we're running on.  Eventually we could allow selection from the fdt;
	 * the code in this driver will cope with any clock frequency.
	 */
	sc->sc_clksrc = GPT_CR_CLKSRC_IPG;

	ctlreg = 0;

	switch (sc->sc_clksrc) {
	case GPT_CR_CLKSRC_32K:
		basefreq = 32768;
		break;
	case GPT_CR_CLKSRC_IPG:
		basefreq = imx51_get_clock(IMX51CLK_IPG_CLK_ROOT);
		break;
	case GPT_CR_CLKSRC_IPG_HIGH:
		basefreq = imx51_get_clock(IMX51CLK_IPG_CLK_ROOT) * 2;
		break;
	case GPT_CR_CLKSRC_24M:
		ctlreg |= GPT_CR_24MEN;
		basefreq = 24000000;
		break;
	case GPT_CR_CLKSRC_NONE:/* Can't run without a clock. */
	case GPT_CR_CLKSRC_EXT:	/* No way to get the freq of an ext clock. */
	default:
		device_printf(dev, "Unsupported clock source '%d'\n", 
		    sc->sc_clksrc);
		return (EINVAL);
	}

	/*
	 * The following setup sequence is from the I.MX6 reference manual,
	 * "Selecting the clock source".  First, disable the clock and
	 * interrupts.  This also clears input and output mode bits and in
	 * general completes several of the early steps in the procedure.
	 */
	WRITE4(sc, IMX_GPT_CR, 0);
	WRITE4(sc, IMX_GPT_IR, 0);

	/* Choose the clock and the power-saving behaviors. */
	ctlreg |=
	    sc->sc_clksrc |	/* Use selected clock */
	    GPT_CR_FRR |	/* Just count (FreeRunner mode) */
	    GPT_CR_STOPEN |	/* Run in STOP mode */
	    GPT_CR_DOZEEN |	/* Run in DOZE mode */
	    GPT_CR_WAITEN |	/* Run in WAIT mode */
	    GPT_CR_DBGEN;	/* Run in DEBUG mode */
	WRITE4(sc, IMX_GPT_CR, ctlreg);

	/*
	 * The datasheet says to do the software reset after choosing the clock
	 * source.  It says nothing about needing to wait for the reset to
	 * complete, but the register description does document the fact that
	 * the reset isn't complete until the SWR bit reads 0, so let's be safe.
	 * The reset also clears all registers except for a few of the bits in
	 * CR, but we'll rewrite all the CR bits when we start the counter.
	 */
	WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_SWR);
	while (READ4(sc, IMX_GPT_CR) & GPT_CR_SWR)
		continue;

	/* Set a prescaler value that gets us near the target frequency. */
	if (basefreq < TARGET_FREQUENCY) {
		prescale = 0;
		sc->clkfreq = basefreq;
	} else {
		prescale = basefreq / TARGET_FREQUENCY;
		sc->clkfreq = basefreq / prescale;
		prescale -= 1; /* 1..n range is 0..n-1 in hardware. */
	}
	WRITE4(sc, IMX_GPT_PR, prescale);

	/* Clear the status register. */
	WRITE4(sc, IMX_GPT_SR, GPT_IR_ALL);

	/* Start the counter. */
	WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_EN);

	if (bootverbose)
		device_printf(dev, "Running on %dKHz clock, base freq %uHz CR=0x%08x, PR=0x%08x\n",
		    sc->clkfreq / 1000, basefreq, READ4(sc, IMX_GPT_CR), READ4(sc, IMX_GPT_PR));

	/* Setup the timer interrupt. */
	err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, imx_gpt_intr,
	    NULL, sc, &sc->sc_ih);
	if (err != 0) {
		bus_release_resources(dev, imx_gpt_spec, sc->res);
		device_printf(dev, "Unable to setup the clock irq handler, "
		    "err = %d\n", err);
		return (ENXIO);
	}

	/* Register as an eventtimer. */
	sc->et.et_name = "i.MXxxx GPT Eventtimer";
	sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC;
	sc->et.et_quality = 1000;
	sc->et.et_frequency = sc->clkfreq;
	sc->et.et_min_period = (MIN_ET_PERIOD << 32) / sc->et.et_frequency;
	sc->et.et_max_period = (0xfffffffeLLU << 32) / sc->et.et_frequency;
	sc->et.et_start = imx_gpt_timer_start;
	sc->et.et_stop = imx_gpt_timer_stop;
	sc->et.et_priv = sc;
	et_register(&sc->et);

	/* Register as a timecounter. */
	imx_gpt_timecounter.tc_frequency = sc->clkfreq;
	tc_init(&imx_gpt_timecounter);

	/* If this is the first unit, store the softc for use in DELAY. */
	if (device_get_unit(dev) == 0)
	    imx_gpt_sc = sc;

	return (0);
}
void
imx51_clk_rate(int clk_src, int clk_base, int rate)
{
#ifdef IMX50
	bus_space_tag_t iot = ccm_softc->sc_iot;
	bus_space_handle_t ioh = ccm_softc->sc_ioh;
	uint32_t reg;
	int div;
	uint64_t freq = 0;

	switch (clk_src) {
	case CCGR_EPDC_AXI_CLK:
		reg = bus_space_read_4(iot, ioh, CCMC_CLKSEQ_BYPASS);
		reg &= ~CLKSEQ_EPDC_AXI_CLK;
		reg |= __SHIFTIN(clk_base, CLKSEQ_EPDC_AXI_CLK);
		bus_space_write_4(iot, ioh, CCMC_CLKSEQ_BYPASS, reg);

		switch (clk_base) {
		case CLKSEQ_XTAL:
			freq = 24000000;
			break;
		case CLKSEQ_PFDx:
			freq = imx51_get_clock(IMX50CLK_PFD3_CLK_ROOT);
			break;
		case CLKSEQ_PLL1:
			freq = imx51_get_clock(IMX51CLK_PLL1);
			break;
		}

		div = max(1, freq / rate);

		reg = bus_space_read_4(iot, ioh, CCMC_EPDC_AXI);
		reg &= ~EPDC_AXI_DIV;
		reg |= __SHIFTIN(div, EPDC_AXI_DIV);
		bus_space_write_4(iot, ioh, CCMC_EPDC_AXI, reg);
		while (bus_space_read_4(iot, ioh, CCMC_CSR2) & CSR2_EPDC_AXI_BUSY)
			; /* wait */
		break;
	case CCGR_EPDC_PIX_CLK:
		reg = bus_space_read_4(iot, ioh, CCMC_CLKSEQ_BYPASS);
		reg &= ~CLKSEQ_EPDC_PIX_CLK;
		reg |= __SHIFTIN(clk_base, CLKSEQ_EPDC_PIX_CLK);
		bus_space_write_4(iot, ioh, CCMC_CLKSEQ_BYPASS, reg);

		switch (clk_base) {
		case CLKSEQ_XTAL:
			freq = 24000000;
			break;
		case CLKSEQ_PFDx:
			freq = imx51_get_clock(IMX50CLK_PFD5_CLK_ROOT);
			break;
		case CLKSEQ_PLL1:
			freq = imx51_get_clock(IMX51CLK_PLL1);
			break;
		case CLKSEQ_CAMP1:
			/* XXX */
			freq = 0;
			break;
		}

		div = freq / rate;
		reg = bus_space_read_4(iot, ioh, CCMC_EPDC_PIX);
		reg &= ~EPDC_PIX_CLK_PRED;
		reg |= __SHIFTIN(div, EPDC_PIX_CLK_PRED);
		bus_space_write_4(iot, ioh, CCMC_EPDC_PIX, reg);
		while (bus_space_read_4(iot, ioh, CCMC_CSR2) & CSR2_EPDC_PIX_BUSY)
			; /* wait */
		break;
	}
#endif
}
u_int
imx51_get_clock(enum imx51_clock clk)
{
	bus_space_tag_t iot = ccm_softc->sc_iot;
	bus_space_handle_t ioh = ccm_softc->sc_ioh;

	u_int freq = 0;
	u_int sel;
	uint32_t cacrr;	/* ARM clock root register */
	uint32_t ccsr;
	uint32_t cscdr1;
	uint32_t cscdr2;
	uint32_t cscmr1;
	uint32_t cbcdr;
	uint32_t cbcmr;
	uint32_t cdcr;

	switch (clk) {
	case IMX51CLK_PLL1:
	case IMX51CLK_PLL2:
	case IMX51CLK_PLL3:
		return ccm_softc->sc_pll[clk - IMX51CLK_PLL1].pll_freq;
	case IMX51CLK_PLL1SW:
		ccsr = bus_space_read_4(iot, ioh, CCMC_CCSR);
		if ((ccsr & CCSR_PLL1_SW_CLK_SEL) == 0)
			return ccm_softc->sc_pll[1-1].pll_freq;
		/* step clock */
		/* FALLTHROUGH */
	case IMX51CLK_PLL1STEP:
		ccsr = bus_space_read_4(iot, ioh, CCMC_CCSR);
		switch (__SHIFTOUT(ccsr, CCSR_STEP_SEL)) {
		case 0:
			return imx51_get_clock(IMX51CLK_LP_APM);
		case 1:
			return 0; /* XXX PLL bypass clock */
		case 2:
			return ccm_softc->sc_pll[2-1].pll_freq /
			    (1 + __SHIFTOUT(ccsr, CCSR_PLL2_DIV_PODF));
		case 3:
			return ccm_softc->sc_pll[3-1].pll_freq /
			    (1 + __SHIFTOUT(ccsr, CCSR_PLL3_DIV_PODF));
		}
		/*NOTREACHED*/
	case IMX51CLK_PLL2SW:
		ccsr = bus_space_read_4(iot, ioh, CCMC_CCSR);
		if ((ccsr & CCSR_PLL2_SW_CLK_SEL) == 0)
			return imx51_get_clock(IMX51CLK_PLL2);
		return 0; /* XXX PLL2 bypass clk */
	case IMX51CLK_PLL3SW:
		ccsr = bus_space_read_4(iot, ioh, CCMC_CCSR);
		if ((ccsr & CCSR_PLL3_SW_CLK_SEL) == 0)
			return imx51_get_clock(IMX51CLK_PLL3);
		return 0; /* XXX PLL3 bypass clk */

	case IMX51CLK_LP_APM:
		ccsr = bus_space_read_4(iot, ioh, CCMC_CCSR);
		return (ccsr & CCSR_LP_APM) ?
			    imx51_get_clock(IMX51CLK_FPM) : IMX51_OSC_FREQ;

	case IMX51CLK_ARM_ROOT:
		freq = imx51_get_clock(IMX51CLK_PLL1SW);
		cacrr = bus_space_read_4(iot, ioh, CCMC_CACRR);
		return freq / (cacrr + 1);

		/* ... */
	case IMX51CLK_MAIN_BUS_CLK_SRC:
		cbcdr = bus_space_read_4(iot, ioh, CCMC_CBCDR);
#if IMX50
		switch (__SHIFTOUT(cbcdr, CBCDR_PERIPH_CLK_SEL)) {
		case 0:
			freq = imx51_get_clock(IMX51CLK_PLL1SW);
			break;
		case 1:
			freq = imx51_get_clock(IMX51CLK_PLL2SW);
			break;
		case 2:
			freq = imx51_get_clock(IMX51CLK_PLL3SW);
			break;
		case 3:
			freq = imx51_get_clock(IMX51CLK_LP_APM);
			break;
		}
#else
		if ((cbcdr & CBCDR_PERIPH_CLK_SEL) == 0)
			freq = imx51_get_clock(IMX51CLK_PLL2SW);
		else {
			cbcmr = bus_space_read_4(iot, ioh,  CCMC_CBCMR);
			switch (__SHIFTOUT(cbcmr, CBCMR_PERIPH_APM_SEL)) {
			case 0:
				freq = imx51_get_clock(IMX51CLK_PLL1SW);
				break;
			case 1:
				freq = imx51_get_clock(IMX51CLK_PLL3SW);
				break;
			case 2:
				freq = imx51_get_clock(IMX51CLK_LP_APM);
				break;
			case 3:
				/* XXX: error */
				break;
			}
		}
#endif
		return freq;
	case IMX51CLK_MAIN_BUS_CLK:
		freq = imx51_get_clock(IMX51CLK_MAIN_BUS_CLK_SRC);
		cdcr = bus_space_read_4(iot, ioh, CCMC_CDCR);
		if (cdcr & CDCR_SW_PERIPH_CLK_DIV_REQ)
			return freq / (1 + __SHIFTOUT(cdcr, CDCR_PERIPH_CLK_DVFS_PODF));
		else
			return freq;
	case IMX51CLK_AHB_CLK_ROOT:
		freq = imx51_get_clock(IMX51CLK_MAIN_BUS_CLK);
		cbcdr = bus_space_read_4(iot, ioh, CCMC_CBCDR);
		return freq / (1 + __SHIFTOUT(cbcdr, CBCDR_AHB_PODF));
	case IMX51CLK_IPG_CLK_ROOT:
		freq = imx51_get_clock(IMX51CLK_AHB_CLK_ROOT);
		cbcdr = bus_space_read_4(iot, ioh, CCMC_CBCDR);
		return freq / (1 + __SHIFTOUT(cbcdr, CBCDR_IPG_PODF));
	case IMX51CLK_PERCLK_ROOT:
		cbcmr = bus_space_read_4(iot, ioh, CCMC_CBCMR);
		if (cbcmr & CBCMR_PERCLK_IPG_SEL)
			return imx51_get_clock(IMX51CLK_IPG_CLK_ROOT);
		if (cbcmr & CBCMR_PERCLK_LP_APM_SEL)
			freq = imx51_get_clock(IMX51CLK_LP_APM);
		else {
#ifdef IMX50
			freq = imx51_get_clock(IMX51CLK_MAIN_BUS_CLK);
#else
			freq = imx51_get_clock(IMX51CLK_MAIN_BUS_CLK_SRC);
#endif
		}

		cbcdr = bus_space_read_4(iot, ioh, CCMC_CBCDR);

#ifdef IMXCCMDEBUG
		printf("cbcmr=%x cbcdr=%x\n", cbcmr, cbcdr);
#endif

		freq /= 1 + __SHIFTOUT(cbcdr, CBCDR_PERCLK_PRED1);
		freq /= 1 + __SHIFTOUT(cbcdr, CBCDR_PERCLK_PRED2);
		freq /= 1 + __SHIFTOUT(cbcdr, CBCDR_PERCLK_PODF);
		return freq;
	case IMX51CLK_UART_CLK_ROOT:
		cscdr1 = bus_space_read_4(iot, ioh, CCMC_CSCDR1);
		cscmr1 = bus_space_read_4(iot, ioh, CCMC_CSCMR1);

#ifdef IMXCCMDEBUG
		printf("cscdr1=%x cscmr1=%x\n", cscdr1, cscmr1);
#endif

		sel = __SHIFTOUT(cscmr1, CSCMR1_UART_CLK_SEL);

		switch (sel) {
		case 0:
		case 1:
		case 2:
			freq = imx51_get_clock(IMX51CLK_PLL1SW + sel);
			break;
		case 3:
			freq = imx51_get_clock(IMX51CLK_LP_APM);
			break;
		}

		return freq / (1 + __SHIFTOUT(cscdr1, CSCDR1_UART_CLK_PRED)) /
		    (1 + __SHIFTOUT(cscdr1, CSCDR1_UART_CLK_PODF));
	case IMX51CLK_IPU_HSP_CLK_ROOT:
		cbcmr = bus_space_read_4(iot, ioh,  CCMC_CBCMR);
		switch (__SHIFTOUT(cbcmr, CBCMR_IPU_HSP_CLK_SEL)) {
			case 0:
				freq = imx51_get_clock(IMX51CLK_ARM_AXI_A_CLK);
				break;
			case 1:
				freq = imx51_get_clock(IMX51CLK_ARM_AXI_B_CLK);
				break;
			case 2:
				freq = imx51_get_clock(
					IMX51CLK_EMI_SLOW_CLK_ROOT);
				break;
			case 3:
				freq = imx51_get_clock(IMX51CLK_AHB_CLK_ROOT);
				break;
			}
		return freq;
#ifdef IMX50
	case IMX51CLK_ESDHC2_CLK_ROOT:
	case IMX51CLK_ESDHC4_CLK_ROOT:
		cscmr1 = bus_space_read_4(iot, ioh, CCMC_CSCMR1);

		sel = 0;
		if (clk == IMX51CLK_ESDHC2_CLK_ROOT)
			sel = __SHIFTOUT(cscmr1, CSCMR1_ESDHC2_CLK_SEL);
		else if (clk == IMX51CLK_ESDHC4_CLK_ROOT)
			sel = __SHIFTOUT(cscmr1, CSCMR1_ESDHC4_CLK_SEL);

		if (sel == 0)
			freq = imx51_get_clock(IMX51CLK_ESDHC1_CLK_ROOT);
		else
			freq = imx51_get_clock(IMX51CLK_ESDHC3_CLK_ROOT);

		return freq;
	case IMX51CLK_ESDHC1_CLK_ROOT:
	case IMX51CLK_ESDHC3_CLK_ROOT:

		cscdr1 = bus_space_read_4(iot, ioh, CCMC_CSCDR1);
		cscmr1 = bus_space_read_4(iot, ioh, CCMC_CSCMR1);

		sel = 0;
		if (clk == IMX51CLK_ESDHC1_CLK_ROOT)
			sel = __SHIFTOUT(cscmr1, CSCMR1_ESDHC1_CLK_SEL);
		else if (clk == IMX51CLK_ESDHC3_CLK_ROOT)
			sel = __SHIFTOUT(cscmr1, CSCMR1_ESDHC3_CLK_SEL);

		switch (sel) {
		case 0:
		case 1:
		case 2:
			freq = imx51_get_clock(IMX51CLK_PLL1SW + sel);
			break;
		case 3:
			freq = imx51_get_clock(IMX51CLK_LP_APM);
			break;
		case 4:
			/* PFD0 XXX */
			break;
		case 5:
			/* PFD1 XXX */
			break;
		case 6:
			/* PFD4 XXX */
			break;
		case 7:
			/* osc_clk XXX */
			break;
		}

		if (clk == IMX51CLK_ESDHC1_CLK_ROOT)
			freq = freq / (1 + __SHIFTOUT(cscdr1, CSCDR1_ESDHC1_CLK_PRED)) /
			    (1 + __SHIFTOUT(cscdr1, CSCDR1_ESDHC1_CLK_PODF));
		else if (clk == IMX51CLK_ESDHC3_CLK_ROOT)
			freq = freq / (1 + __SHIFTOUT(cscdr1, CSCDR1_ESDHC3_CLK_PRED)) /
			    (1 + __SHIFTOUT(cscdr1, CSCDR1_ESDHC3_CLK_PODF));
		return freq;
#else
	case IMX51CLK_ESDHC3_CLK_ROOT:
	case IMX51CLK_ESDHC4_CLK_ROOT:
		cscmr1 = bus_space_read_4(iot, ioh, CCMC_CSCMR1);

		sel = 0;
		if (clk == IMX51CLK_ESDHC3_CLK_ROOT)
			sel = __SHIFTOUT(cscmr1, CSCMR1_ESDHC3_CLK_SEL);
		else if (clk == IMX51CLK_ESDHC4_CLK_ROOT)
			sel = __SHIFTOUT(cscmr1, CSCMR1_ESDHC4_CLK_SEL);

		if (sel == 0)
			freq = imx51_get_clock(IMX51CLK_ESDHC1_CLK_ROOT);
		else
			freq = imx51_get_clock(IMX51CLK_ESDHC2_CLK_ROOT);

		return freq;
	case IMX51CLK_ESDHC1_CLK_ROOT:
	case IMX51CLK_ESDHC2_CLK_ROOT:

		cscdr1 = bus_space_read_4(iot, ioh, CCMC_CSCDR1);
		cscmr1 = bus_space_read_4(iot, ioh, CCMC_CSCMR1);

		sel = 0;
		if (clk == IMX51CLK_ESDHC1_CLK_ROOT)
			sel = __SHIFTOUT(cscmr1, CSCMR1_ESDHC1_CLK_SEL);
		else if (clk == IMX51CLK_ESDHC2_CLK_ROOT)
			sel = __SHIFTOUT(cscmr1, CSCMR1_ESDHC2_CLK_SEL);

		switch (sel) {
		case 0:
		case 1:
		case 2:
			freq = imx51_get_clock(IMX51CLK_PLL1SW + sel);
			break;
		case 3:
			freq = imx51_get_clock(IMX51CLK_LP_APM);
			break;
		}

		if (clk == IMX51CLK_ESDHC1_CLK_ROOT)
			freq = freq / (1 + __SHIFTOUT(cscdr1, CSCDR1_ESDHC1_CLK_PRED)) /
			    (1 + __SHIFTOUT(cscdr1, CSCDR1_ESDHC1_CLK_PODF));
		else if (clk == IMX51CLK_ESDHC2_CLK_ROOT)
			freq = freq / (1 + __SHIFTOUT(cscdr1, CSCDR1_ESDHC2_CLK_PRED)) /
			    (1 + __SHIFTOUT(cscdr1, CSCDR1_ESDHC2_CLK_PODF));
		return freq;
#endif
	case IMX51CLK_CSPI_CLK_ROOT:
		cscmr1 = bus_space_read_4(iot, ioh, CCMC_CSCMR1);
		cscdr2 = bus_space_read_4(iot, ioh, CCMC_CSCDR2);

		sel = __SHIFTOUT(cscmr1, CSCMR1_CSPI_CLK_SEL);
		switch (sel) {
		case 0:
		case 1:
		case 2:
			freq = imx51_get_clock(IMX51CLK_PLL1SW + sel);
			break;
		case 3:
			freq = imx51_get_clock(IMX51CLK_LP_APM);
			break;
		}

		freq = freq / (1 + __SHIFTOUT(cscdr2, CSCDR2_ECSPI_CLK_PRED)) /
		    (1 + __SHIFTOUT(cscdr2, CSCDR2_ECSPI_CLK_PODF));

		return freq;
#if IMX50
	case IMX50CLK_PFD0_CLK_ROOT:
	case IMX50CLK_PFD1_CLK_ROOT:
	case IMX50CLK_PFD2_CLK_ROOT:
	case IMX50CLK_PFD3_CLK_ROOT:
	case IMX50CLK_PFD4_CLK_ROOT:
	case IMX50CLK_PFD5_CLK_ROOT:
	case IMX50CLK_PFD6_CLK_ROOT:
	case IMX50CLK_PFD7_CLK_ROOT:
		freq = imx51_get_pfd_freq(clk - IMX50CLK_PFD0_CLK_ROOT);
		return freq;
#endif
	default:
		aprint_error_dev(ccm_softc->sc_dev,
		    "clock %d: not supported yet\n", clk);
		return 0;
	}
}