int ActualScheddQ::get_Capabilities(ClassAd & caps) { int rval = init_capabilities(); if (rval == 0) { caps.Update(capabilities); } return rval; }
void Copter::init_ardupilot() { if (!hal.gpio->usb_connected()) { // USB is not connected, this means UART0 may be a Xbee, with // its darned bricking problem. We can't write to it for at // least one second after powering up. Simplest solution for // now is to delay for 1 second. Something more elegant may be // added later delay(1000); } // initialise serial port serial_manager.init_console(); // init vehicle capabilties init_capabilities(); cliSerial->printf("\n\nInit " FIRMWARE_STRING "\n\nFree RAM: %u\n", (unsigned)hal.util->available_memory()); // // Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function) // report_version(); // load parameters from EEPROM load_parameters(); BoardConfig.init(); // initialise serial port serial_manager.init(); // init EPM cargo gripper #if EPM_ENABLED == ENABLED epm.init(); #endif // initialise notify system // disable external leds if epm is enabled because of pin conflict on the APM notify.init(true); // initialise battery monitor battery.init(); // Init RSSI rssi.init(); barometer.init(); // Register the mavlink service callback. This will run // anytime there are more than 5ms remaining in a call to // hal.scheduler->delay. hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); // we start by assuming USB connected, as we initialed the serial // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. ap.usb_connected = true; check_usb_mux(); // init the GCS connected to the console gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0); // init telemetry port gcs[1].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0); // setup serial port for telem2 gcs[2].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 1); // setup serial port for fourth telemetry port (not used by default) gcs[3].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 2); #if FRSKY_TELEM_ENABLED == ENABLED // setup frsky frsky_telemetry.init(serial_manager); #endif // identify ourselves correctly with the ground station mavlink_system.sysid = g.sysid_this_mav; #if LOGGING_ENABLED == ENABLED log_init(); #endif GCS_MAVLINK::set_dataflash(&DataFlash); // update motor interlock state update_using_interlock(); #if FRAME_CONFIG == HELI_FRAME // trad heli specific initialisation heli_init(); #endif init_rc_in(); // sets up rc channels from radio init_rc_out(); // sets up motors and output to escs // initialise which outputs Servo and Relay events can use ServoRelayEvents.set_channel_mask(~motors.get_motor_mask()); relay.init(); /* * setup the 'main loop is dead' check. Note that this relies on * the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); // Do GPS init gps.init(&DataFlash, serial_manager); if(g.compass_enabled) init_compass(); #if OPTFLOW == ENABLED // make optflow available to AHRS ahrs.set_optflow(&optflow); #endif // init Location class Location_Class::set_ahrs(&ahrs); #if AP_TERRAIN_AVAILABLE && AC_TERRAIN Location_Class::set_terrain(&terrain); wp_nav.set_terrain(&terrain); #endif pos_control.set_dt(MAIN_LOOP_SECONDS); // init the optical flow sensor init_optflow(); #if MOUNT == ENABLED // initialise camera mount camera_mount.init(&DataFlash, serial_manager); #endif #if PRECISION_LANDING == ENABLED // initialise precision landing init_precland(); #endif #ifdef USERHOOK_INIT USERHOOK_INIT #endif #if CLI_ENABLED == ENABLED if (g.cli_enabled) { const char *msg = "\nPress ENTER 3 times to start interactive setup\n"; cliSerial->println(msg); if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) { gcs[1].get_uart()->println(msg); } if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) { gcs[2].get_uart()->println(msg); } } #endif // CLI_ENABLED #if HIL_MODE != HIL_MODE_DISABLED while (barometer.get_last_update() == 0) { // the barometer begins updating when we get the first // HIL_STATE message gcs_send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message"); delay(1000); } // set INS to HIL mode ins.set_hil_mode(); #endif // read Baro pressure at ground //----------------------------- init_barometer(true); // initialise sonar #if CONFIG_SONAR == ENABLED init_sonar(); #endif // initialise AP_RPM library rpm_sensor.init(); // initialise mission library mission.init(); // initialise the flight mode and aux switch // --------------------------- reset_control_switch(); init_aux_switches(); startup_INS_ground(); // set landed flags set_land_complete(true); set_land_complete_maybe(true); // we don't want writes to the serial port to cause us to pause // mid-flight, so set the serial ports non-blocking once we are // ready to fly serial_manager.set_blocking_writes_all(false); // enable CPU failsafe failsafe_enable(); ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW)); ins.set_dataflash(&DataFlash); cliSerial->print("\nReady to FLY "); // flag that initialisation has completed ap.initialised = true; }
void Plane::init_ardupilot() { // initialise serial port serial_manager.init_console(); cliSerial->printf("\n\nInit " FIRMWARE_STRING "\n\nFree RAM: %u\n", (unsigned)hal.util->available_memory()); // // Check the EEPROM format version before loading any parameters from EEPROM // load_parameters(); #if HIL_SUPPORT if (g.hil_mode == 1) { // set sensors to HIL mode ins.set_hil_mode(); compass.set_hil_mode(); barometer.set_hil_mode(); } #endif #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 // this must be before BoardConfig.init() so if // BRD_SAFETYENABLE==0 then we don't have safety off yet for (uint8_t tries=0; tries<10; tries++) { if (setup_failsafe_mixing()) { break; } hal.scheduler->delay(10); } #endif BoardConfig.init(); // initialise serial ports serial_manager.init(); GCS_MAVLINK::set_dataflash(&DataFlash); // allow servo set on all channels except first 4 ServoRelayEvents.set_channel_mask(0xFFF0); set_control_channels(); // keep a record of how many resets have happened. This can be // used to detect in-flight resets g.num_resets.set_and_save(g.num_resets+1); // init baro before we start the GCS, so that the CLI baro test works barometer.init(); // initialise rangefinder init_rangefinder(); // initialise battery monitoring battery.init(); rpm_sensor.init(); // init the GCS gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0); // we start by assuming USB connected, as we initialed the serial // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. usb_connected = true; check_usb_mux(); // setup all other telem slots with serial ports for (uint8_t i = 1; i < MAVLINK_COMM_NUM_BUFFERS; i++) { gcs[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, (i - 1)); } // setup frsky #if FRSKY_TELEM_ENABLED == ENABLED frsky_telemetry.init(serial_manager); #endif mavlink_system.sysid = g.sysid_this_mav; #if LOGGING_ENABLED == ENABLED log_init(); #endif // initialise airspeed sensor airspeed.init(); if (g.compass_enabled==true) { bool compass_ok = compass.init() && compass.read(); #if HIL_SUPPORT if (!is_zero(g.hil_mode)) { compass_ok = true; } #endif if (!compass_ok) { cliSerial->println("Compass initialisation failed!"); g.compass_enabled = false; } else { ahrs.set_compass(&compass); } } #if OPTFLOW == ENABLED // make optflow available to libraries ahrs.set_optflow(&optflow); #endif // Register mavlink_delay_cb, which will run anytime you have // more than 5ms remaining in your call to hal.scheduler->delay hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); // give AHRS the airspeed sensor ahrs.set_airspeed(&airspeed); // GPS Initialization gps.init(&DataFlash, serial_manager); init_rc_in(); // sets up rc channels from radio relay.init(); #if MOUNT == ENABLED // initialise camera mount camera_mount.init(&DataFlash, serial_manager); #endif #if FENCE_TRIGGERED_PIN > 0 hal.gpio->pinMode(FENCE_TRIGGERED_PIN, HAL_GPIO_OUTPUT); hal.gpio->write(FENCE_TRIGGERED_PIN, 0); #endif /* * setup the 'main loop is dead' check. Note that this relies on * the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); #if CLI_ENABLED == ENABLED if (g.cli_enabled == 1) { const char *msg = "\nPress ENTER 3 times to start interactive setup\n"; cliSerial->println(msg); if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) { gcs[1].get_uart()->println(msg); } if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) { gcs[2].get_uart()->println(msg); } } #endif // CLI_ENABLED init_capabilities(); quadplane.setup(); startup_ground(); // don't initialise rc output until after quadplane is setup as // that can change initial values of channels init_rc_out(); // choose the nav controller set_nav_controller(); set_mode((FlightMode)g.initial_mode.get()); // set the correct flight mode // --------------------------- reset_control_switch(); // initialise sensor #if OPTFLOW == ENABLED optflow.init(); #endif }
void Rover::init_ardupilot() { // initialise console serial port serial_manager.init_console(); cliSerial->printf("\n\nInit " FIRMWARE_STRING "\n\nFree RAM: %u\n", hal.util->available_memory()); // // Check the EEPROM format version before loading any parameters from EEPROM. // load_parameters(); BoardConfig.init(); // initialise serial ports serial_manager.init(); ServoRelayEvents.set_channel_mask(0xFFF0); set_control_channels(); battery.init(); // keep a record of how many resets have happened. This can be // used to detect in-flight resets g.num_resets.set_and_save(g.num_resets+1); // init baro before we start the GCS, so that the CLI baro test works barometer.init(); // init the GCS gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0); // we start by assuming USB connected, as we initialed the serial // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. usb_connected = true; check_usb_mux(); // setup serial port for telem1 gcs[1].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0); // setup serial port for telem2 gcs[2].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 1); // setup serial port for fourth telemetry port (not used by default) gcs[3].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 2); // setup frsky telemetry #if FRSKY_TELEM_ENABLED == ENABLED frsky_telemetry.init(serial_manager); #endif mavlink_system.sysid = g.sysid_this_mav; #if LOGGING_ENABLED == ENABLED log_init(); #endif // Register mavlink_delay_cb, which will run anytime you have // more than 5ms remaining in your call to hal.scheduler->delay hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); if (g.compass_enabled==true) { if (!compass.init()|| !compass.read()) { cliSerial->println("Compass initialisation failed!"); g.compass_enabled = false; } else { ahrs.set_compass(&compass); //compass.get_offsets(); // load offsets to account for airframe magnetic interference } } // initialise sonar init_sonar(); // and baro for EKF init_barometer(); // Do GPS init gps.init(&DataFlash, serial_manager); rc_override_active = hal.rcin->set_overrides(rc_override, 8); init_rc_in(); // sets up rc channels from radio init_rc_out(); // sets up the timer libs relay.init(); #if MOUNT == ENABLED // initialise camera mount camera_mount.init(serial_manager); #endif /* setup the 'main loop is dead' check. Note that this relies on the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); #if CLI_ENABLED == ENABLED // If the switch is in 'menu' mode, run the main menu. // // Since we can't be sure that the setup or test mode won't leave // the system in an odd state, we don't let the user exit the top // menu; they must reset in order to fly. // if (g.cli_enabled == 1) { const char *msg = "\nPress ENTER 3 times to start interactive setup\n"; cliSerial->println(msg); if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) { gcs[1].get_uart()->println(msg); } if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) { gcs[2].get_uart()->println(msg); } } #endif init_capabilities(); startup_ground(); set_mode((enum mode)g.initial_mode.get()); // set the correct flight mode // --------------------------- reset_control_switch(); }
void Tracker::init_tracker() { // initialise console serial port serial_manager.init_console(); hal.console->printf("\n\nInit " THISFIRMWARE "\n\nFree RAM: %u\n", hal.util->available_memory()); // Check the EEPROM format version before loading any parameters from EEPROM load_parameters(); BoardConfig.init(); // initialise serial ports serial_manager.init(); // init baro before we start the GCS, so that the CLI baro test works barometer.init(); // we start by assuming USB connected, as we initialed the serial // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. usb_connected = true; check_usb_mux(); // setup telem slots with serial ports for (uint8_t i = 0; i < MAVLINK_COMM_NUM_BUFFERS; i++) { gcs[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, i); gcs[i].set_snoop(mavlink_snoop_static); } // Register mavlink_delay_cb, which will run anytime you have // more than 5ms remaining in your call to hal.scheduler->delay hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); mavlink_system.sysid = g.sysid_this_mav; #if LOGGING_ENABLED == ENABLED log_init(); #endif GCS_MAVLINK::set_dataflash(&DataFlash); if (g.compass_enabled==true) { if (!compass.init() || !compass.read()) { hal.console->println("Compass initialisation failed!"); g.compass_enabled = false; } else { ahrs.set_compass(&compass); } } // GPS Initialization gps.init(NULL, serial_manager); ahrs.init(); ahrs.set_fly_forward(false); ins.init(scheduler.get_loop_rate_hz()); ahrs.reset(); init_barometer(true); // set serial ports non-blocking serial_manager.set_blocking_writes_all(false); // initialise servos init_servos(); // use given start positions - useful for indoor testing, and // while waiting for GPS lock // sanity check location if (fabsf(g.start_latitude) <= 90.0f && fabsf(g.start_longitude) <= 180.0f) { current_loc.lat = g.start_latitude * 1.0e7f; current_loc.lng = g.start_longitude * 1.0e7f; gcs_send_text(MAV_SEVERITY_NOTICE, "Ignoring invalid START_LATITUDE or START_LONGITUDE parameter"); } // see if EEPROM has a default location as well if (current_loc.lat == 0 && current_loc.lng == 0) { get_home_eeprom(current_loc); } init_capabilities(); gcs_send_text(MAV_SEVERITY_INFO,"Ready to track"); hal.scheduler->delay(1000); // Why???? set_mode(AUTO); // tracking if (g.startup_delay > 0) { // arm servos with trim value to allow them to start up (required // for some servos) prepare_servos(); } }
int main(int argc, char **argv) { int sock; uid_t own_u; gid_t own_g; char *rpath = NULL; char *sock_name = NULL; struct stat stbuf; int c, option_index; #ifdef FS_IOC_GETVERSION int retval; struct statfs st_fs; #endif prog_name = g_path_get_basename(argv[0]); is_daemon = true; sock = -1; own_u = own_g = -1; while (1) { option_index = 0; c = getopt_long(argc, argv, "p:nh?f:s:u:g:", helper_opts, &option_index); if (c == -1) { break; } switch (c) { case 'p': rpath = g_strdup(optarg); break; case 'n': is_daemon = false; break; case 'f': sock = atoi(optarg); break; case 's': sock_name = g_strdup(optarg); break; case 'u': own_u = atoi(optarg); break; case 'g': own_g = atoi(optarg); break; case '?': case 'h': default: usage(); exit(EXIT_FAILURE); } } /* Parameter validation */ if ((sock_name == NULL && sock == -1) || rpath == NULL) { fprintf(stderr, "socket, socket descriptor or path not specified\n"); usage(); return -1; } if (sock_name && sock != -1) { fprintf(stderr, "both named socket and socket descriptor specified\n"); usage(); exit(EXIT_FAILURE); } if (sock_name && (own_u == -1 || own_g == -1)) { fprintf(stderr, "owner uid:gid not specified, "); fprintf(stderr, "owner uid:gid specifies who can access the socket file\n"); usage(); exit(EXIT_FAILURE); } if (lstat(rpath, &stbuf) < 0) { fprintf(stderr, "invalid path \"%s\" specified, %s\n", rpath, strerror(errno)); exit(EXIT_FAILURE); } if (!S_ISDIR(stbuf.st_mode)) { fprintf(stderr, "specified path \"%s\" is not directory\n", rpath); exit(EXIT_FAILURE); } if (is_daemon) { if (daemon(0, 0) < 0) { fprintf(stderr, "daemon call failed\n"); exit(EXIT_FAILURE); } openlog(PROGNAME, LOG_PID, LOG_DAEMON); } do_log(LOG_INFO, "Started\n"); if (sock_name) { sock = proxy_socket(sock_name, own_u, own_g); if (sock < 0) { goto error; } } if (chroot(rpath) < 0) { do_perror("chroot"); goto error; } if (chdir("/") < 0) { do_perror("chdir"); goto error; } get_version = false; #ifdef FS_IOC_GETVERSION /* check whether underlying FS support IOC_GETVERSION */ retval = statfs("/", &st_fs); if (!retval) { switch (st_fs.f_type) { case EXT2_SUPER_MAGIC: case BTRFS_SUPER_MAGIC: case REISERFS_SUPER_MAGIC: case XFS_SUPER_MAGIC: get_version = true; break; } } #endif umask(0); if (init_capabilities() < 0) { goto error; } process_requests(sock); error: g_free(rpath); g_free(sock_name); do_log(LOG_INFO, "Done\n"); closelog(); return 0; }
void Sub::init_ardupilot() { if (!hal.gpio->usb_connected()) { // USB is not connected, this means UART0 may be a Xbee, with // its darned bricking problem. We can't write to it for at // least one second after powering up. Simplest solution for // now is to delay for 1 second. Something more elegant may be // added later hal.scheduler->delay(1000); } // initialise serial port serial_manager.init_console(); cliSerial->printf("\n\nInit " FIRMWARE_STRING "\n\nFree RAM: %u\n", (unsigned)hal.util->available_memory()); // // Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function) // report_version(); // load parameters from EEPROM load_parameters(); BoardConfig.init(); // initialise serial port serial_manager.init(); // init cargo gripper #if GRIPPER_ENABLED == ENABLED g2.gripper.init(); #endif // initialise notify system notify.init(true); // initialise battery monitor battery.init(); barometer.init(); celsius.init(); // Register the mavlink service callback. This will run // anytime there are more than 5ms remaining in a call to // hal.scheduler->delay. hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); // we start by assuming USB connected, as we initialed the serial // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. ap.usb_connected = true; check_usb_mux(); // setup telem slots with serial ports for (uint8_t i = 0; i < MAVLINK_COMM_NUM_BUFFERS; i++) { gcs_chan[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, i); } // identify ourselves correctly with the ground station mavlink_system.sysid = g.sysid_this_mav; #if LOGGING_ENABLED == ENABLED log_init(); #endif gcs().set_dataflash(&DataFlash); init_rc_in(); // sets up rc channels from radio init_rc_out(); // sets up motors and output to escs init_joystick(); // joystick initialization // initialise which outputs Servo and Relay events can use ServoRelayEvents.set_channel_mask(~motors.get_motor_mask()); relay.init(); /* * setup the 'main loop is dead' check. Note that this relies on * the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); // Do GPS init gps.init(&DataFlash, serial_manager); if (g.compass_enabled) { init_compass(); } #if OPTFLOW == ENABLED // make optflow available to AHRS ahrs.set_optflow(&optflow); #endif // init Location class Location_Class::set_ahrs(&ahrs); #if AP_TERRAIN_AVAILABLE && AC_TERRAIN Location_Class::set_terrain(&terrain); wp_nav.set_terrain(&terrain); #endif #if AVOIDANCE_ENABLED == ENABLED wp_nav.set_avoidance(&avoid); #endif pos_control.set_dt(MAIN_LOOP_SECONDS); // init the optical flow sensor init_optflow(); #if MOUNT == ENABLED // initialise camera mount camera_mount.init(&DataFlash, serial_manager); #endif #ifdef USERHOOK_INIT USERHOOK_INIT #endif #if CLI_ENABLED == ENABLED if (g.cli_enabled) { const char *msg = "\nPress ENTER 3 times to start interactive setup\n"; cliSerial->println(msg); if (gcs_chan[1].initialised && (gcs_chan[1].get_uart() != NULL)) { gcs_chan[1].get_uart()->println(msg); } if (num_gcs > 2 && gcs_chan[2].initialised && (gcs_chan[2].get_uart() != NULL)) { gcs_chan[2].get_uart()->println(msg); } } #endif // CLI_ENABLED #if HIL_MODE != HIL_MODE_DISABLED while (barometer.get_last_update() == 0) { // the barometer begins updating when we get the first // HIL_STATE message gcs_send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message"); hal.scheduler->delay(1000); } // set INS to HIL mode ins.set_hil_mode(); #endif // read Baro pressure at ground //----------------------------- init_barometer(false); barometer.update(); for (uint8_t i = 0; i < barometer.num_instances(); i++) { if (barometer.get_type(i) == AP_Baro::BARO_TYPE_WATER && barometer.healthy(i)) { barometer.set_primary_baro(i); ap.depth_sensor_present = true; break; } } if (!ap.depth_sensor_present) { // We only have onboard baro // No external underwater depth sensor detected barometer.set_primary_baro(0); EKF2.set_baro_alt_noise(10.0f); // Readings won't correspond with rest of INS EKF3.set_baro_alt_noise(10.0f); } else { EKF2.set_baro_alt_noise(0.1f); EKF3.set_baro_alt_noise(0.1f); } leak_detector.init(); // backwards compatibility if (attitude_control.get_accel_yaw_max() < 110000.0f) { attitude_control.save_accel_yaw_max(110000.0f); } last_pilot_heading = ahrs.yaw_sensor; // initialise rangefinder #if RANGEFINDER_ENABLED == ENABLED init_rangefinder(); #endif // initialise AP_RPM library #if RPM_ENABLED == ENABLED rpm_sensor.init(); #endif // initialise mission library mission.init(); startup_INS_ground(); // we don't want writes to the serial port to cause us to pause // mid-flight, so set the serial ports non-blocking once we are // ready to fly serial_manager.set_blocking_writes_all(false); // enable CPU failsafe failsafe_enable(); ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW)); ins.set_dataflash(&DataFlash); // init vehicle capabilties init_capabilities(); cliSerial->print("\nReady to FLY "); // flag that initialisation has completed ap.initialised = true; }
bool ActualScheddQ::allows_late_materialize() { init_capabilities(); return allows_late; }