示例#1
0
int ActualScheddQ::get_Capabilities(ClassAd & caps) {
	int rval = init_capabilities();
	if (rval == 0) {
		caps.Update(capabilities);
	}
	return rval;
}
示例#2
0
void Copter::init_ardupilot()
{
    if (!hal.gpio->usb_connected()) {
        // USB is not connected, this means UART0 may be a Xbee, with
        // its darned bricking problem. We can't write to it for at
        // least one second after powering up. Simplest solution for
        // now is to delay for 1 second. Something more elegant may be
        // added later
        delay(1000);
    }

    // initialise serial port
    serial_manager.init_console();

    // init vehicle capabilties
    init_capabilities();

    cliSerial->printf("\n\nInit " FIRMWARE_STRING
                         "\n\nFree RAM: %u\n",
                      (unsigned)hal.util->available_memory());

    //
    // Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function)
    //
    report_version();

    // load parameters from EEPROM
    load_parameters();

    BoardConfig.init();

    // initialise serial port
    serial_manager.init();

    // init EPM cargo gripper
#if EPM_ENABLED == ENABLED
    epm.init();
#endif

    // initialise notify system
    // disable external leds if epm is enabled because of pin conflict on the APM
    notify.init(true);

    // initialise battery monitor
    battery.init();

    // Init RSSI
    rssi.init();
    
    barometer.init();

    // Register the mavlink service callback. This will run
    // anytime there are more than 5ms remaining in a call to
    // hal.scheduler->delay.
    hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);

    // we start by assuming USB connected, as we initialed the serial
    // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
    ap.usb_connected = true;
    check_usb_mux();

    // init the GCS connected to the console
    gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0);

    // init telemetry port
    gcs[1].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0);

    // setup serial port for telem2
    gcs[2].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 1);

    // setup serial port for fourth telemetry port (not used by default)
    gcs[3].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 2);

#if FRSKY_TELEM_ENABLED == ENABLED
    // setup frsky
    frsky_telemetry.init(serial_manager);
#endif

    // identify ourselves correctly with the ground station
    mavlink_system.sysid = g.sysid_this_mav;

#if LOGGING_ENABLED == ENABLED
    log_init();
#endif

    GCS_MAVLINK::set_dataflash(&DataFlash);

    // update motor interlock state
    update_using_interlock();

#if FRAME_CONFIG == HELI_FRAME
    // trad heli specific initialisation
    heli_init();
#endif
    
    init_rc_in();               // sets up rc channels from radio
    init_rc_out();              // sets up motors and output to escs

    // initialise which outputs Servo and Relay events can use
    ServoRelayEvents.set_channel_mask(~motors.get_motor_mask());

    relay.init();

    /*
     *  setup the 'main loop is dead' check. Note that this relies on
     *  the RC library being initialised.
     */
    hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);

    // Do GPS init
    gps.init(&DataFlash, serial_manager);

    if(g.compass_enabled)
        init_compass();

#if OPTFLOW == ENABLED
    // make optflow available to AHRS
    ahrs.set_optflow(&optflow);
#endif

    // init Location class
    Location_Class::set_ahrs(&ahrs);
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
    Location_Class::set_terrain(&terrain);
    wp_nav.set_terrain(&terrain);
#endif

    pos_control.set_dt(MAIN_LOOP_SECONDS);

    // init the optical flow sensor
    init_optflow();

#if MOUNT == ENABLED
    // initialise camera mount
    camera_mount.init(&DataFlash, serial_manager);
#endif

#if PRECISION_LANDING == ENABLED
    // initialise precision landing
    init_precland();
#endif

#ifdef USERHOOK_INIT
    USERHOOK_INIT
#endif

#if CLI_ENABLED == ENABLED
    if (g.cli_enabled) {
        const char *msg = "\nPress ENTER 3 times to start interactive setup\n";
        cliSerial->println(msg);
        if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) {
            gcs[1].get_uart()->println(msg);
        }
        if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) {
            gcs[2].get_uart()->println(msg);
        }
    }
#endif // CLI_ENABLED

#if HIL_MODE != HIL_MODE_DISABLED
    while (barometer.get_last_update() == 0) {
        // the barometer begins updating when we get the first
        // HIL_STATE message
        gcs_send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message");
        delay(1000);
    }

    // set INS to HIL mode
    ins.set_hil_mode();
#endif

    // read Baro pressure at ground
    //-----------------------------
    init_barometer(true);

    // initialise sonar
#if CONFIG_SONAR == ENABLED
    init_sonar();
#endif

    // initialise AP_RPM library
    rpm_sensor.init();

    // initialise mission library
    mission.init();

    // initialise the flight mode and aux switch
    // ---------------------------
    reset_control_switch();
    init_aux_switches();

    startup_INS_ground();

    // set landed flags
    set_land_complete(true);
    set_land_complete_maybe(true);

    // we don't want writes to the serial port to cause us to pause
    // mid-flight, so set the serial ports non-blocking once we are
    // ready to fly
    serial_manager.set_blocking_writes_all(false);

    // enable CPU failsafe
    failsafe_enable();

    ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
    ins.set_dataflash(&DataFlash);

    cliSerial->print("\nReady to FLY ");

    // flag that initialisation has completed
    ap.initialised = true;
}
示例#3
0
void Plane::init_ardupilot()
{
    // initialise serial port
    serial_manager.init_console();

    cliSerial->printf("\n\nInit " FIRMWARE_STRING
                         "\n\nFree RAM: %u\n",
                      (unsigned)hal.util->available_memory());


    //
    // Check the EEPROM format version before loading any parameters from EEPROM
    //
    load_parameters();

#if HIL_SUPPORT
    if (g.hil_mode == 1) {
        // set sensors to HIL mode
        ins.set_hil_mode();
        compass.set_hil_mode();
        barometer.set_hil_mode();
    }
#endif

#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
    // this must be before BoardConfig.init() so if
    // BRD_SAFETYENABLE==0 then we don't have safety off yet
    for (uint8_t tries=0; tries<10; tries++) {
        if (setup_failsafe_mixing()) {
            break;
        }
        hal.scheduler->delay(10);
    }
#endif

    BoardConfig.init();

    // initialise serial ports
    serial_manager.init();

    GCS_MAVLINK::set_dataflash(&DataFlash);

    // allow servo set on all channels except first 4
    ServoRelayEvents.set_channel_mask(0xFFF0);

    set_control_channels();

    // keep a record of how many resets have happened. This can be
    // used to detect in-flight resets
    g.num_resets.set_and_save(g.num_resets+1);

    // init baro before we start the GCS, so that the CLI baro test works
    barometer.init();

    // initialise rangefinder
    init_rangefinder();

    // initialise battery monitoring
    battery.init();

    rpm_sensor.init();

    // init the GCS
    gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0);

    // we start by assuming USB connected, as we initialed the serial
    // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.    
    usb_connected = true;
    check_usb_mux();

    // setup all other telem slots with  serial ports
    for (uint8_t i = 1; i < MAVLINK_COMM_NUM_BUFFERS; i++) {
        gcs[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, (i - 1));
    }

    // setup frsky
#if FRSKY_TELEM_ENABLED == ENABLED
    frsky_telemetry.init(serial_manager);
#endif

    mavlink_system.sysid = g.sysid_this_mav;

#if LOGGING_ENABLED == ENABLED
    log_init();
#endif

    // initialise airspeed sensor
    airspeed.init();

    if (g.compass_enabled==true) {
        bool compass_ok = compass.init() && compass.read();
#if HIL_SUPPORT
    if (!is_zero(g.hil_mode)) {
        compass_ok = true;
    }
#endif
        if (!compass_ok) {
            cliSerial->println("Compass initialisation failed!");
            g.compass_enabled = false;
        } else {
            ahrs.set_compass(&compass);
        }
    }
    
#if OPTFLOW == ENABLED
    // make optflow available to libraries
    ahrs.set_optflow(&optflow);
#endif

    // Register mavlink_delay_cb, which will run anytime you have
    // more than 5ms remaining in your call to hal.scheduler->delay
    hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);

    // give AHRS the airspeed sensor
    ahrs.set_airspeed(&airspeed);

    // GPS Initialization
    gps.init(&DataFlash, serial_manager);

    init_rc_in();               // sets up rc channels from radio

    relay.init();

#if MOUNT == ENABLED
    // initialise camera mount
    camera_mount.init(&DataFlash, serial_manager);
#endif

#if FENCE_TRIGGERED_PIN > 0
    hal.gpio->pinMode(FENCE_TRIGGERED_PIN, HAL_GPIO_OUTPUT);
    hal.gpio->write(FENCE_TRIGGERED_PIN, 0);
#endif

    /*
     *  setup the 'main loop is dead' check. Note that this relies on
     *  the RC library being initialised.
     */
    hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);

#if CLI_ENABLED == ENABLED
    if (g.cli_enabled == 1) {
        const char *msg = "\nPress ENTER 3 times to start interactive setup\n";
        cliSerial->println(msg);
        if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) {
            gcs[1].get_uart()->println(msg);
        }
        if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) {
            gcs[2].get_uart()->println(msg);
        }
    }
#endif // CLI_ENABLED

    init_capabilities();

    quadplane.setup();

    startup_ground();

    // don't initialise rc output until after quadplane is setup as
    // that can change initial values of channels
    init_rc_out();
    
    // choose the nav controller
    set_nav_controller();

    set_mode((FlightMode)g.initial_mode.get());

    // set the correct flight mode
    // ---------------------------
    reset_control_switch();

    // initialise sensor
#if OPTFLOW == ENABLED
    optflow.init();
#endif

}
示例#4
0
void Rover::init_ardupilot()
{
    // initialise console serial port
    serial_manager.init_console();

	cliSerial->printf("\n\nInit " FIRMWARE_STRING
						 "\n\nFree RAM: %u\n",
                        hal.util->available_memory());
                    
	//
	// Check the EEPROM format version before loading any parameters from EEPROM.
	//
	
    load_parameters();

    BoardConfig.init();

    // initialise serial ports
    serial_manager.init();

    ServoRelayEvents.set_channel_mask(0xFFF0);

    set_control_channels();

    battery.init();

    // keep a record of how many resets have happened. This can be
    // used to detect in-flight resets
    g.num_resets.set_and_save(g.num_resets+1);

    // init baro before we start the GCS, so that the CLI baro test works
    barometer.init();

	// init the GCS
    gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0);

    // we start by assuming USB connected, as we initialed the serial
    // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.    
    usb_connected = true;
    check_usb_mux();

    // setup serial port for telem1
    gcs[1].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0);

    // setup serial port for telem2
    gcs[2].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 1);

    // setup serial port for fourth telemetry port (not used by default)
    gcs[3].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 2);

    // setup frsky telemetry
#if FRSKY_TELEM_ENABLED == ENABLED
    frsky_telemetry.init(serial_manager);
#endif

	mavlink_system.sysid = g.sysid_this_mav;

#if LOGGING_ENABLED == ENABLED
    log_init();
#endif

    // Register mavlink_delay_cb, which will run anytime you have
    // more than 5ms remaining in your call to hal.scheduler->delay
    hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);

	if (g.compass_enabled==true) {
		if (!compass.init()|| !compass.read()) {
            cliSerial->println("Compass initialisation failed!");
            g.compass_enabled = false;
        } else {
            ahrs.set_compass(&compass);
            //compass.get_offsets();						// load offsets to account for airframe magnetic interference
        }
	}

	// initialise sonar
    init_sonar();

    // and baro for EKF
    init_barometer();

	// Do GPS init
    gps.init(&DataFlash, serial_manager);

    rc_override_active = hal.rcin->set_overrides(rc_override, 8);

	init_rc_in();		// sets up rc channels from radio
	init_rc_out();		// sets up the timer libs

    relay.init();

#if MOUNT == ENABLED
    // initialise camera mount
    camera_mount.init(serial_manager);
#endif

    /*
      setup the 'main loop is dead' check. Note that this relies on
      the RC library being initialised.
     */
    hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);


#if CLI_ENABLED == ENABLED
	// If the switch is in 'menu' mode, run the main menu.
	//
	// Since we can't be sure that the setup or test mode won't leave
	// the system in an odd state, we don't let the user exit the top
	// menu; they must reset in order to fly.
	//
    if (g.cli_enabled == 1) {
        const char *msg = "\nPress ENTER 3 times to start interactive setup\n";
        cliSerial->println(msg);
        if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) {
            gcs[1].get_uart()->println(msg);
        }
        if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) {
            gcs[2].get_uart()->println(msg);
        }
    }
#endif

	init_capabilities();

	startup_ground();

    set_mode((enum mode)g.initial_mode.get());

	// set the correct flight mode
	// ---------------------------
	reset_control_switch();
}
示例#5
0
void Tracker::init_tracker()
{
    // initialise console serial port
    serial_manager.init_console();

    hal.console->printf("\n\nInit " THISFIRMWARE
                               "\n\nFree RAM: %u\n",
                          hal.util->available_memory());

    // Check the EEPROM format version before loading any parameters from EEPROM
    load_parameters();

    BoardConfig.init();

    // initialise serial ports
    serial_manager.init();

    // init baro before we start the GCS, so that the CLI baro test works
    barometer.init();

    // we start by assuming USB connected, as we initialed the serial
    // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.    
    usb_connected = true;
    check_usb_mux();

    // setup telem slots with serial ports
    for (uint8_t i = 0; i < MAVLINK_COMM_NUM_BUFFERS; i++) {
        gcs[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, i);
        gcs[i].set_snoop(mavlink_snoop_static);
    }

    // Register mavlink_delay_cb, which will run anytime you have
    // more than 5ms remaining in your call to hal.scheduler->delay
    hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);
    
    mavlink_system.sysid = g.sysid_this_mav;

#if LOGGING_ENABLED == ENABLED
    log_init();
#endif

    GCS_MAVLINK::set_dataflash(&DataFlash);

    if (g.compass_enabled==true) {
        if (!compass.init() || !compass.read()) {
            hal.console->println("Compass initialisation failed!");
            g.compass_enabled = false;
        } else {
            ahrs.set_compass(&compass);
        }
    }

    // GPS Initialization
    gps.init(NULL, serial_manager);

    ahrs.init();
    ahrs.set_fly_forward(false);

    ins.init(scheduler.get_loop_rate_hz());
    ahrs.reset();

    init_barometer(true);

    // set serial ports non-blocking
    serial_manager.set_blocking_writes_all(false);

    // initialise servos
    init_servos();

    // use given start positions - useful for indoor testing, and
    // while waiting for GPS lock
    // sanity check location
    if (fabsf(g.start_latitude) <= 90.0f && fabsf(g.start_longitude) <= 180.0f) {
        current_loc.lat = g.start_latitude * 1.0e7f;
        current_loc.lng = g.start_longitude * 1.0e7f;
        gcs_send_text(MAV_SEVERITY_NOTICE, "Ignoring invalid START_LATITUDE or START_LONGITUDE parameter");
    }

    // see if EEPROM has a default location as well
    if (current_loc.lat == 0 && current_loc.lng == 0) {
        get_home_eeprom(current_loc);
    }

    init_capabilities();

    gcs_send_text(MAV_SEVERITY_INFO,"Ready to track");
    hal.scheduler->delay(1000); // Why????

    set_mode(AUTO); // tracking

    if (g.startup_delay > 0) {
        // arm servos with trim value to allow them to start up (required
        // for some servos)
        prepare_servos();
    }

}
示例#6
0
int main(int argc, char **argv)
{
    int sock;
    uid_t own_u;
    gid_t own_g;
    char *rpath = NULL;
    char *sock_name = NULL;
    struct stat stbuf;
    int c, option_index;
#ifdef FS_IOC_GETVERSION
    int retval;
    struct statfs st_fs;
#endif

    prog_name = g_path_get_basename(argv[0]);

    is_daemon = true;
    sock = -1;
    own_u = own_g = -1;
    while (1) {
        option_index = 0;
        c = getopt_long(argc, argv, "p:nh?f:s:u:g:", helper_opts,
                        &option_index);
        if (c == -1) {
            break;
        }
        switch (c) {
        case 'p':
            rpath = g_strdup(optarg);
            break;
        case 'n':
            is_daemon = false;
            break;
        case 'f':
            sock = atoi(optarg);
            break;
        case 's':
            sock_name = g_strdup(optarg);
            break;
        case 'u':
            own_u = atoi(optarg);
            break;
        case 'g':
            own_g = atoi(optarg);
            break;
        case '?':
        case 'h':
        default:
            usage();
            exit(EXIT_FAILURE);
        }
    }

    /* Parameter validation */
    if ((sock_name == NULL && sock == -1) || rpath == NULL) {
        fprintf(stderr, "socket, socket descriptor or path not specified\n");
        usage();
        return -1;
    }

    if (sock_name && sock != -1) {
        fprintf(stderr, "both named socket and socket descriptor specified\n");
        usage();
        exit(EXIT_FAILURE);
    }

    if (sock_name && (own_u == -1 || own_g == -1)) {
        fprintf(stderr, "owner uid:gid not specified, ");
        fprintf(stderr,
                "owner uid:gid specifies who can access the socket file\n");
        usage();
        exit(EXIT_FAILURE);
    }

    if (lstat(rpath, &stbuf) < 0) {
        fprintf(stderr, "invalid path \"%s\" specified, %s\n",
                rpath, strerror(errno));
        exit(EXIT_FAILURE);
    }

    if (!S_ISDIR(stbuf.st_mode)) {
        fprintf(stderr, "specified path \"%s\" is not directory\n", rpath);
        exit(EXIT_FAILURE);
    }

    if (is_daemon) {
        if (daemon(0, 0) < 0) {
            fprintf(stderr, "daemon call failed\n");
            exit(EXIT_FAILURE);
        }
        openlog(PROGNAME, LOG_PID, LOG_DAEMON);
    }

    do_log(LOG_INFO, "Started\n");
    if (sock_name) {
        sock = proxy_socket(sock_name, own_u, own_g);
        if (sock < 0) {
            goto error;
        }
    }

    if (chroot(rpath) < 0) {
        do_perror("chroot");
        goto error;
    }
    if (chdir("/") < 0) {
        do_perror("chdir");
        goto error;
    }

    get_version = false;
#ifdef FS_IOC_GETVERSION
    /* check whether underlying FS support IOC_GETVERSION */
    retval = statfs("/", &st_fs);
    if (!retval) {
        switch (st_fs.f_type) {
        case EXT2_SUPER_MAGIC:
        case BTRFS_SUPER_MAGIC:
        case REISERFS_SUPER_MAGIC:
        case XFS_SUPER_MAGIC:
            get_version = true;
            break;
        }
    }
#endif

    umask(0);
    if (init_capabilities() < 0) {
        goto error;
    }

    process_requests(sock);
error:
    g_free(rpath);
    g_free(sock_name);
    do_log(LOG_INFO, "Done\n");
    closelog();
    return 0;
}
示例#7
0
void Sub::init_ardupilot()
{
    if (!hal.gpio->usb_connected()) {
        // USB is not connected, this means UART0 may be a Xbee, with
        // its darned bricking problem. We can't write to it for at
        // least one second after powering up. Simplest solution for
        // now is to delay for 1 second. Something more elegant may be
        // added later
        hal.scheduler->delay(1000);
    }

    // initialise serial port
    serial_manager.init_console();

    cliSerial->printf("\n\nInit " FIRMWARE_STRING
                      "\n\nFree RAM: %u\n",
                      (unsigned)hal.util->available_memory());

    //
    // Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function)
    //
    report_version();

    // load parameters from EEPROM
    load_parameters();

    BoardConfig.init();

    // initialise serial port
    serial_manager.init();

    // init cargo gripper
#if GRIPPER_ENABLED == ENABLED
    g2.gripper.init();
#endif

    // initialise notify system
    notify.init(true);

    // initialise battery monitor
    battery.init();

    barometer.init();

    celsius.init();

    // Register the mavlink service callback. This will run
    // anytime there are more than 5ms remaining in a call to
    // hal.scheduler->delay.
    hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);

    // we start by assuming USB connected, as we initialed the serial
    // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
    ap.usb_connected = true;
    check_usb_mux();

    // setup telem slots with serial ports
    for (uint8_t i = 0; i < MAVLINK_COMM_NUM_BUFFERS; i++) {
        gcs_chan[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, i);
    }

    // identify ourselves correctly with the ground station
    mavlink_system.sysid = g.sysid_this_mav;

#if LOGGING_ENABLED == ENABLED
    log_init();
#endif

    gcs().set_dataflash(&DataFlash);

    init_rc_in();               // sets up rc channels from radio
    init_rc_out();              // sets up motors and output to escs
    init_joystick();            // joystick initialization

    // initialise which outputs Servo and Relay events can use
    ServoRelayEvents.set_channel_mask(~motors.get_motor_mask());

    relay.init();

    /*
     *  setup the 'main loop is dead' check. Note that this relies on
     *  the RC library being initialised.
     */
    hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);

    // Do GPS init
    gps.init(&DataFlash, serial_manager);

    if (g.compass_enabled) {
        init_compass();
    }

#if OPTFLOW == ENABLED
    // make optflow available to AHRS
    ahrs.set_optflow(&optflow);
#endif

    // init Location class
    Location_Class::set_ahrs(&ahrs);
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
    Location_Class::set_terrain(&terrain);
    wp_nav.set_terrain(&terrain);
#endif

#if AVOIDANCE_ENABLED == ENABLED
    wp_nav.set_avoidance(&avoid);
#endif

    pos_control.set_dt(MAIN_LOOP_SECONDS);

    // init the optical flow sensor
    init_optflow();

#if MOUNT == ENABLED
    // initialise camera mount
    camera_mount.init(&DataFlash, serial_manager);
#endif

#ifdef USERHOOK_INIT
    USERHOOK_INIT
#endif

#if CLI_ENABLED == ENABLED
    if (g.cli_enabled) {
        const char *msg = "\nPress ENTER 3 times to start interactive setup\n";
        cliSerial->println(msg);
        if (gcs_chan[1].initialised && (gcs_chan[1].get_uart() != NULL)) {
            gcs_chan[1].get_uart()->println(msg);
        }
        if (num_gcs > 2 && gcs_chan[2].initialised && (gcs_chan[2].get_uart() != NULL)) {
            gcs_chan[2].get_uart()->println(msg);
        }
    }
#endif // CLI_ENABLED

#if HIL_MODE != HIL_MODE_DISABLED
    while (barometer.get_last_update() == 0) {
        // the barometer begins updating when we get the first
        // HIL_STATE message
        gcs_send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message");
        hal.scheduler->delay(1000);
    }

    // set INS to HIL mode
    ins.set_hil_mode();
#endif

    // read Baro pressure at ground
    //-----------------------------
    init_barometer(false);
    barometer.update();

    for (uint8_t i = 0; i < barometer.num_instances(); i++) {
        if (barometer.get_type(i) == AP_Baro::BARO_TYPE_WATER && barometer.healthy(i)) {
            barometer.set_primary_baro(i);
            ap.depth_sensor_present = true;
            break;
        }
    }

    if (!ap.depth_sensor_present) {
        // We only have onboard baro
        // No external underwater depth sensor detected
        barometer.set_primary_baro(0);
        EKF2.set_baro_alt_noise(10.0f); // Readings won't correspond with rest of INS
        EKF3.set_baro_alt_noise(10.0f);
    } else {
        EKF2.set_baro_alt_noise(0.1f);
        EKF3.set_baro_alt_noise(0.1f);
    }

    leak_detector.init();

    // backwards compatibility
    if (attitude_control.get_accel_yaw_max() < 110000.0f) {
        attitude_control.save_accel_yaw_max(110000.0f);
    }

    last_pilot_heading = ahrs.yaw_sensor;

    // initialise rangefinder
#if RANGEFINDER_ENABLED == ENABLED
    init_rangefinder();
#endif

    // initialise AP_RPM library
#if RPM_ENABLED == ENABLED
    rpm_sensor.init();
#endif

    // initialise mission library
    mission.init();

    startup_INS_ground();

    // we don't want writes to the serial port to cause us to pause
    // mid-flight, so set the serial ports non-blocking once we are
    // ready to fly
    serial_manager.set_blocking_writes_all(false);

    // enable CPU failsafe
    failsafe_enable();

    ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
    ins.set_dataflash(&DataFlash);

    // init vehicle capabilties
    init_capabilities();

    cliSerial->print("\nReady to FLY ");

    // flag that initialisation has completed
    ap.initialised = true;
}
示例#8
0
bool ActualScheddQ::allows_late_materialize() {
	init_capabilities();
	return allows_late;
}