int sample_main(int argc, char *argv[]) { VkResult U_ASSERT_ONLY res; struct sample_info info = {}; char sample_title[] = "SPIR-V Specialization"; const bool depthPresent = true; process_command_line_args(info, argc, argv); init_global_layer_properties(info); init_instance_extension_names(info); init_device_extension_names(info); init_instance(info, sample_title); init_enumerate_device(info); init_window_size(info, 500, 500); init_connection(info); init_window(info); init_swapchain_extension(info); init_device(info); init_command_pool(info); init_command_buffer(info); execute_begin_command_buffer(info); init_device_queue(info); init_swap_chain(info); init_depth_buffer(info); init_texture(info); init_uniform_buffer(info); init_descriptor_and_pipeline_layouts(info, true); init_renderpass(info, depthPresent); /* VULKAN_KEY_START */ // Pass in nullptr for fragment shader so we can setup specialization init_shaders(info, vertShaderText, nullptr); // This structure maps constant ids to data locations. // NOTE: Padding bool to 32-bits for simplicity const VkSpecializationMapEntry entries[] = // id, offset, size {{5, 0, sizeof(uint32_t)}, {7, 1 * sizeof(uint32_t), sizeof(uint32_t)}, {8, 2 * sizeof(uint32_t), sizeof(uint32_t)}, {9, 3 * sizeof(uint32_t), sizeof(uint32_t)}}; // Initialize the values we want our mini-ubershader to use const bool drawUserColor = true; const float userColor[] = {0.0f, 0.0f, 1.0f}; // Populate our data entry uint32_t data[4] = {}; data[0] = drawUserColor ? 1 : 0; ((float *)data)[1] = userColor[0]; ((float *)data)[2] = userColor[1]; ((float *)data)[3] = userColor[2]; // Set up the info describing our spec map and data const VkSpecializationInfo specInfo = { 4, // mapEntryCount entries, // pMapEntries 4 * sizeof(float), // dataSize data, // pData }; // Provide the specialization data to fragment stage info.shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; info.shaderStages[1].pNext = NULL; info.shaderStages[1].pSpecializationInfo = &specInfo; info.shaderStages[1].flags = 0; info.shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; info.shaderStages[1].pName = "main"; VkShaderModuleCreateInfo moduleCreateInfo; moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; moduleCreateInfo.pNext = NULL; moduleCreateInfo.flags = 0; if (use_SPIRV_asm) { // Use the hand edited SPIR-V assembly spv_context spvContext = spvContextCreate(SPV_ENV_VULKAN_1_0); spv_binary fragmentBinary = {}; spv_diagnostic fragmentDiag = {}; spv_result_t fragmentResult = spvTextToBinary(spvContext, fragmentSPIRV_specialized.c_str(), fragmentSPIRV_specialized.length(), &fragmentBinary, &fragmentDiag); if (fragmentDiag) { printf("Diagnostic info from fragment shader:\n"); spvDiagnosticPrint(fragmentDiag); } assert(fragmentResult == SPV_SUCCESS); moduleCreateInfo.codeSize = fragmentBinary->wordCount * sizeof(unsigned int); moduleCreateInfo.pCode = fragmentBinary->code; spvDiagnosticDestroy(fragmentDiag); spvContextDestroy(spvContext); } else { // Convert GLSL to SPIR-V init_glslang(); std::vector<unsigned int> fragSpv; bool U_ASSERT_ONLY retVal = GLSLtoSPV(VK_SHADER_STAGE_FRAGMENT_BIT, fragShaderText, fragSpv); assert(retVal); finalize_glslang(); moduleCreateInfo.codeSize = fragSpv.size() * sizeof(unsigned int); moduleCreateInfo.pCode = fragSpv.data(); } res = vkCreateShaderModule(info.device, &moduleCreateInfo, NULL, &info.shaderStages[1].module); assert(res == VK_SUCCESS); /* VULKAN_KEY_END */ init_framebuffers(info, depthPresent); init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data), sizeof(g_vb_texture_Data[0]), true); init_descriptor_pool(info, true); init_descriptor_set(info, true); init_pipeline_cache(info); init_pipeline(info, depthPresent); init_presentable_image(info); VkClearValue clear_values[2]; init_clear_color_and_depth(info, clear_values); VkRenderPassBeginInfo rp_begin; init_render_pass_begin_info(info, rp_begin); rp_begin.clearValueCount = 2; rp_begin.pClearValues = clear_values; vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline); vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS, info.desc_set.data(), 0, NULL); const VkDeviceSize offsets[1] = {0}; vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets); init_viewports(info); init_scissors(info); vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0); vkCmdEndRenderPass(info.cmd); res = vkEndCommandBuffer(info.cmd); assert(res == VK_SUCCESS); VkFence drawFence = {}; init_fence(info, drawFence); VkPipelineStageFlags pipe_stage_flags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; VkSubmitInfo submit_info = {}; init_submit_info(info, submit_info, pipe_stage_flags); /* Queue the command buffer for execution */ res = vkQueueSubmit(info.graphics_queue, 1, &submit_info, drawFence); assert(res == VK_SUCCESS); /* Now present the image in the window */ VkPresentInfoKHR present = {}; init_present_info(info, present); /* Make sure command buffer is finished before presenting */ do { res = vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT); } while (res == VK_TIMEOUT); assert(res == VK_SUCCESS); res = vkQueuePresentKHR(info.present_queue, &present); assert(res == VK_SUCCESS); wait_seconds(1); if (info.save_images) write_ppm(info, "spirv_specialization"); vkDestroyFence(info.device, drawFence, NULL); vkDestroySemaphore(info.device, info.imageAcquiredSemaphore, NULL); destroy_pipeline(info); destroy_pipeline_cache(info); destroy_textures(info); destroy_descriptor_pool(info); destroy_vertex_buffer(info); destroy_framebuffers(info); destroy_shaders(info); destroy_renderpass(info); destroy_descriptor_and_pipeline_layouts(info); destroy_uniform_buffer(info); destroy_depth_buffer(info); destroy_swap_chain(info); destroy_command_buffer(info); destroy_command_pool(info); destroy_device(info); destroy_window(info); destroy_instance(info); return 0; }
int sample_main(int argc, char *argv[]) { VkResult U_ASSERT_ONLY res; struct sample_info info = {}; char sample_title[] = "Draw Textured Cube"; const bool depthPresent = true; process_command_line_args(info, argc, argv); init_global_layer_properties(info); init_instance_extension_names(info); init_device_extension_names(info); init_instance(info, sample_title); init_enumerate_device(info); init_window_size(info, 500, 500); init_connection(info); init_window(info); init_swapchain_extension(info); init_device(info); init_command_pool(info); init_command_buffer(info); execute_begin_command_buffer(info); init_device_queue(info); init_swap_chain(info); init_depth_buffer(info); init_texture(info); init_uniform_buffer(info); init_descriptor_and_pipeline_layouts(info, true); init_renderpass(info, depthPresent); init_shaders(info, vertShaderText, fragShaderText); init_framebuffers(info, depthPresent); init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data), sizeof(g_vb_texture_Data[0]), true); init_descriptor_pool(info, true); init_descriptor_set(info, true); init_pipeline_cache(info); init_pipeline(info, depthPresent); /* VULKAN_KEY_START */ VkClearValue clear_values[2]; clear_values[0].color.float32[0] = 0.2f; clear_values[0].color.float32[1] = 0.2f; clear_values[0].color.float32[2] = 0.2f; clear_values[0].color.float32[3] = 0.2f; clear_values[1].depthStencil.depth = 1.0f; clear_values[1].depthStencil.stencil = 0; VkSemaphore presentCompleteSemaphore; VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo; presentCompleteSemaphoreCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; presentCompleteSemaphoreCreateInfo.pNext = NULL; presentCompleteSemaphoreCreateInfo.flags = 0; res = vkCreateSemaphore(info.device, &presentCompleteSemaphoreCreateInfo, NULL, &presentCompleteSemaphore); assert(res == VK_SUCCESS); // Get the index of the next available swapchain image: res = vkAcquireNextImageKHR(info.device, info.swap_chain, UINT64_MAX, presentCompleteSemaphore, VK_NULL_HANDLE, &info.current_buffer); // TODO: Deal with the VK_SUBOPTIMAL_KHR and VK_ERROR_OUT_OF_DATE_KHR // return codes assert(res == VK_SUCCESS); set_image_layout(info, info.buffers[info.current_buffer].image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); VkRenderPassBeginInfo rp_begin; rp_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; rp_begin.pNext = NULL; rp_begin.renderPass = info.render_pass; rp_begin.framebuffer = info.framebuffers[info.current_buffer]; rp_begin.renderArea.offset.x = 0; rp_begin.renderArea.offset.y = 0; rp_begin.renderArea.extent.width = info.width; rp_begin.renderArea.extent.height = info.height; rp_begin.clearValueCount = 2; rp_begin.pClearValues = clear_values; vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline); vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS, info.desc_set.data(), 0, NULL); const VkDeviceSize offsets[1] = {0}; vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets); init_viewports(info); init_scissors(info); vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0); vkCmdEndRenderPass(info.cmd); VkImageMemoryBarrier prePresentBarrier = {}; prePresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; prePresentBarrier.pNext = NULL; prePresentBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; prePresentBarrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; prePresentBarrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; prePresentBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; prePresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; prePresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; prePresentBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; prePresentBarrier.subresourceRange.baseMipLevel = 0; prePresentBarrier.subresourceRange.levelCount = 1; prePresentBarrier.subresourceRange.baseArrayLayer = 0; prePresentBarrier.subresourceRange.layerCount = 1; prePresentBarrier.image = info.buffers[info.current_buffer].image; vkCmdPipelineBarrier(info.cmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, NULL, 0, NULL, 1, &prePresentBarrier); res = vkEndCommandBuffer(info.cmd); assert(res == VK_SUCCESS); const VkCommandBuffer cmd_bufs[] = {info.cmd}; VkFenceCreateInfo fenceInfo; VkFence drawFence; fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fenceInfo.pNext = NULL; fenceInfo.flags = 0; vkCreateFence(info.device, &fenceInfo, NULL, &drawFence); VkPipelineStageFlags pipe_stage_flags = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; VkSubmitInfo submit_info[1] = {}; submit_info[0].pNext = NULL; submit_info[0].sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info[0].waitSemaphoreCount = 1; submit_info[0].pWaitSemaphores = &presentCompleteSemaphore; submit_info[0].pWaitDstStageMask = &pipe_stage_flags; submit_info[0].commandBufferCount = 1; submit_info[0].pCommandBuffers = cmd_bufs; submit_info[0].signalSemaphoreCount = 0; submit_info[0].pSignalSemaphores = NULL; /* Queue the command buffer for execution */ res = vkQueueSubmit(info.queue, 1, submit_info, drawFence); assert(res == VK_SUCCESS); /* Now present the image in the window */ VkPresentInfoKHR present; present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; present.pNext = NULL; present.swapchainCount = 1; present.pSwapchains = &info.swap_chain; present.pImageIndices = &info.current_buffer; present.pWaitSemaphores = NULL; present.waitSemaphoreCount = 0; present.pResults = NULL; /* Make sure command buffer is finished before presenting */ do { res = vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT); } while (res == VK_TIMEOUT); assert(res == VK_SUCCESS); res = vkQueuePresentKHR(info.queue, &present); assert(res == VK_SUCCESS); wait_seconds(1); /* VULKAN_KEY_END */ if (info.save_images) write_ppm(info, "drawtexturedcube"); vkDestroyFence(info.device, drawFence, NULL); vkDestroySemaphore(info.device, presentCompleteSemaphore, NULL); destroy_pipeline(info); destroy_pipeline_cache(info); destroy_textures(info); destroy_descriptor_pool(info); destroy_vertex_buffer(info); destroy_framebuffers(info); destroy_shaders(info); destroy_renderpass(info); destroy_descriptor_and_pipeline_layouts(info); destroy_uniform_buffer(info); destroy_depth_buffer(info); destroy_swap_chain(info); destroy_command_buffer(info); destroy_command_pool(info); destroy_device(info); destroy_window(info); destroy_instance(info); return 0; }
int main(int argc, char *argv[]) { VkResult U_ASSERT_ONLY res; bool U_ASSERT_ONLY pass; struct sample_info info = {}; char sample_title[] = "Draw Cube"; process_command_line_args(info, argc, argv); init_global_layer_properties(info); info.instance_extension_names.push_back(VK_KHR_SURFACE_EXTENSION_NAME); #ifdef _WIN32 info.instance_extension_names.push_back( VK_KHR_WIN32_SURFACE_EXTENSION_NAME); #else info.instance_extension_names.push_back(VK_KHR_XCB_SURFACE_EXTENSION_NAME); #endif info.device_extension_names.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME); init_instance(info, sample_title); init_enumerate_device(info); init_window_size(info, 500, 500); init_connection(info); init_window(info); init_swapchain_extension(info); init_device(info); init_command_pool(info); init_command_buffer(info); execute_begin_command_buffer(info); init_device_queue(info); init_swap_chain(info); init_depth_buffer(info); init_uniform_buffer(info); init_descriptor_and_pipeline_layouts(info, false); init_renderpass(info, DEPTH_PRESENT); init_shaders(info, vertShaderText, fragShaderText); init_framebuffers(info, DEPTH_PRESENT); init_vertex_buffer(info, g_vb_solid_face_colors_Data, sizeof(g_vb_solid_face_colors_Data), sizeof(g_vb_solid_face_colors_Data[0]), false); init_descriptor_pool(info, false); init_descriptor_set(info, false); init_pipeline_cache(info); init_pipeline(info, DEPTH_PRESENT); /* VULKAN_KEY_START */ VkClearValue clear_values[2]; clear_values[0].color.float32[0] = 0.2f; clear_values[0].color.float32[1] = 0.2f; clear_values[0].color.float32[2] = 0.2f; clear_values[0].color.float32[3] = 0.2f; clear_values[1].depthStencil.depth = 1.0f; clear_values[1].depthStencil.stencil = 0; VkSemaphore presentCompleteSemaphore; VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo; presentCompleteSemaphoreCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; presentCompleteSemaphoreCreateInfo.pNext = NULL; presentCompleteSemaphoreCreateInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT; res = vkCreateSemaphore(info.device, &presentCompleteSemaphoreCreateInfo, NULL, &presentCompleteSemaphore); assert(res == VK_SUCCESS); // Get the index of the next available swapchain image: res = vkAcquireNextImageKHR(info.device, info.swap_chain, UINT64_MAX, presentCompleteSemaphore, NULL, &info.current_buffer); // TODO: Deal with the VK_SUBOPTIMAL_KHR and VK_ERROR_OUT_OF_DATE_KHR // return codes assert(res == VK_SUCCESS); /* Allocate a uniform buffer that will take query results. */ VkBuffer query_result_buf; VkDeviceMemory query_result_mem; VkBufferCreateInfo buf_info = {}; buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; buf_info.pNext = NULL; buf_info.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; buf_info.size = 4 * sizeof(uint64_t); buf_info.queueFamilyIndexCount = 0; buf_info.pQueueFamilyIndices = NULL; buf_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; buf_info.flags = 0; res = vkCreateBuffer(info.device, &buf_info, NULL, &query_result_buf); assert(res == VK_SUCCESS); VkMemoryRequirements mem_reqs; vkGetBufferMemoryRequirements(info.device, query_result_buf, &mem_reqs); VkMemoryAllocateInfo alloc_info = {}; alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; alloc_info.pNext = NULL; alloc_info.memoryTypeIndex = 0; alloc_info.allocationSize = mem_reqs.size; pass = memory_type_from_properties(info, mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &alloc_info.memoryTypeIndex); assert(pass); res = vkAllocateMemory(info.device, &alloc_info, NULL, &query_result_mem); assert(res == VK_SUCCESS); res = vkBindBufferMemory(info.device, query_result_buf, query_result_mem, 0); assert(res == VK_SUCCESS); VkQueryPool query_pool; VkQueryPoolCreateInfo query_pool_info; query_pool_info.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO; query_pool_info.pNext = NULL; query_pool_info.queryType = VK_QUERY_TYPE_OCCLUSION; query_pool_info.flags = 0; query_pool_info.queryCount = 2; query_pool_info.pipelineStatistics = 0; res = vkCreateQueryPool(info.device, &query_pool_info, NULL, &query_pool); assert(res == VK_SUCCESS); vkCmdResetQueryPool(info.cmd, query_pool, 0 /*startQuery*/, 2 /*queryCount*/); VkRenderPassBeginInfo rp_begin; rp_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; rp_begin.pNext = NULL; rp_begin.renderPass = info.render_pass; rp_begin.framebuffer = info.framebuffers[info.current_buffer]; rp_begin.renderArea.offset.x = 0; rp_begin.renderArea.offset.y = 0; rp_begin.renderArea.extent.width = info.width; rp_begin.renderArea.extent.height = info.height; rp_begin.clearValueCount = 2; rp_begin.pClearValues = clear_values; vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline); vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS, info.desc_set.data(), 0, NULL); const VkDeviceSize offsets[1] = {0}; vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets); VkViewport viewport; viewport.height = (float)info.height; viewport.width = (float)info.width; viewport.minDepth = (float)0.0f; viewport.maxDepth = (float)1.0f; viewport.x = 0; viewport.y = 0; vkCmdSetViewport(info.cmd, 0, NUM_VIEWPORTS, &viewport); VkRect2D scissor; scissor.extent.width = info.width; scissor.extent.height = info.height; scissor.offset.x = 0; scissor.offset.y = 0; vkCmdSetScissor(info.cmd, 0, NUM_SCISSORS, &scissor); vkCmdBeginQuery(info.cmd, query_pool, 0 /*slot*/, 0 /*flags*/); vkCmdEndQuery(info.cmd, query_pool, 0 /*slot*/); vkCmdBeginQuery(info.cmd, query_pool, 1 /*slot*/, 0 /*flags*/); vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0); vkCmdEndRenderPass(info.cmd); vkCmdEndQuery(info.cmd, query_pool, 1 /*slot*/); vkCmdCopyQueryPoolResults( info.cmd, query_pool, 0 /*firstQuery*/, 2 /*queryCount*/, query_result_buf, 0 /*dstOffset*/, sizeof(uint64_t) /*stride*/, VK_QUERY_RESULT_64_BIT | VK_QUERY_RESULT_WAIT_BIT); VkImageMemoryBarrier prePresentBarrier = {}; prePresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; prePresentBarrier.pNext = NULL; prePresentBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; prePresentBarrier.dstAccessMask = 0; prePresentBarrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; prePresentBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; prePresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; prePresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; prePresentBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; prePresentBarrier.subresourceRange.baseMipLevel = 0; prePresentBarrier.subresourceRange.levelCount = 1; prePresentBarrier.subresourceRange.baseArrayLayer = 0; prePresentBarrier.subresourceRange.layerCount = 1; prePresentBarrier.image = info.buffers[info.current_buffer].image; vkCmdPipelineBarrier(info.cmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, NULL, 0, NULL, 1, &prePresentBarrier); res = vkEndCommandBuffer(info.cmd); const VkCommandBuffer cmd_bufs[] = {info.cmd}; VkFenceCreateInfo fenceInfo; VkFence drawFence; fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fenceInfo.pNext = NULL; fenceInfo.flags = 0; vkCreateFence(info.device, &fenceInfo, NULL, &drawFence); VkPipelineStageFlags pipe_stage_flags = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; VkSubmitInfo submit_info[1] = {}; submit_info[0].pNext = NULL; submit_info[0].sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info[0].waitSemaphoreCount = 1; submit_info[0].pWaitSemaphores = &presentCompleteSemaphore; submit_info[0].pWaitDstStageMask = &pipe_stage_flags; submit_info[0].commandBufferCount = 1; submit_info[0].pCommandBuffers = cmd_bufs; submit_info[0].signalSemaphoreCount = 0; submit_info[0].pSignalSemaphores = NULL; /* Queue the command buffer for execution */ res = vkQueueSubmit(info.queue, 1, submit_info, drawFence); assert(res == VK_SUCCESS); res = vkQueueWaitIdle(info.queue); assert(res == VK_SUCCESS); uint64_t samples_passed[4]; samples_passed[0] = 0; samples_passed[1] = 0; res = vkGetQueryPoolResults( info.device, query_pool, 0 /*firstQuery*/, 2 /*queryCount*/, sizeof(samples_passed) /*dataSize*/, samples_passed, sizeof(uint64_t) /*stride*/, VK_QUERY_RESULT_64_BIT | VK_QUERY_RESULT_WAIT_BIT); assert(res == VK_SUCCESS); std::cout << "vkGetQueryPoolResults data" << "\n"; std::cout << "samples_passed[0] = " << samples_passed[0] << "\n"; std::cout << "samples_passed[1] = " << samples_passed[1] << "\n"; /* Read back query result from buffer */ uint64_t *samples_passed_ptr; res = vkMapMemory(info.device, query_result_mem, 0, mem_reqs.size, 0, (void **)&samples_passed_ptr); assert(res == VK_SUCCESS); std::cout << "vkCmdCopyQueryPoolResults data" << "\n"; std::cout << "samples_passed[0] = " << samples_passed_ptr[0] << "\n"; std::cout << "samples_passed[1] = " << samples_passed_ptr[1] << "\n"; vkUnmapMemory(info.device, query_result_mem); /* Now present the image in the window */ VkPresentInfoKHR present; present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; present.pNext = NULL; present.swapchainCount = 1; present.pSwapchains = &info.swap_chain; present.pImageIndices = &info.current_buffer; present.pWaitSemaphores = NULL; present.waitSemaphoreCount = 0; present.pResults = NULL; /* Make sure command buffer is finished before presenting */ do { res = vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT); } while (res == VK_TIMEOUT); assert(res == VK_SUCCESS); res = vkQueuePresentKHR(info.queue, &present); assert(res == VK_SUCCESS); wait_seconds(1); /* VULKAN_KEY_END */ if (info.save_images) write_ppm(info, "occlusion_query"); vkDestroyBuffer(info.device, query_result_buf, NULL); vkFreeMemory(info.device, query_result_mem, NULL); vkDestroySemaphore(info.device, presentCompleteSemaphore, NULL); vkDestroyQueryPool(info.device, query_pool, NULL); vkDestroyFence(info.device, drawFence, NULL); destroy_pipeline(info); destroy_pipeline_cache(info); destroy_descriptor_pool(info); destroy_vertex_buffer(info); destroy_framebuffers(info); destroy_shaders(info); destroy_renderpass(info); destroy_descriptor_and_pipeline_layouts(info); destroy_uniform_buffer(info); destroy_depth_buffer(info); destroy_swap_chain(info); destroy_command_buffer(info); destroy_command_pool(info); destroy_device(info); destroy_window(info); destroy_instance(info); return 0; }
int sample_main(int argc, char **argv) { VkResult U_ASSERT_ONLY res; struct sample_info info = {}; char sample_title[] = "Memory Barriers"; process_command_line_args(info, argc, argv); init_global_layer_properties(info); info.instance_extension_names.push_back(VK_KHR_SURFACE_EXTENSION_NAME); #ifdef _WIN32 info.instance_extension_names.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME); #elif __ANDROID__ info.instance_extension_names.push_back(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME); #else info.instance_extension_names.push_back(VK_KHR_XCB_SURFACE_EXTENSION_NAME); #endif info.device_extension_names.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME); init_instance(info, sample_title); init_enumerate_device(info); init_device(info); info.width = info.height = 500; init_connection(info); init_window(info); init_swapchain_extension(info); init_command_pool(info); init_command_buffer(info); execute_begin_command_buffer(info); init_device_queue(info); init_swap_chain(info, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT); // CmdClearColorImage is going to require usage of TRANSFER_DST, but // it's not clear which format feature maps to the required TRANSFER_DST usage, // BLIT_DST is a reasonable guess and it seems to work init_texture(info, nullptr, VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_FORMAT_FEATURE_BLIT_DST_BIT); init_uniform_buffer(info); init_descriptor_and_pipeline_layouts(info, true); init_renderpass(info, DEPTH_PRESENT, false, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); init_shaders(info, vertShaderText, fragShaderText); init_framebuffers(info, DEPTH_PRESENT); init_vertex_buffer(info, vb_Data, sizeof(vb_Data), sizeof(vb_Data[0]), true); init_descriptor_pool(info, true); init_descriptor_set(info, true); init_pipeline_cache(info); init_pipeline(info, DEPTH_PRESENT); /* VULKAN_KEY_START */ VkImageSubresourceRange srRange = {}; srRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; srRange.baseMipLevel = 0; srRange.levelCount = VK_REMAINING_MIP_LEVELS; srRange.baseArrayLayer = 0; srRange.layerCount = VK_REMAINING_ARRAY_LAYERS; VkClearColorValue clear_color[1]; clear_color[0].float32[0] = 0.2f; clear_color[0].float32[1] = 0.2f; clear_color[0].float32[2] = 0.2f; clear_color[0].float32[3] = 0.2f; VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo; presentCompleteSemaphoreCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; presentCompleteSemaphoreCreateInfo.pNext = NULL; presentCompleteSemaphoreCreateInfo.flags = 0; res = vkCreateSemaphore(info.device, &presentCompleteSemaphoreCreateInfo, NULL, &info.imageAcquiredSemaphore); assert(res == VK_SUCCESS); // Get the index of the next available swapchain image: res = vkAcquireNextImageKHR(info.device, info.swap_chain, UINT64_MAX, info.imageAcquiredSemaphore, VK_NULL_HANDLE, &info.current_buffer); // TODO: Deal with the VK_SUBOPTIMAL_KHR and VK_ERROR_OUT_OF_DATE_KHR // return codes assert(res == VK_SUCCESS); set_image_layout(info, info.buffers[info.current_buffer].image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); // We need to do the clear here instead of using a renderpass load op since // we will use the same renderpass multiple times in the frame vkCmdClearColorImage(info.cmd, info.buffers[info.current_buffer].image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, clear_color, 1, &srRange); VkRenderPassBeginInfo rp_begin; rp_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; rp_begin.pNext = NULL; rp_begin.renderPass = info.render_pass; rp_begin.framebuffer = info.framebuffers[info.current_buffer]; rp_begin.renderArea.offset.x = 0; rp_begin.renderArea.offset.y = 0; rp_begin.renderArea.extent.width = info.width; rp_begin.renderArea.extent.height = info.height; rp_begin.clearValueCount = 0; rp_begin.pClearValues = NULL; // Draw a textured quad on the left side of the window vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline); vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS, info.desc_set.data(), 0, NULL); const VkDeviceSize offsets[1] = {0}; vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets); init_viewports(info); init_scissors(info); vkCmdDraw(info.cmd, 2 * 3, 1, 0, 0); // We can't do a clear inside a renderpass, so end this one and start another one // for the next draw vkCmdEndRenderPass(info.cmd); // Send a barrier to change the texture image's layout from SHADER_READ_ONLY // to COLOR_ATTACHMENT_GENERAL because we're going to clear it VkImageMemoryBarrier textureBarrier = {}; textureBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; textureBarrier.pNext = NULL; textureBarrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT; textureBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; textureBarrier.oldLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; textureBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; textureBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; textureBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; textureBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; textureBarrier.subresourceRange.baseMipLevel = 0; textureBarrier.subresourceRange.levelCount = 1; textureBarrier.subresourceRange.baseArrayLayer = 0; textureBarrier.subresourceRange.layerCount = 1; textureBarrier.image = info.textures[0].image; vkCmdPipelineBarrier(info.cmd, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, 1, &textureBarrier); clear_color[0].float32[0] = 0.0f; clear_color[0].float32[1] = 1.0f; clear_color[0].float32[2] = 0.0f; clear_color[0].float32[3] = 1.0f; /* Clear texture to green */ vkCmdClearColorImage(info.cmd, info.textures[0].image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, clear_color, 1, &srRange); // Send a barrier to change the texture image's layout back to SHADER_READ_ONLY // because we're going to use it as a texture again textureBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; textureBarrier.pNext = NULL; textureBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; textureBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; textureBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; textureBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; textureBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; textureBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; textureBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; textureBarrier.subresourceRange.baseMipLevel = 0; textureBarrier.subresourceRange.levelCount = 1; textureBarrier.subresourceRange.baseArrayLayer = 0; textureBarrier.subresourceRange.layerCount = 1; textureBarrier.image = info.textures[0].image; vkCmdPipelineBarrier(info.cmd, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, NULL, 0, NULL, 1, &textureBarrier); // Draw the second quad to the right using the (now) green texture vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE); // Draw starting with vertex index 6 to draw to the right of the first quad vkCmdDraw(info.cmd, 2 * 3, 1, 6, 0); vkCmdEndRenderPass(info.cmd); // Change the present buffer from COLOR_ATTACHMENT_OPTIMAL to // PRESENT_SOURCE_KHR // so it can be presented execute_pre_present_barrier(info); res = vkEndCommandBuffer(info.cmd); assert(res == VK_SUCCESS); VkSubmitInfo submit_info = {}; VkPipelineStageFlags pipe_stage_flags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; init_submit_info(info, submit_info, pipe_stage_flags); assert(res == VK_SUCCESS); VkFence drawFence = {}; init_fence(info, drawFence); // Queue the command buffer for execution res = vkQueueSubmit(info.graphics_queue, 1, &submit_info, drawFence); assert(res == VK_SUCCESS); // Now present the image in the window VkPresentInfoKHR present{}; init_present_info(info, present); // Make sure command buffer is finished before presenting do { res = vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT); } while (res == VK_TIMEOUT); assert(res == VK_SUCCESS); res = vkQueuePresentKHR(info.present_queue, &present); assert(res == VK_SUCCESS); /* VULKAN_KEY_END */ wait_seconds(1); if (info.save_images) write_ppm(info, "memory_barriers"); vkDestroySemaphore(info.device, info.imageAcquiredSemaphore, NULL); vkDestroyFence(info.device, drawFence, NULL); destroy_pipeline(info); destroy_pipeline_cache(info); destroy_textures(info); destroy_descriptor_pool(info); destroy_vertex_buffer(info); destroy_framebuffers(info); destroy_shaders(info); destroy_renderpass(info); destroy_descriptor_and_pipeline_layouts(info); destroy_uniform_buffer(info); destroy_swap_chain(info); destroy_command_buffer(info); destroy_command_pool(info); destroy_window(info); destroy_device(info); destroy_instance(info); return 0; }
int sample_main(int argc, char *argv[]) { VkResult U_ASSERT_ONLY res; struct sample_info info = {}; char sample_title[] = "Graphics Pipeline Sample"; const bool depthPresent = true; init_global_layer_properties(info); init_instance_extension_names(info); init_device_extension_names(info); init_instance(info, sample_title); init_enumerate_device(info); init_window_size(info, 500, 500); init_connection(info); init_window(info); init_swapchain_extension(info); init_device(info); init_command_pool(info); init_command_buffer(info); execute_begin_command_buffer(info); init_device_queue(info); init_swap_chain(info); init_depth_buffer(info); init_uniform_buffer(info); init_renderpass(info, depthPresent); init_framebuffers(info, depthPresent); init_vertex_buffer(info, g_vb_solid_face_colors_Data, sizeof(g_vb_solid_face_colors_Data), sizeof(g_vb_solid_face_colors_Data[0]), false); init_descriptor_and_pipeline_layouts(info, false); init_descriptor_pool(info, false); init_descriptor_set(info, false); init_shaders(info, vertShaderText, fragShaderText); /* VULKAN_KEY_START */ VkDynamicState dynamicStateEnables[VK_DYNAMIC_STATE_RANGE_SIZE]; VkPipelineDynamicStateCreateInfo dynamicState = {}; memset(dynamicStateEnables, 0, sizeof dynamicStateEnables); dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamicState.pNext = NULL; dynamicState.pDynamicStates = dynamicStateEnables; dynamicState.dynamicStateCount = 0; VkPipelineVertexInputStateCreateInfo vi; vi.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vi.pNext = NULL; vi.flags = 0; vi.vertexBindingDescriptionCount = 1; vi.pVertexBindingDescriptions = &info.vi_binding; vi.vertexAttributeDescriptionCount = 2; vi.pVertexAttributeDescriptions = info.vi_attribs; VkPipelineInputAssemblyStateCreateInfo ia; ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; ia.pNext = NULL; ia.flags = 0; ia.primitiveRestartEnable = VK_FALSE; ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; VkPipelineRasterizationStateCreateInfo rs; rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rs.pNext = NULL; rs.flags = 0; rs.polygonMode = VK_POLYGON_MODE_FILL; rs.cullMode = VK_CULL_MODE_BACK_BIT; rs.frontFace = VK_FRONT_FACE_CLOCKWISE; rs.depthClampEnable = VK_FALSE; rs.rasterizerDiscardEnable = VK_FALSE; rs.depthBiasEnable = VK_FALSE; rs.depthBiasConstantFactor = 0; rs.depthBiasClamp = 0; rs.depthBiasSlopeFactor = 0; rs.lineWidth = 1.0f; VkPipelineColorBlendStateCreateInfo cb; cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; cb.pNext = NULL; cb.flags = 0; VkPipelineColorBlendAttachmentState att_state[1]; att_state[0].colorWriteMask = 0xf; att_state[0].blendEnable = VK_FALSE; att_state[0].alphaBlendOp = VK_BLEND_OP_ADD; att_state[0].colorBlendOp = VK_BLEND_OP_ADD; att_state[0].srcColorBlendFactor = VK_BLEND_FACTOR_ZERO; att_state[0].dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; att_state[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; att_state[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; cb.attachmentCount = 1; cb.pAttachments = att_state; cb.logicOpEnable = VK_FALSE; cb.logicOp = VK_LOGIC_OP_NO_OP; cb.blendConstants[0] = 1.0f; cb.blendConstants[1] = 1.0f; cb.blendConstants[2] = 1.0f; cb.blendConstants[3] = 1.0f; VkPipelineViewportStateCreateInfo vp = {}; vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; vp.pNext = NULL; vp.flags = 0; vp.viewportCount = NUM_VIEWPORTS; dynamicStateEnables[dynamicState.dynamicStateCount++] = VK_DYNAMIC_STATE_VIEWPORT; vp.scissorCount = NUM_SCISSORS; dynamicStateEnables[dynamicState.dynamicStateCount++] = VK_DYNAMIC_STATE_SCISSOR; vp.pScissors = NULL; vp.pViewports = NULL; VkPipelineDepthStencilStateCreateInfo ds; ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; ds.pNext = NULL; ds.flags = 0; ds.depthTestEnable = VK_TRUE; ds.depthWriteEnable = VK_TRUE; ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL; ds.depthBoundsTestEnable = VK_FALSE; ds.minDepthBounds = 0; ds.maxDepthBounds = 0; ds.stencilTestEnable = VK_FALSE; ds.back.failOp = VK_STENCIL_OP_KEEP; ds.back.passOp = VK_STENCIL_OP_KEEP; ds.back.compareOp = VK_COMPARE_OP_ALWAYS; ds.back.compareMask = 0; ds.back.reference = 0; ds.back.depthFailOp = VK_STENCIL_OP_KEEP; ds.back.writeMask = 0; ds.front = ds.back; VkPipelineMultisampleStateCreateInfo ms; ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; ms.pNext = NULL; ms.flags = 0; ms.pSampleMask = NULL; ms.rasterizationSamples = NUM_SAMPLES; ms.sampleShadingEnable = VK_FALSE; ms.alphaToCoverageEnable = VK_FALSE; ms.alphaToOneEnable = VK_FALSE; ms.minSampleShading = 0.0; VkGraphicsPipelineCreateInfo pipeline; pipeline.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipeline.pNext = NULL; pipeline.layout = info.pipeline_layout; pipeline.basePipelineHandle = VK_NULL_HANDLE; pipeline.basePipelineIndex = 0; pipeline.flags = 0; pipeline.pVertexInputState = &vi; pipeline.pInputAssemblyState = &ia; pipeline.pRasterizationState = &rs; pipeline.pColorBlendState = &cb; pipeline.pTessellationState = NULL; pipeline.pMultisampleState = &ms; pipeline.pDynamicState = &dynamicState; pipeline.pViewportState = &vp; pipeline.pDepthStencilState = &ds; pipeline.pStages = info.shaderStages; pipeline.stageCount = 2; pipeline.renderPass = info.render_pass; pipeline.subpass = 0; res = vkCreateGraphicsPipelines(info.device, VK_NULL_HANDLE, 1, &pipeline, NULL, &info.pipeline); assert(res == VK_SUCCESS); execute_end_command_buffer(info); execute_queue_command_buffer(info); /* VULKAN_KEY_END */ vkDestroyPipeline(info.device, info.pipeline, NULL); destroy_descriptor_pool(info); destroy_vertex_buffer(info); destroy_framebuffers(info); destroy_shaders(info); destroy_renderpass(info); destroy_descriptor_and_pipeline_layouts(info); destroy_uniform_buffer(info); destroy_depth_buffer(info); destroy_swap_chain(info); destroy_command_buffer(info); destroy_command_pool(info); destroy_device(info); destroy_window(info); destroy_instance(info); return 0; }
int sample_main(int argc, char *argv[]) { VkResult U_ASSERT_ONLY res; struct sample_info info = {}; char sample_title[] = "Draw Textured Cube"; const bool depthPresent = true; process_command_line_args(info, argc, argv); init_global_layer_properties(info); init_instance_extension_names(info); init_device_extension_names(info); init_instance(info, sample_title); init_enumerate_device(info); init_window_size(info, 500, 500); init_connection(info); init_window(info); init_swapchain_extension(info); init_device(info); init_command_pool(info); init_command_buffer(info); execute_begin_command_buffer(info); init_device_queue(info); init_swap_chain(info); init_depth_buffer(info); init_texture(info); init_uniform_buffer(info); init_descriptor_and_pipeline_layouts(info, true); init_renderpass(info, depthPresent); init_shaders(info, vertShaderText, fragShaderText); init_framebuffers(info, depthPresent); init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data), sizeof(g_vb_texture_Data[0]), true); init_descriptor_pool(info, true); init_descriptor_set(info, true); init_pipeline_cache(info); init_pipeline(info, depthPresent); init_presentable_image(info); VkClearValue clear_values[2]; init_clear_color_and_depth(info, clear_values); VkRenderPassBeginInfo rp_begin; init_render_pass_begin_info(info, rp_begin); rp_begin.clearValueCount = 2; rp_begin.pClearValues = clear_values; vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline); vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS, info.desc_set.data(), 0, NULL); const VkDeviceSize offsets[1] = {0}; vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets); init_viewports(info); init_scissors(info); vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0); vkCmdEndRenderPass(info.cmd); execute_pre_present_barrier(info); res = vkEndCommandBuffer(info.cmd); assert(res == VK_SUCCESS); VkFence drawFence = {}; init_fence(info, drawFence); VkPipelineStageFlags pipe_stage_flags = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; VkSubmitInfo submit_info = {}; init_submit_info(info, submit_info, pipe_stage_flags); /* Queue the command buffer for execution */ res = vkQueueSubmit(info.queue, 1, &submit_info, drawFence); assert(res == VK_SUCCESS); /* Now present the image in the window */ VkPresentInfoKHR present = {}; init_present_info(info, present); /* Make sure command buffer is finished before presenting */ do { res = vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT); } while (res == VK_TIMEOUT); assert(res == VK_SUCCESS); res = vkQueuePresentKHR(info.queue, &present); assert(res == VK_SUCCESS); wait_seconds(1); if (info.save_images) write_ppm(info, "template"); vkDestroyFence(info.device, drawFence, NULL); vkDestroySemaphore(info.device, info.presentCompleteSemaphore, NULL); destroy_pipeline(info); destroy_pipeline_cache(info); destroy_textures(info); destroy_descriptor_pool(info); destroy_vertex_buffer(info); destroy_framebuffers(info); destroy_shaders(info); destroy_renderpass(info); destroy_descriptor_and_pipeline_layouts(info); destroy_uniform_buffer(info); destroy_depth_buffer(info); destroy_swap_chain(info); destroy_command_buffer(info); destroy_command_pool(info); destroy_device(info); destroy_window(info); destroy_instance(info); return 0; }
/** * Sample using multiple render passes per framebuffer (different x,y extents) * and multiple subpasses per renderpass. */ int sample_main(int argc, char *argv[]) { VkResult U_ASSERT_ONLY res; struct sample_info info = {}; char sample_title[] = "Multi-pass render passes"; const bool depthPresent = true; process_command_line_args(info, argc, argv); init_global_layer_properties(info); init_instance_extension_names(info); init_device_extension_names(info); init_instance(info, sample_title); init_enumerate_device(info); init_window_size(info, 500, 500); init_connection(info); init_window(info); init_swapchain_extension(info); init_device(info); init_command_pool(info); init_command_buffer(info); execute_begin_command_buffer(info); init_device_queue(info); init_swap_chain(info); info.depth.format = VK_FORMAT_D32_SFLOAT_S8_UINT; init_depth_buffer(info); init_uniform_buffer(info); init_descriptor_and_pipeline_layouts(info, false); init_vertex_buffer(info, g_vb_solid_face_colors_Data, sizeof(g_vb_solid_face_colors_Data), sizeof(g_vb_solid_face_colors_Data[0]), false); init_descriptor_pool(info, false); init_descriptor_set(info, false); init_pipeline_cache(info); /* VULKAN_KEY_START */ /** * First renderpass in this sample. * Stenciled rendering: subpass 1 draw to stencil buffer, subpass 2 draw to * color buffer with stencil test */ VkAttachmentDescription attachments[2]; attachments[0].format = info.format; attachments[0].samples = VK_SAMPLE_COUNT_1_BIT; attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachments[0].flags = 0; attachments[1].format = info.depth.format; attachments[1].samples = VK_SAMPLE_COUNT_1_BIT; attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachments[1].flags = 0; VkAttachmentReference color_reference = {}; color_reference.attachment = 0; color_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference depth_reference = {}; depth_reference.attachment = 1; depth_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.flags = 0; subpass.inputAttachmentCount = 0; subpass.pInputAttachments = NULL; subpass.colorAttachmentCount = 0; subpass.pColorAttachments = NULL; subpass.pResolveAttachments = NULL; subpass.pDepthStencilAttachment = &depth_reference; subpass.preserveAttachmentCount = 0; subpass.pPreserveAttachments = NULL; std::vector<VkSubpassDescription> subpasses; /* first a depthstencil-only subpass */ subpasses.push_back(subpass); subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &color_reference; /* then depthstencil and color */ subpasses.push_back(subpass); /* Set up a dependency between the source and destination subpasses */ VkSubpassDependency dependency = {}; dependency.srcSubpass = 0; dependency.dstSubpass = 1; dependency.dependencyFlags = 0; dependency.srcStageMask = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT; dependency.dstStageMask = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT; dependency.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT; dependency.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT; VkRenderPassCreateInfo rp_info = {}; rp_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; rp_info.pNext = NULL; rp_info.attachmentCount = 2; rp_info.pAttachments = attachments; rp_info.subpassCount = subpasses.size(); rp_info.pSubpasses = subpasses.data(); rp_info.dependencyCount = 1; rp_info.pDependencies = &dependency; VkRenderPass stencil_render_pass; res = vkCreateRenderPass(info.device, &rp_info, NULL, &stencil_render_pass); assert(!res); /* now that we have the render pass, create framebuffer and pipelines */ info.render_pass = stencil_render_pass; init_framebuffers(info, depthPresent); VkDynamicState dynamicStateEnables[VK_DYNAMIC_STATE_RANGE_SIZE]; VkPipelineDynamicStateCreateInfo dynamicState = {}; memset(dynamicStateEnables, 0, sizeof dynamicStateEnables); dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamicState.pNext = NULL; dynamicState.pDynamicStates = dynamicStateEnables; dynamicState.dynamicStateCount = 0; VkPipelineVertexInputStateCreateInfo vi; vi.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vi.pNext = NULL; vi.vertexBindingDescriptionCount = 1; vi.pVertexBindingDescriptions = &info.vi_binding; vi.vertexAttributeDescriptionCount = 2; vi.pVertexAttributeDescriptions = info.vi_attribs; VkPipelineInputAssemblyStateCreateInfo ia; ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; ia.pNext = NULL; ia.primitiveRestartEnable = VK_FALSE; ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; VkPipelineRasterizationStateCreateInfo rs; rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rs.pNext = NULL; rs.polygonMode = VK_POLYGON_MODE_FILL; rs.cullMode = VK_CULL_MODE_BACK_BIT; rs.frontFace = VK_FRONT_FACE_CLOCKWISE; rs.depthClampEnable = VK_FALSE; rs.rasterizerDiscardEnable = VK_FALSE; rs.depthBiasEnable = VK_FALSE; rs.depthBiasConstantFactor = 0; rs.depthBiasClamp = 0; rs.depthBiasSlopeFactor = 0; rs.lineWidth = 0; VkPipelineColorBlendStateCreateInfo cb; cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; cb.pNext = NULL; VkPipelineColorBlendAttachmentState att_state[1]; att_state[0].colorWriteMask = 0xf; att_state[0].blendEnable = VK_FALSE; att_state[0].alphaBlendOp = VK_BLEND_OP_ADD; att_state[0].colorBlendOp = VK_BLEND_OP_ADD; att_state[0].srcColorBlendFactor = VK_BLEND_FACTOR_ZERO; att_state[0].dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; att_state[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; att_state[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; cb.attachmentCount = 1; cb.pAttachments = att_state; cb.logicOpEnable = VK_FALSE; cb.logicOp = VK_LOGIC_OP_NO_OP; cb.blendConstants[0] = 1.0f; cb.blendConstants[1] = 1.0f; cb.blendConstants[2] = 1.0f; cb.blendConstants[3] = 1.0f; VkPipelineViewportStateCreateInfo vp = {}; vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; vp.pNext = NULL; vp.viewportCount = NUM_VIEWPORTS; dynamicStateEnables[dynamicState.dynamicStateCount++] = VK_DYNAMIC_STATE_VIEWPORT; vp.scissorCount = NUM_SCISSORS; dynamicStateEnables[dynamicState.dynamicStateCount++] = VK_DYNAMIC_STATE_SCISSOR; VkPipelineDepthStencilStateCreateInfo ds; ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; ds.pNext = NULL; ds.depthTestEnable = VK_TRUE; ds.depthWriteEnable = VK_TRUE; ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL; ds.depthBoundsTestEnable = VK_FALSE; ds.minDepthBounds = 0; ds.maxDepthBounds = 0; ds.stencilTestEnable = VK_TRUE; ds.back.failOp = VK_STENCIL_OP_REPLACE; ds.back.depthFailOp = VK_STENCIL_OP_REPLACE; ds.back.passOp = VK_STENCIL_OP_REPLACE; ds.back.compareOp = VK_COMPARE_OP_ALWAYS; ds.back.compareMask = 0xff; ds.back.writeMask = 0xff; ds.back.reference = 0x44; ds.front = ds.back; VkPipelineMultisampleStateCreateInfo ms; ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; ms.pNext = NULL; ms.pSampleMask = NULL; ms.rasterizationSamples = NUM_SAMPLES; ms.sampleShadingEnable = VK_FALSE; ms.minSampleShading = 0.0; ms.alphaToCoverageEnable = VK_FALSE; ms.alphaToOneEnable = VK_FALSE; VkGraphicsPipelineCreateInfo pipeline; pipeline.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipeline.pNext = NULL; pipeline.layout = info.pipeline_layout; pipeline.basePipelineHandle = VK_NULL_HANDLE; pipeline.basePipelineIndex = 0; pipeline.flags = 0; pipeline.pVertexInputState = &vi; pipeline.pInputAssemblyState = &ia; pipeline.pRasterizationState = &rs; pipeline.pColorBlendState = NULL; pipeline.pTessellationState = NULL; pipeline.pMultisampleState = &ms; pipeline.pDynamicState = &dynamicState; pipeline.pViewportState = &vp; pipeline.pDepthStencilState = &ds; pipeline.pStages = info.shaderStages; pipeline.stageCount = 2; pipeline.renderPass = stencil_render_pass; pipeline.subpass = 0; init_shaders(info, normalVertShaderText, fragShaderText); /* The first pipeline will render in subpass 0 to fill the stencil */ pipeline.subpass = 0; VkPipeline stencil_cube_pipe = VK_NULL_HANDLE; res = vkCreateGraphicsPipelines(info.device, info.pipelineCache, 1, &pipeline, NULL, &stencil_cube_pipe); assert(res == VK_SUCCESS); /* destroy the shaders used for the above pipelin eand replace them with those for the fullscreen fill pass */ destroy_shaders(info); init_shaders(info, fullscreenVertShaderText, fragShaderText); /* the second pipeline will stencil test but not write, using the same * reference */ ds.back.failOp = VK_STENCIL_OP_KEEP; ds.back.depthFailOp = VK_STENCIL_OP_KEEP; ds.back.passOp = VK_STENCIL_OP_KEEP; ds.back.compareOp = VK_COMPARE_OP_EQUAL; ds.front = ds.back; /* don't test depth, only use stencil test */ ds.depthTestEnable = VK_FALSE; /* the second pipeline will be a fullscreen triangle strip, with vertices generated purely from the vertex shader - no inputs needed */ ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP; vi.vertexAttributeDescriptionCount = 0; vi.vertexBindingDescriptionCount = 0; /* this pipeline will run in the second subpass */ pipeline.subpass = 1; pipeline.pColorBlendState = &cb; VkPipeline stencil_fullscreen_pipe = VK_NULL_HANDLE; res = vkCreateGraphicsPipelines(info.device, info.pipelineCache, 1, &pipeline, NULL, &stencil_fullscreen_pipe); assert(res == VK_SUCCESS); destroy_shaders(info); info.pipeline = VK_NULL_HANDLE; VkClearValue clear_values[2]; clear_values[0].color.float32[0] = 0.2f; clear_values[0].color.float32[1] = 0.2f; clear_values[0].color.float32[2] = 0.2f; clear_values[0].color.float32[3] = 0.2f; clear_values[1].depthStencil.depth = 1.0f; clear_values[1].depthStencil.stencil = 0; VkSemaphore presentCompleteSemaphore; VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo; presentCompleteSemaphoreCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; presentCompleteSemaphoreCreateInfo.pNext = NULL; presentCompleteSemaphoreCreateInfo.flags = 0; res = vkCreateSemaphore(info.device, &presentCompleteSemaphoreCreateInfo, NULL, &presentCompleteSemaphore); assert(res == VK_SUCCESS); // Get the index of the next available swapchain image: res = vkAcquireNextImageKHR(info.device, info.swap_chain, UINT64_MAX, presentCompleteSemaphore, NULL, &info.current_buffer); // TODO: Deal with the VK_SUBOPTIMAL_KHR and VK_ERROR_OUT_OF_DATE_KHR // return codes assert(res == VK_SUCCESS); VkRenderPassBeginInfo rp_begin; rp_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; rp_begin.pNext = NULL; rp_begin.renderPass = stencil_render_pass; rp_begin.framebuffer = info.framebuffers[info.current_buffer]; rp_begin.renderArea.offset.x = 0; rp_begin.renderArea.offset.y = 0; rp_begin.renderArea.extent.width = info.width / 2; rp_begin.renderArea.extent.height = info.height; rp_begin.clearValueCount = 2; rp_begin.pClearValues = clear_values; /* Begin the first render pass. This will render in the left half of the screen. Subpass 0 will render a cube, stencil writing but outputting no color. Subpass 1 will render a fullscreen pass, stencil testing and outputting color only where the cube filled in stencil */ vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, stencil_cube_pipe); vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS, info.desc_set.data(), 0, NULL); const VkDeviceSize offsets[1] = {0}; vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets); VkViewport viewport; viewport.height = (float)info.height; viewport.width = (float)info.width / 2; viewport.minDepth = (float)0.0f; viewport.maxDepth = (float)1.0f; viewport.x = 0; viewport.y = 0; vkCmdSetViewport(info.cmd, 0, NUM_VIEWPORTS, &viewport); VkRect2D scissor; scissor.extent.width = info.width / 2; scissor.extent.height = info.height; scissor.offset.x = 0; scissor.offset.y = 0; vkCmdSetScissor(info.cmd, 0, NUM_SCISSORS, &scissor); /* Draw the cube into stencil */ vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0); /* Advance to the next subpass */ vkCmdNextSubpass(info.cmd, VK_SUBPASS_CONTENTS_INLINE); /* Bind the fullscreen pass pipeline */ vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, stencil_fullscreen_pipe); vkCmdSetViewport(info.cmd, 0, NUM_VIEWPORTS, &viewport); vkCmdSetScissor(info.cmd, 0, NUM_SCISSORS, &scissor); /* Draw the fullscreen pass */ vkCmdDraw(info.cmd, 4, 1, 0, 0); vkCmdEndRenderPass(info.cmd); /** * Second renderpass in this sample. * Blended rendering, each subpass blends continuously onto the color */ /* note that we reuse a lot of the initialisation strutures from the first render pass, so this represents a 'delta' from that configuration */ /* This time, the first subpass will use color */ subpasses[0].colorAttachmentCount = 1; subpasses[0].pColorAttachments = &color_reference; /* The dependency between the subpasses now includes the color attachment */ dependency.srcAccessMask |= VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT; dependency.dstAccessMask |= VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT; /* Otherwise, the render pass is identical */ VkRenderPass blend_render_pass; res = vkCreateRenderPass(info.device, &rp_info, NULL, &blend_render_pass); assert(!res); pipeline.renderPass = blend_render_pass; /* We must recreate the framebuffers with this renderpass as the two render passes are not compatible. Store the current framebuffers for later deletion */ VkFramebuffer *stencil_framebuffers = info.framebuffers; info.framebuffers = NULL; info.render_pass = blend_render_pass; init_framebuffers(info, depthPresent); /* Now create the pipelines for the second render pass */ /* We are rendering the cube again, configure the vertex inputs */ ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; vi.vertexAttributeDescriptionCount = 2; vi.vertexBindingDescriptionCount = 1; /* The first pipeline will depth write and depth test */ ds.depthWriteEnable = VK_TRUE; ds.depthTestEnable = VK_TRUE; /* We don't want to stencil test */ ds.stencilTestEnable = VK_FALSE; /* This time, both pipelines will blend. the first pipeline uses the blend constant to determine the blend amount */ att_state[0].colorWriteMask = 0xf; att_state[0].blendEnable = VK_TRUE; att_state[0].alphaBlendOp = VK_BLEND_OP_ADD; att_state[0].colorBlendOp = VK_BLEND_OP_ADD; att_state[0].srcColorBlendFactor = VK_BLEND_FACTOR_CONSTANT_ALPHA; att_state[0].dstColorBlendFactor = VK_BLEND_FACTOR_ONE; att_state[0].srcColorBlendFactor = VK_BLEND_FACTOR_CONSTANT_ALPHA; att_state[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; cb.blendConstants[0] = 1.0f; cb.blendConstants[1] = 1.0f; cb.blendConstants[2] = 1.0f; cb.blendConstants[3] = 0.3f; init_shaders(info, normalVertShaderText, fragShaderText); /* This is the first subpass's pipeline, to blend a cube onto the color * image */ pipeline.subpass = 0; VkPipeline blend_cube_pipe = VK_NULL_HANDLE; res = vkCreateGraphicsPipelines(info.device, info.pipelineCache, 1, &pipeline, NULL, &blend_cube_pipe); assert(res == VK_SUCCESS); /* Now we will set up the fullscreen pass to render on top. */ destroy_shaders(info); init_shaders(info, fullscreenVertShaderText, fragShaderText); /* the second pipeline will be a fullscreen triangle strip with no inputs */ ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP; vi.vertexAttributeDescriptionCount = 0; vi.vertexBindingDescriptionCount = 0; /* We'll use the alpha output from the shader */ att_state[0].srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA; att_state[0].dstColorBlendFactor = VK_BLEND_FACTOR_ONE; att_state[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA; att_state[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE; /* This renders in the second subpass */ pipeline.subpass = 1; VkPipeline blend_fullscreen_pipe = VK_NULL_HANDLE; res = vkCreateGraphicsPipelines(info.device, info.pipelineCache, 1, &pipeline, NULL, &blend_fullscreen_pipe); assert(res == VK_SUCCESS); destroy_shaders(info); info.pipeline = VK_NULL_HANDLE; /* Now we are going to render in the right half of the screen */ viewport.x = (float)info.width / 2; scissor.offset.x = info.width / 2; rp_begin.renderArea.offset.x = info.width / 2; /* Use our framebuffer and render pass */ rp_begin.framebuffer = info.framebuffers[info.current_buffer]; rp_begin.renderPass = blend_render_pass; vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, blend_cube_pipe); vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS, info.desc_set.data(), 0, NULL); vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets); vkCmdSetViewport(info.cmd, 0, NUM_VIEWPORTS, &viewport); vkCmdSetScissor(info.cmd, 0, NUM_SCISSORS, &scissor); /* Draw the cube blending */ vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0); /* Advance to the next subpass */ vkCmdNextSubpass(info.cmd, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, blend_fullscreen_pipe); vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS, info.desc_set.data(), 0, NULL); /* Adjust the viewport to be a square in the centre, just overlapping the * cube */ viewport.x += 25.0f; viewport.y += 150.0f; viewport.width -= 50.0f; viewport.height -= 300.0f; vkCmdSetViewport(info.cmd, 0, NUM_VIEWPORTS, &viewport); vkCmdSetScissor(info.cmd, 0, NUM_SCISSORS, &scissor); vkCmdDraw(info.cmd, 4, 1, 0, 0); /* The second renderpass is complete */ vkCmdEndRenderPass(info.cmd); /* VULKAN_KEY_END */ VkImageMemoryBarrier prePresentBarrier = {}; prePresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; prePresentBarrier.pNext = NULL; prePresentBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; prePresentBarrier.dstAccessMask = 0; prePresentBarrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; prePresentBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; prePresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; prePresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; prePresentBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; prePresentBarrier.subresourceRange.baseMipLevel = 0; prePresentBarrier.subresourceRange.levelCount = 1; prePresentBarrier.subresourceRange.baseArrayLayer = 0; prePresentBarrier.subresourceRange.layerCount = 1; prePresentBarrier.image = info.buffers[info.current_buffer].image; vkCmdPipelineBarrier(info.cmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, NULL, 0, NULL, 1, &prePresentBarrier); res = vkEndCommandBuffer(info.cmd); const VkCommandBuffer cmd_bufs[] = {info.cmd}; VkFenceCreateInfo fenceInfo; VkFence drawFence; fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fenceInfo.pNext = NULL; fenceInfo.flags = 0; vkCreateFence(info.device, &fenceInfo, NULL, &drawFence); VkPipelineStageFlags pipe_stage_flags = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; VkSubmitInfo submit_info[1] = {}; submit_info[0].pNext = NULL; submit_info[0].sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info[0].waitSemaphoreCount = 1; submit_info[0].pWaitSemaphores = &presentCompleteSemaphore; submit_info[0].commandBufferCount = 1; submit_info[0].pCommandBuffers = cmd_bufs; submit_info[0].pWaitDstStageMask = &pipe_stage_flags; submit_info[0].signalSemaphoreCount = 0; submit_info[0].pSignalSemaphores = NULL; /* Queue the command buffer for execution */ res = vkQueueSubmit(info.queue, 1, submit_info, drawFence); assert(res == VK_SUCCESS); /* Now present the image in the window */ VkPresentInfoKHR present; present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; present.pNext = NULL; present.swapchainCount = 1; present.pSwapchains = &info.swap_chain; present.pImageIndices = &info.current_buffer; present.pWaitSemaphores = NULL; present.waitSemaphoreCount = 0; present.pResults = NULL; /* Make sure command buffer is finished before presenting */ do { res = vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT); } while (res == VK_TIMEOUT); assert(res == VK_SUCCESS); res = vkQueuePresentKHR(info.queue, &present); assert(res == VK_SUCCESS); wait_seconds(1); /* VULKAN_KEY_END */ if (info.save_images) write_ppm(info, "drawsubpasses"); for (uint32_t i = 0; i < info.swapchainImageCount; i++) vkDestroyFramebuffer(info.device, stencil_framebuffers[i], NULL); free(stencil_framebuffers); vkDestroyRenderPass(info.device, stencil_render_pass, NULL); vkDestroyRenderPass(info.device, blend_render_pass, NULL); vkDestroyPipeline(info.device, blend_cube_pipe, NULL); vkDestroyPipeline(info.device, blend_fullscreen_pipe, NULL); vkDestroyPipeline(info.device, stencil_cube_pipe, NULL); vkDestroyPipeline(info.device, stencil_fullscreen_pipe, NULL); vkDestroySemaphore(info.device, presentCompleteSemaphore, NULL); vkDestroyFence(info.device, drawFence, NULL); destroy_pipeline_cache(info); destroy_descriptor_pool(info); destroy_vertex_buffer(info); destroy_framebuffers(info); destroy_descriptor_and_pipeline_layouts(info); destroy_uniform_buffer(info); destroy_depth_buffer(info); destroy_swap_chain(info); destroy_command_buffer(info); destroy_command_pool(info); destroy_device(info); destroy_window(info); destroy_instance(info); return 0; }
int sample_main(int argc, char *argv[]) { VkResult U_ASSERT_ONLY res; struct sample_info info = {}; char sample_title[] = "Pipeline Cache"; const bool depthPresent = true; process_command_line_args(info, argc, argv); init_global_layer_properties(info); init_instance_extension_names(info); init_device_extension_names(info); init_instance(info, sample_title); init_enumerate_device(info); init_window_size(info, 500, 500); init_connection(info); init_window(info); init_swapchain_extension(info); init_device(info); init_command_pool(info); init_command_buffer(info); execute_begin_command_buffer(info); init_device_queue(info); init_swap_chain(info); init_depth_buffer(info); init_texture(info, "blue.ppm"); init_uniform_buffer(info); init_descriptor_and_pipeline_layouts(info, true); init_renderpass(info, depthPresent); init_shaders(info, vertShaderText, fragShaderText); init_framebuffers(info, depthPresent); init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data), sizeof(g_vb_texture_Data[0]), true); init_descriptor_pool(info, true); init_descriptor_set(info, true); /* VULKAN_KEY_START */ // Check disk for existing cache data size_t startCacheSize = 0; void *startCacheData = nullptr; std::string directoryName = get_file_directory(); std::string readFileName = directoryName + "pipeline_cache_data.bin"; FILE *pReadFile = fopen(readFileName.c_str(), "rb"); if (pReadFile) { // Determine cache size fseek(pReadFile, 0, SEEK_END); startCacheSize = ftell(pReadFile); rewind(pReadFile); // Allocate memory to hold the initial cache data startCacheData = (char *)malloc(sizeof(char) * startCacheSize); if (startCacheData == nullptr) { fputs("Memory error", stderr); exit(EXIT_FAILURE); } // Read the data into our buffer size_t result = fread(startCacheData, 1, startCacheSize, pReadFile); if (result != startCacheSize) { fputs("Reading error", stderr); free(startCacheData); exit(EXIT_FAILURE); } // Clean up and print results fclose(pReadFile); printf(" Pipeline cache HIT!\n"); printf(" cacheData loaded from %s\n", readFileName.c_str()); } else { // No cache found on disk printf(" Pipeline cache miss!\n"); } if (startCacheData != nullptr) { // clang-format off // // Check for cache validity // // TODO: Update this as the spec evolves. The fields are not defined by the header. // // The code below supports SDK 0.10 Vulkan spec, which contains the following table: // // Offset Size Meaning // ------ ------------ ------------------------------------------------------------------ // 0 4 a device ID equal to VkPhysicalDeviceProperties::DeviceId written // as a stream of bytes, with the least significant byte first // // 4 VK_UUID_SIZE a pipeline cache ID equal to VkPhysicalDeviceProperties::pipelineCacheUUID // // // The code must be updated for latest Vulkan spec, which contains the following table: // // Offset Size Meaning // ------ ------------ ------------------------------------------------------------------ // 0 4 length in bytes of the entire pipeline cache header written as a // stream of bytes, with the least significant byte first // 4 4 a VkPipelineCacheHeaderVersion value written as a stream of bytes, // with the least significant byte first // 8 4 a vendor ID equal to VkPhysicalDeviceProperties::vendorID written // as a stream of bytes, with the least significant byte first // 12 4 a device ID equal to VkPhysicalDeviceProperties::deviceID written // as a stream of bytes, with the least significant byte first // 16 VK_UUID_SIZE a pipeline cache ID equal to VkPhysicalDeviceProperties::pipelineCacheUUID // // clang-format on uint32_t headerLength = 0; uint32_t cacheHeaderVersion = 0; uint32_t vendorID = 0; uint32_t deviceID = 0; uint8_t pipelineCacheUUID[VK_UUID_SIZE] = {}; memcpy(&headerLength, (uint8_t *)startCacheData + 0, 4); memcpy(&cacheHeaderVersion, (uint8_t *)startCacheData + 4, 4); memcpy(&vendorID, (uint8_t *)startCacheData + 8, 4); memcpy(&deviceID, (uint8_t *)startCacheData + 12, 4); memcpy(pipelineCacheUUID, (uint8_t *)startCacheData + 16, VK_UUID_SIZE); // Check each field and report bad values before freeing existing cache bool badCache = false; if (headerLength <= 0) { badCache = true; printf(" Bad header length in %s.\n", readFileName.c_str()); printf(" Cache contains: 0x%.8x\n", headerLength); } if (cacheHeaderVersion != VK_PIPELINE_CACHE_HEADER_VERSION_ONE) { badCache = true; printf(" Unsupported cache header version in %s.\n", readFileName.c_str()); printf(" Cache contains: 0x%.8x\n", cacheHeaderVersion); } if (vendorID != info.gpu_props.vendorID) { badCache = true; printf(" Vendor ID mismatch in %s.\n", readFileName.c_str()); printf(" Cache contains: 0x%.8x\n", vendorID); printf(" Driver expects: 0x%.8x\n", info.gpu_props.vendorID); } if (deviceID != info.gpu_props.deviceID) { badCache = true; printf(" Device ID mismatch in %s.\n", readFileName.c_str()); printf(" Cache contains: 0x%.8x\n", deviceID); printf(" Driver expects: 0x%.8x\n", info.gpu_props.deviceID); } if (memcmp(pipelineCacheUUID, info.gpu_props.pipelineCacheUUID, sizeof(pipelineCacheUUID)) != 0) { badCache = true; printf(" UUID mismatch in %s.\n", readFileName.c_str()); printf(" Cache contains: "); print_UUID(pipelineCacheUUID); printf("\n"); printf(" Driver expects: "); print_UUID(info.gpu_props.pipelineCacheUUID); printf("\n"); } if (badCache) { // Don't submit initial cache data if any version info is incorrect free(startCacheData); startCacheSize = 0; startCacheData = nullptr; // And clear out the old cache file for use in next run printf(" Deleting cache entry %s to repopulate.\n", readFileName.c_str()); if (remove(readFileName.c_str()) != 0) { fputs("Reading error", stderr); exit(EXIT_FAILURE); } } } // Feed the initial cache data into pipeline creation VkPipelineCacheCreateInfo pipelineCache; pipelineCache.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO; pipelineCache.pNext = NULL; pipelineCache.initialDataSize = startCacheSize; pipelineCache.pInitialData = startCacheData; pipelineCache.flags = 0; res = vkCreatePipelineCache(info.device, &pipelineCache, nullptr, &info.pipelineCache); assert(res == VK_SUCCESS); // Free our initialData now that pipeline has been created free(startCacheData); // Time (roughly) taken to create the graphics pipeline timestamp_t start = get_milliseconds(); init_pipeline(info, depthPresent); timestamp_t elapsed = get_milliseconds() - start; printf(" vkCreateGraphicsPipeline time: %0.f ms\n", (double)elapsed); // Begin standard draw stuff init_presentable_image(info); VkClearValue clear_values[2]; init_clear_color_and_depth(info, clear_values); VkRenderPassBeginInfo rp_begin; init_render_pass_begin_info(info, rp_begin); rp_begin.clearValueCount = 2; rp_begin.pClearValues = clear_values; vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline); vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS, info.desc_set.data(), 0, NULL); const VkDeviceSize offsets[1] = {0}; vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets); init_viewports(info); init_scissors(info); vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0); vkCmdEndRenderPass(info.cmd); execute_pre_present_barrier(info); res = vkEndCommandBuffer(info.cmd); assert(res == VK_SUCCESS); VkFence drawFence = {}; init_fence(info, drawFence); VkPipelineStageFlags pipe_stage_flags = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; VkSubmitInfo submit_info = {}; init_submit_info(info, submit_info, pipe_stage_flags); /* Queue the command buffer for execution */ res = vkQueueSubmit(info.queue, 1, &submit_info, drawFence); assert(res == VK_SUCCESS); /* Now present the image in the window */ VkPresentInfoKHR present = {}; init_present_info(info, present); /* Make sure command buffer is finished before presenting */ do { res = vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT); } while (res == VK_TIMEOUT); assert(res == VK_SUCCESS); res = vkQueuePresentKHR(info.queue, &present); assert(res == VK_SUCCESS); wait_seconds(1); if (info.save_images) write_ppm(info, "pipeline_cache"); // End standard draw stuff if (startCacheData) { // TODO: Create another pipeline, preferably different from the first // one and merge it here. Then store the merged one. } // Store away the cache that we've populated. This could conceivably happen // earlier, depends on when the pipeline cache stops being populated // internally. size_t endCacheSize = 0; void *endCacheData = nullptr; // Call with nullptr to get cache size res = vkGetPipelineCacheData(info.device, info.pipelineCache, &endCacheSize, nullptr); assert(res == VK_SUCCESS); // Allocate memory to hold the populated cache data endCacheData = (char *)malloc(sizeof(char) * endCacheSize); if (!endCacheData) { fputs("Memory error", stderr); exit(EXIT_FAILURE); } // Call again with pointer to buffer res = vkGetPipelineCacheData(info.device, info.pipelineCache, &endCacheSize, endCacheData); assert(res == VK_SUCCESS); // Write the file to disk, overwriting whatever was there FILE *pWriteFile; std::string writeFileName = directoryName + "pipeline_cache_data.bin"; pWriteFile = fopen(writeFileName.c_str(), "wb"); if (pWriteFile) { fwrite(endCacheData, sizeof(char), endCacheSize, pWriteFile); fclose(pWriteFile); printf(" cacheData written to %s\n", writeFileName.c_str()); } else { // Something bad happened printf(" Unable to write cache data to disk!\n"); } /* VULKAN_KEY_END */ vkDestroyFence(info.device, drawFence, NULL); vkDestroySemaphore(info.device, info.presentCompleteSemaphore, NULL); destroy_pipeline(info); destroy_pipeline_cache(info); destroy_textures(info); destroy_descriptor_pool(info); destroy_vertex_buffer(info); destroy_framebuffers(info); destroy_shaders(info); destroy_renderpass(info); destroy_descriptor_and_pipeline_layouts(info); destroy_uniform_buffer(info); destroy_depth_buffer(info); destroy_swap_chain(info); destroy_command_buffer(info); destroy_command_pool(info); destroy_device(info); destroy_window(info); destroy_instance(info); return 0; }
// clang-format on int main(int argc, char *argv[]) { VkResult U_ASSERT_ONLY res; struct sample_info info = {}; char sample_title[] = "SPIR-V Assembly"; const bool depthPresent = true; process_command_line_args(info, argc, argv); init_global_layer_properties(info); init_instance_extension_names(info); init_device_extension_names(info); init_instance(info, sample_title); init_enumerate_device(info); init_window_size(info, 500, 500); init_connection(info); init_window(info); init_swapchain_extension(info); init_device(info); init_command_pool(info); init_command_buffer(info); execute_begin_command_buffer(info); init_device_queue(info); init_swap_chain(info); init_depth_buffer(info); init_texture(info); init_uniform_buffer(info); init_descriptor_and_pipeline_layouts(info, true); init_renderpass(info, depthPresent); /* VULKAN_KEY_START */ // Init the assembler context spv_context spvContext = spvContextCreate(); // Convert the vertex assembly into binary format spv_binary vertexBinary = {}; spv_diagnostic vertexDiag = {}; spv_result_t vertexResult = spvTextToBinary(spvContext, vertexSPIRV.c_str(), vertexSPIRV.length(), &vertexBinary, &vertexDiag); if (vertexDiag) { printf("Diagnostic info from vertex shader:\n"); spvDiagnosticPrint(vertexDiag); } assert(vertexResult == SPV_SUCCESS); // Convert the fragment assembly into binary format spv_binary fragmentBinary = {}; spv_diagnostic fragmentDiag = {}; spv_result_t fragmentResult = spvTextToBinary(spvContext, fragmentSPIRV.c_str(), fragmentSPIRV.length(), &fragmentBinary, &fragmentDiag); if (fragmentDiag) { printf("Diagnostic info from fragment shader:\n"); spvDiagnosticPrint(fragmentDiag); } assert(fragmentResult == SPV_SUCCESS); info.shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; info.shaderStages[0].pNext = NULL; info.shaderStages[0].pSpecializationInfo = NULL; info.shaderStages[0].flags = 0; info.shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT; info.shaderStages[0].pName = "main"; VkShaderModuleCreateInfo moduleCreateInfo; moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; moduleCreateInfo.pNext = NULL; moduleCreateInfo.flags = 0; // Use wordCount and code pointers from the spv_binary moduleCreateInfo.codeSize = vertexBinary->wordCount * sizeof(unsigned int); moduleCreateInfo.pCode = vertexBinary->code; res = vkCreateShaderModule(info.device, &moduleCreateInfo, NULL, &info.shaderStages[0].module); assert(res == VK_SUCCESS); info.shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; info.shaderStages[1].pNext = NULL; info.shaderStages[1].pSpecializationInfo = NULL; info.shaderStages[1].flags = 0; info.shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; info.shaderStages[1].pName = "main"; moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; moduleCreateInfo.pNext = NULL; moduleCreateInfo.flags = 0; // Use wordCount and code pointers from the spv_binary moduleCreateInfo.codeSize = fragmentBinary->wordCount * sizeof(unsigned int); moduleCreateInfo.pCode = fragmentBinary->code; res = vkCreateShaderModule(info.device, &moduleCreateInfo, NULL, &info.shaderStages[1].module); assert(res == VK_SUCCESS); // Clean up the diagnostics spvDiagnosticDestroy(vertexDiag); spvDiagnosticDestroy(fragmentDiag); // Clean up the assembler context spvContextDestroy(spvContext); /* VULKAN_KEY_END */ init_framebuffers(info, depthPresent); init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data), sizeof(g_vb_texture_Data[0]), true); init_descriptor_pool(info, true); init_descriptor_set(info, true); init_pipeline_cache(info); init_pipeline(info, depthPresent); init_presentable_image(info); VkClearValue clear_values[2]; init_clear_color_and_depth(info, clear_values); VkRenderPassBeginInfo rp_begin; init_render_pass_begin_info(info, rp_begin); rp_begin.clearValueCount = 2; rp_begin.pClearValues = clear_values; vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline); vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS, info.desc_set.data(), 0, NULL); const VkDeviceSize offsets[1] = {0}; vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets); init_viewports(info); init_scissors(info); vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0); vkCmdEndRenderPass(info.cmd); execute_pre_present_barrier(info); res = vkEndCommandBuffer(info.cmd); assert(res == VK_SUCCESS); VkFence drawFence = {}; init_fence(info, drawFence); VkPipelineStageFlags pipe_stage_flags = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; VkSubmitInfo submit_info = {}; init_submit_info(info, submit_info, pipe_stage_flags); /* Queue the command buffer for execution */ res = vkQueueSubmit(info.queue, 1, &submit_info, drawFence); assert(res == VK_SUCCESS); /* Now present the image in the window */ VkPresentInfoKHR present = {}; init_present_info(info, present); /* Make sure command buffer is finished before presenting */ do { res = vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT); } while (res == VK_TIMEOUT); assert(res == VK_SUCCESS); res = vkQueuePresentKHR(info.queue, &present); assert(res == VK_SUCCESS); wait_seconds(1); if (info.save_images) write_ppm(info, "spirv_assembly"); vkDestroyFence(info.device, drawFence, NULL); vkDestroySemaphore(info.device, info.presentCompleteSemaphore, NULL); destroy_pipeline(info); destroy_pipeline_cache(info); destroy_textures(info); destroy_descriptor_pool(info); destroy_vertex_buffer(info); destroy_framebuffers(info); destroy_shaders(info); destroy_renderpass(info); destroy_descriptor_and_pipeline_layouts(info); destroy_uniform_buffer(info); destroy_depth_buffer(info); destroy_swap_chain(info); destroy_command_buffer(info); destroy_command_pool(info); destroy_device(info); destroy_window(info); destroy_instance(info); return 0; }
int main(int argc, char *argv[]) { VkResult U_ASSERT_ONLY res; struct sample_info info = {}; char sample_title[] = "Pipeline Derivative"; const bool depthPresent = true; process_command_line_args(info, argc, argv); init_global_layer_properties(info); init_instance_extension_names(info); init_device_extension_names(info); init_instance(info, sample_title); init_enumerate_device(info); init_window_size(info, 500, 500); init_connection(info); init_window(info); init_swapchain_extension(info); init_device(info); init_command_pool(info); init_command_buffer(info); execute_begin_command_buffer(info); init_device_queue(info); init_swap_chain(info); init_depth_buffer(info); init_texture(info); init_uniform_buffer(info); init_descriptor_and_pipeline_layouts(info, true); init_renderpass(info, depthPresent); init_shaders(info, vertShaderText, fragShaderText); init_framebuffers(info, depthPresent); init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data), sizeof(g_vb_texture_Data[0]), true); init_descriptor_pool(info, true); init_descriptor_set(info, true); init_pipeline_cache(info); /* VULKAN_KEY_START */ // // Create two pipelines. // // First pipeline is the same as that generated by init_pipeline(), // but with VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT set. // // Second pipeline has a modified fragment shader and sets the // VK_PIPELINE_CREATE_DERIVATIVE_BIT flag. // bool include_depth = true; bool include_vi = true; VkDynamicState dynamicStateEnables[VK_DYNAMIC_STATE_RANGE_SIZE]; VkPipelineDynamicStateCreateInfo dynamicState = {}; memset(dynamicStateEnables, 0, sizeof dynamicStateEnables); dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamicState.pNext = NULL; dynamicState.pDynamicStates = dynamicStateEnables; dynamicState.dynamicStateCount = 0; VkPipelineVertexInputStateCreateInfo vi; vi.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vi.pNext = NULL; vi.flags = 0; vi.vertexBindingDescriptionCount = 1; vi.pVertexBindingDescriptions = &info.vi_binding; vi.vertexAttributeDescriptionCount = 2; vi.pVertexAttributeDescriptions = info.vi_attribs; VkPipelineInputAssemblyStateCreateInfo ia; ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; ia.pNext = NULL; ia.flags = 0; ia.primitiveRestartEnable = VK_FALSE; ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; VkPipelineRasterizationStateCreateInfo rs; rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rs.pNext = NULL; rs.flags = 0; rs.polygonMode = VK_POLYGON_MODE_FILL; rs.cullMode = VK_CULL_MODE_BACK_BIT; rs.frontFace = VK_FRONT_FACE_CLOCKWISE; rs.depthClampEnable = include_depth; rs.rasterizerDiscardEnable = VK_FALSE; rs.depthBiasEnable = VK_FALSE; rs.depthBiasConstantFactor = 0; rs.depthBiasClamp = 0; rs.depthBiasSlopeFactor = 0; rs.lineWidth = 0; VkPipelineColorBlendStateCreateInfo cb; cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; cb.flags = 0; cb.pNext = NULL; VkPipelineColorBlendAttachmentState att_state[1]; att_state[0].colorWriteMask = 0xf; att_state[0].blendEnable = VK_FALSE; att_state[0].alphaBlendOp = VK_BLEND_OP_ADD; att_state[0].colorBlendOp = VK_BLEND_OP_ADD; att_state[0].srcColorBlendFactor = VK_BLEND_FACTOR_ZERO; att_state[0].dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; att_state[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; att_state[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; cb.attachmentCount = 1; cb.pAttachments = att_state; cb.logicOpEnable = VK_FALSE; cb.logicOp = VK_LOGIC_OP_NO_OP; cb.blendConstants[0] = 1.0f; cb.blendConstants[1] = 1.0f; cb.blendConstants[2] = 1.0f; cb.blendConstants[3] = 1.0f; VkPipelineViewportStateCreateInfo vp = {}; vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; vp.pNext = NULL; vp.flags = 0; vp.viewportCount = NUM_VIEWPORTS; dynamicStateEnables[dynamicState.dynamicStateCount++] = VK_DYNAMIC_STATE_VIEWPORT; vp.scissorCount = NUM_SCISSORS; dynamicStateEnables[dynamicState.dynamicStateCount++] = VK_DYNAMIC_STATE_SCISSOR; vp.pScissors = NULL; vp.pViewports = NULL; VkPipelineDepthStencilStateCreateInfo ds; ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; ds.pNext = NULL; ds.flags = 0; ds.depthTestEnable = include_depth; ds.depthWriteEnable = include_depth; ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL; ds.depthBoundsTestEnable = VK_FALSE; ds.stencilTestEnable = VK_FALSE; ds.back.failOp = VK_STENCIL_OP_KEEP; ds.back.passOp = VK_STENCIL_OP_KEEP; ds.back.compareOp = VK_COMPARE_OP_ALWAYS; ds.back.compareMask = 0; ds.back.reference = 0; ds.back.depthFailOp = VK_STENCIL_OP_KEEP; ds.back.writeMask = 0; ds.minDepthBounds = 0; ds.maxDepthBounds = 0; ds.stencilTestEnable = VK_FALSE; ds.front = ds.back; VkPipelineMultisampleStateCreateInfo ms; ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; ms.pNext = NULL; ms.flags = 0; ms.pSampleMask = NULL; ms.rasterizationSamples = NUM_SAMPLES; ms.sampleShadingEnable = VK_FALSE; ms.alphaToCoverageEnable = VK_FALSE; ms.alphaToOneEnable = VK_FALSE; ms.minSampleShading = 0.0; VkGraphicsPipelineCreateInfo pipeline; pipeline.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipeline.pNext = NULL; pipeline.layout = info.pipeline_layout; pipeline.basePipelineHandle = VK_NULL_HANDLE; pipeline.basePipelineIndex = 0; // Specify that we will be creating a derivative of this pipeline. pipeline.flags = VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT; pipeline.pVertexInputState = include_vi ? &vi : NULL; pipeline.pInputAssemblyState = &ia; pipeline.pRasterizationState = &rs; pipeline.pColorBlendState = &cb; pipeline.pTessellationState = NULL; pipeline.pMultisampleState = &ms; pipeline.pDynamicState = &dynamicState; pipeline.pViewportState = &vp; pipeline.pDepthStencilState = &ds; pipeline.pStages = info.shaderStages; pipeline.stageCount = 2; pipeline.renderPass = info.render_pass; pipeline.subpass = 0; // Create the base pipeline without storing it in the info struct // NOTE: If desired, we can add timing info around pipeline creation to // demonstrate any perf benefits to derivation. VkPipeline basePipeline; res = vkCreateGraphicsPipelines(info.device, info.pipelineCache, 1, &pipeline, NULL, &basePipeline); assert(res == VK_SUCCESS); // Now create the derivative pipeline, using a different fragment shader // This shader will shade the cube faces with interpolated colors // NOTE: If this step is too heavyweight to show any benefit of derivation, // then // create a pipeline that differs in some other, simpler way. const char *fragShaderText2 = "#version 450\n" "layout (location = 0) in vec2 texcoord;\n" "layout (location = 0) out vec4 outColor;\n" "void main() {\n" " outColor = vec4(texcoord.x, texcoord.y, " "1.0 - texcoord.x - texcoord.y, 1.0f);\n" "}\n"; // Convert GLSL to SPIR-V init_glslang(); std::vector<unsigned int> fragSpv; bool U_ASSERT_ONLY retVal = GLSLtoSPV(VK_SHADER_STAGE_FRAGMENT_BIT, fragShaderText2, fragSpv); assert(retVal); finalize_glslang(); // Replace the module entry of info.shaderStages to change the fragment // shader vkDestroyShaderModule(info.device, info.shaderStages[1].module, NULL); VkShaderModuleCreateInfo moduleCreateInfo = {}; moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; moduleCreateInfo.pNext = NULL; moduleCreateInfo.flags = 0; moduleCreateInfo.codeSize = fragSpv.size() * sizeof(unsigned int); moduleCreateInfo.pCode = fragSpv.data(); res = vkCreateShaderModule(info.device, &moduleCreateInfo, NULL, &info.shaderStages[1].module); assert(res == VK_SUCCESS); // Modify pipeline info to reflect derivation pipeline.flags = VK_PIPELINE_CREATE_DERIVATIVE_BIT; pipeline.basePipelineHandle = basePipeline; pipeline.basePipelineIndex = -1; // And create the derived pipeline, assigning to info.pipeline for use by // later helpers res = vkCreateGraphicsPipelines(info.device, info.pipelineCache, 1, &pipeline, NULL, &info.pipeline); assert(res == VK_SUCCESS); /* VULKAN_KEY_END */ init_presentable_image(info); VkClearValue clear_values[2]; init_clear_color_and_depth(info, clear_values); VkRenderPassBeginInfo rp_begin; init_render_pass_begin_info(info, rp_begin); rp_begin.clearValueCount = 2; rp_begin.pClearValues = clear_values; vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline); vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS, info.desc_set.data(), 0, NULL); const VkDeviceSize offsets[1] = {0}; vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets); init_viewports(info); init_scissors(info); vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0); vkCmdEndRenderPass(info.cmd); execute_pre_present_barrier(info); res = vkEndCommandBuffer(info.cmd); assert(res == VK_SUCCESS); VkFence drawFence = {}; init_fence(info, drawFence); VkPipelineStageFlags pipe_stage_flags = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; VkSubmitInfo submit_info = {}; init_submit_info(info, submit_info, pipe_stage_flags); /* Queue the command buffer for execution */ res = vkQueueSubmit(info.queue, 1, &submit_info, drawFence); assert(res == VK_SUCCESS); /* Now present the image in the window */ VkPresentInfoKHR present = {}; init_present_info(info, present); /* Make sure command buffer is finished before presenting */ do { res = vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT); } while (res == VK_TIMEOUT); assert(res == VK_SUCCESS); res = vkQueuePresentKHR(info.queue, &present); assert(res == VK_SUCCESS); wait_seconds(1); if (info.save_images) write_ppm(info, "pipeline_derivative"); vkDestroyFence(info.device, drawFence, NULL); vkDestroySemaphore(info.device, info.presentCompleteSemaphore, NULL); vkDestroyPipeline(info.device, basePipeline, NULL); destroy_pipeline(info); destroy_pipeline_cache(info); destroy_textures(info); destroy_descriptor_pool(info); destroy_vertex_buffer(info); destroy_framebuffers(info); destroy_shaders(info); destroy_renderpass(info); destroy_descriptor_and_pipeline_layouts(info); destroy_uniform_buffer(info); destroy_depth_buffer(info); destroy_swap_chain(info); destroy_command_buffer(info); destroy_command_pool(info); destroy_device(info); destroy_window(info); destroy_instance(info); return 0; }