示例#1
0
static void		calculate_oil(t_bunny_pixelarray *pix,
				      t_bunny_pixelarray *save,
				      t_oil *oil)
{
  int			width;
  int			height;

  oil->pos.y = 0;
  width = pix->clipable.clip_width;
  height = pix->clipable.clip_height;
  while (oil->pos.y < height)
    {
      oil->pos.x = 0;
      while (oil->pos.x < width)
	{
	  init_oil(oil, LEVEL);
	  calculate_avg(pix, oil, oil->pos.x, oil->pos.y);
	  apply_normalize_oil(save, oil, LEVEL);
	  ++(oil->pos.x);
	}
      ++(oil->pos.y);
    }
}
        virtual void init(const Opm::parameter::ParameterGroup& param,
                          const Grid& grid,
                          const Fluid& fluid,
                          typename Grid::Vector gravity,
                          State& simstate)
        {
            typedef typename Fluid::CompVec CompVec;
            typedef typename Fluid::PhaseVec PhaseVec;

            if (param.getDefault("heterogenous_initial_mix", false)) {
                CompVec init_oil(0.0);
                init_oil[Fluid::Oil] = 1.0;
                CompVec init_water(0.0);
                init_water[Fluid::Water] = 1.0;
                simstate.cell_z_.resize(grid.numCells());
                std::fill(simstate.cell_z_.begin(), simstate.cell_z_.begin() + simstate.cell_z_.size()/2, init_oil);
                std::fill(simstate.cell_z_.begin() + simstate.cell_z_.size()/2, simstate.cell_z_.end(), init_water);
                OPM_MESSAGE("******* Assuming zero capillary pressures *******");
                PhaseVec init_p(100.0*Opm::unit::barsa);
                simstate.cell_pressure_.resize(grid.numCells(), init_p);
                //         if (gravity.two_norm() != 0.0) {
                //             double ref_gravpot = grid.cellCentroid(0)*gravity;
                //             double rho = init_z*fluid_.surfaceDensities();  // Assuming incompressible, and constant initial z.
                //             for (int cell = 1; cell < grid.numCells(); ++cell) {
                //                 double press = rho*(grid.cellCentroid(cell)*gravity - ref_gravpot) + simstate.cell_pressure_[0][0];
                //                 simstate.cell_pressure_[cell] = PhaseVec(press);
                //             }
                //         }
            } else if (param.getDefault("unstable_initial_mix", false)) {
                CompVec init_oil(0.0);
                init_oil[Fluid::Oil] = 1.0;
                init_oil[Fluid::Gas] = 0.0;
                CompVec init_water(0.0);
                init_water[Fluid::Water] = 1.0;
                CompVec init_gas(0.0);
                init_gas[Fluid::Gas] = 150.0;
                simstate.cell_z_.resize(grid.numCells());
                std::fill(simstate.cell_z_.begin(),
                          simstate.cell_z_.begin() + simstate.cell_z_.size()/3,
                          init_water);
                std::fill(simstate.cell_z_.begin() + simstate.cell_z_.size()/3,
                          simstate.cell_z_.begin() + 2*(simstate.cell_z_.size()/3),
                          init_oil);
                std::fill(simstate.cell_z_.begin() + 2*(simstate.cell_z_.size()/3),
                          simstate.cell_z_.end(),
                          init_gas);
                OPM_MESSAGE("******* Assuming zero capillary pressures *******");
                PhaseVec init_p(100.0*Opm::unit::barsa);
                simstate.cell_pressure_.resize(grid.numCells(), init_p);

                if (gravity.two_norm() != 0.0) {
            
                    typename Fluid::FluidState state = fluid.computeState(simstate.cell_pressure_[0], simstate.cell_z_[0]);
                    simstate.cell_z_[0] *= 1.0/state.total_phase_volume_density_;
                    for (int cell = 1; cell < grid.numCells(); ++cell) {
                        double fluid_vol_dens;
                        int cnt =0;    
                        do {
                            double rho = 0.5*((simstate.cell_z_[cell]+simstate.cell_z_[cell-1])*fluid.surfaceDensities());
                            double press = rho*((grid.cellCentroid(cell) - grid.cellCentroid(cell-1))*gravity) + simstate.cell_pressure_[cell-1][0];
                            simstate.cell_pressure_[cell] = PhaseVec(press);
                            state = fluid.computeState(simstate.cell_pressure_[cell], simstate.cell_z_[cell]);
                            fluid_vol_dens = state.total_phase_volume_density_;
                            simstate.cell_z_[cell] *= 1.0/fluid_vol_dens;
                            ++cnt;
                        } while (std::fabs((fluid_vol_dens-1.0)) > 1.0e-8 && cnt < 10);
                
                    }  
                } else {
                    std::cout << "---- Exit - BlackoilSimulator.hpp: No gravity, no fun ... ----" << std::endl;
                    exit(-1);
                } 
            } else if (param.getDefault("CO2-injection", false)) {
                CompVec init_water(0.0);
                // Initially water filled (use Oil-component for water in order
                // to utilise blackoil mechanisms for brine-co2 interaction)          
                init_water[Fluid::Oil] = 1.0;  
                simstate.cell_z_.resize(grid.numCells());
                std::fill(simstate.cell_z_.begin(),simstate.cell_z_.end(),init_water);

                double datum_pressure_barsa = param.getDefault<double>("datum_pressure", 200.0);
                double datum_pressure = Opm::unit::convert::from(datum_pressure_barsa, Opm::unit::barsa);
                PhaseVec init_p(datum_pressure);
                simstate.cell_pressure_.resize(grid.numCells(), init_p);

                // Simple initial condition based on "incompressibility"-assumption
                double zMin = grid.cellCentroid(0)[2];
                for (int cell = 1; cell < grid.numCells(); ++cell) {
                    if (grid.cellCentroid(cell)[2] < zMin)
                        zMin = grid.cellCentroid(cell)[2];
                }

                typename Fluid::FluidState state = fluid.computeState(init_p, init_water);
		simstate.cell_z_[0] *= 1.0/state.total_phase_volume_density_;
                double density = (init_water*fluid.surfaceDensities())/state.total_phase_volume_density_;

                for (int cell = 0; cell < grid.numCells(); ++cell) {
                    double pressure(datum_pressure + (grid.cellCentroid(cell)[2] - zMin)*gravity[2]*density);
                    simstate.cell_pressure_[cell] = PhaseVec(pressure);
                    state = fluid.computeState(simstate.cell_pressure_[cell], simstate.cell_z_[cell]);
                    simstate.cell_z_[cell] *= 1.0/state.total_phase_volume_density_;
                }       
            } else {
                CompVec init_z(0.0);
                double initial_mixture_gas = param.getDefault("initial_mixture_gas", 0.0);
                double initial_mixture_oil = param.getDefault("initial_mixture_oil", 1.0);
                double initial_mixture_water = param.getDefault("initial_mixture_water", 0.0);
                init_z[Fluid::Water] = initial_mixture_water;
                init_z[Fluid::Gas] = initial_mixture_gas;
                init_z[Fluid::Oil] = initial_mixture_oil;

                simstate.cell_z_.resize(grid.numCells(), init_z);
                OPM_MESSAGE("******* Assuming zero capillary pressures *******");
                PhaseVec init_p(param.getDefault("initial_pressure", 100.0*Opm::unit::barsa));
                simstate.cell_pressure_.resize(grid.numCells(), init_p);
                if (gravity.two_norm() != 0.0) {
                    double ref_gravpot = grid.cellCentroid(0)*gravity;
                    double rho = init_z*fluid.surfaceDensities();  // Assuming incompressible, and constant initial z.
                    for (int cell = 1; cell < grid.numCells(); ++cell) {
                        double press = rho*(grid.cellCentroid(cell)*gravity - ref_gravpot) + simstate.cell_pressure_[0][0];
                        simstate.cell_pressure_[cell] = PhaseVec(press);
                    }
                }
            }
        }