bool tryToDisassembleWithLLVM( const MacroAssemblerCodePtr& codePtr, size_t size, const char* prefix, PrintStream& out, InstructionSubsetHint) { initializeLLVM(); const char* triple; #if CPU(X86_64) triple = "x86_64-apple-darwin"; #elif CPU(X86) triple = "x86-apple-darwin"; #elif CPU(ARM64) triple = "arm64-apple-darwin"; #else #error "LLVM disassembler currently not supported on this CPU." #endif char symbolString[symbolStringSize]; LLVMDisasmContextRef disassemblyContext = llvm->CreateDisasm(triple, symbolString, 0, 0, symbolLookupCallback); RELEASE_ASSERT(disassemblyContext); char pcString[20]; char instructionString[1000]; uint8_t* pc = static_cast<uint8_t*>(codePtr.executableAddress()); uint8_t* end = pc + size; while (pc < end) { snprintf( pcString, sizeof(pcString), "0x%lx", static_cast<unsigned long>(bitwise_cast<uintptr_t>(pc))); size_t instructionSize = llvm->DisasmInstruction( disassemblyContext, pc, end - pc, bitwise_cast<uintptr_t>(pc), instructionString, sizeof(instructionString)); if (!instructionSize) snprintf(instructionString, sizeof(instructionString), ".byte 0x%02x", *pc++); else pc += instructionSize; out.printf("%s%16s: %s\n", prefix, pcString, instructionString); } llvm->DisasmDispose(disassemblyContext); return true; }
Plan::CompilationPath Plan::compileInThreadImpl(LongLivedState& longLivedState) { if (verboseCompilationEnabled() && osrEntryBytecodeIndex != UINT_MAX) { dataLog("\n"); dataLog("Compiler must handle OSR entry from bc#", osrEntryBytecodeIndex, " with values: ", mustHandleValues, "\n"); dataLog("\n"); } Graph dfg(vm, *this, longLivedState); if (!parse(dfg)) { finalizer = adoptPtr(new FailedFinalizer(*this)); return FailPath; } // By this point the DFG bytecode parser will have potentially mutated various tables // in the CodeBlock. This is a good time to perform an early shrink, which is more // powerful than a late one. It's safe to do so because we haven't generated any code // that references any of the tables directly, yet. codeBlock->shrinkToFit(CodeBlock::EarlyShrink); if (validationEnabled()) validate(dfg); performCPSRethreading(dfg); performUnification(dfg); performPredictionInjection(dfg); if (mode == FTLForOSREntryMode) { bool result = performOSREntrypointCreation(dfg); if (!result) { finalizer = adoptPtr(new FailedFinalizer(*this)); return FailPath; } performCPSRethreading(dfg); } if (validationEnabled()) validate(dfg); performBackwardsPropagation(dfg); performPredictionPropagation(dfg); performFixup(dfg); performTypeCheckHoisting(dfg); unsigned count = 1; dfg.m_fixpointState = FixpointNotConverged; for (;; ++count) { if (logCompilationChanges()) dataLogF("DFG beginning optimization fixpoint iteration #%u.\n", count); bool changed = false; if (validationEnabled()) validate(dfg); performCFA(dfg); changed |= performConstantFolding(dfg); changed |= performArgumentsSimplification(dfg); changed |= performCFGSimplification(dfg); changed |= performCSE(dfg); if (!changed) break; performCPSRethreading(dfg); } if (logCompilationChanges()) dataLogF("DFG optimization fixpoint converged in %u iterations.\n", count); dfg.m_fixpointState = FixpointConverged; performStoreElimination(dfg); // If we're doing validation, then run some analyses, to give them an opportunity // to self-validate. Now is as good a time as any to do this. if (validationEnabled()) { dfg.m_dominators.computeIfNecessary(dfg); dfg.m_naturalLoops.computeIfNecessary(dfg); } switch (mode) { case DFGMode: { performTierUpCheckInjection(dfg); break; } case FTLMode: case FTLForOSREntryMode: { #if ENABLE(FTL_JIT) if (FTL::canCompile(dfg) == FTL::CannotCompile) { finalizer = adoptPtr(new FailedFinalizer(*this)); return FailPath; } performCriticalEdgeBreaking(dfg); performLoopPreHeaderCreation(dfg); performCPSRethreading(dfg); performSSAConversion(dfg); performLivenessAnalysis(dfg); performCFA(dfg); performLICM(dfg); performLivenessAnalysis(dfg); performCFA(dfg); performDCE(dfg); // We rely on this to convert dead SetLocals into the appropriate hint, and to kill dead code that won't be recognized as dead by LLVM. performStackLayout(dfg); performLivenessAnalysis(dfg); performFlushLivenessAnalysis(dfg); performOSRAvailabilityAnalysis(dfg); dumpAndVerifyGraph(dfg, "Graph just before FTL lowering:"); initializeLLVM(); FTL::State state(dfg); FTL::lowerDFGToLLVM(state); if (Options::reportCompileTimes()) beforeFTL = currentTimeMS(); if (Options::llvmAlwaysFailsBeforeCompile()) { FTL::fail(state); return FTLPath; } FTL::compile(state); if (Options::llvmAlwaysFailsBeforeLink()) { FTL::fail(state); return FTLPath; } FTL::link(state); return FTLPath; #else RELEASE_ASSERT_NOT_REACHED(); break; #endif // ENABLE(FTL_JIT) } default: RELEASE_ASSERT_NOT_REACHED(); break; } performCPSRethreading(dfg); performDCE(dfg); performStackLayout(dfg); performVirtualRegisterAllocation(dfg); dumpAndVerifyGraph(dfg, "Graph after optimization:"); JITCompiler dataFlowJIT(dfg); if (codeBlock->codeType() == FunctionCode) { dataFlowJIT.compileFunction(); dataFlowJIT.linkFunction(); } else { dataFlowJIT.compile(); dataFlowJIT.link(); } return DFGPath; }
Plan::CompilationPath Plan::compileInThreadImpl(LongLivedState& longLivedState) { if (verboseCompilationEnabled(mode) && osrEntryBytecodeIndex != UINT_MAX) { dataLog("\n"); dataLog("Compiler must handle OSR entry from bc#", osrEntryBytecodeIndex, " with values: ", mustHandleValues, "\n"); dataLog("\n"); } Graph dfg(vm, *this, longLivedState); if (!parse(dfg)) { finalizer = std::make_unique<FailedFinalizer>(*this); return FailPath; } codeBlock->setCalleeSaveRegisters(RegisterSet::dfgCalleeSaveRegisters()); // By this point the DFG bytecode parser will have potentially mutated various tables // in the CodeBlock. This is a good time to perform an early shrink, which is more // powerful than a late one. It's safe to do so because we haven't generated any code // that references any of the tables directly, yet. codeBlock->shrinkToFit(CodeBlock::EarlyShrink); if (validationEnabled()) validate(dfg); if (Options::dumpGraphAfterParsing()) { dataLog("Graph after parsing:\n"); dfg.dump(); } performLiveCatchVariablePreservationPhase(dfg); if (Options::enableMaximalFlushInsertionPhase()) performMaximalFlushInsertion(dfg); performCPSRethreading(dfg); performUnification(dfg); performPredictionInjection(dfg); performStaticExecutionCountEstimation(dfg); if (mode == FTLForOSREntryMode) { bool result = performOSREntrypointCreation(dfg); if (!result) { finalizer = std::make_unique<FailedFinalizer>(*this); return FailPath; } performCPSRethreading(dfg); } if (validationEnabled()) validate(dfg); performBackwardsPropagation(dfg); performPredictionPropagation(dfg); performFixup(dfg); performStructureRegistration(dfg); performInvalidationPointInjection(dfg); performTypeCheckHoisting(dfg); dfg.m_fixpointState = FixpointNotConverged; // For now we're back to avoiding a fixpoint. Note that we've ping-ponged on this decision // many times. For maximum throughput, it's best to fixpoint. But the throughput benefit is // small and not likely to show up in FTL anyway. On the other hand, not fixpointing means // that the compiler compiles more quickly. We want the third tier to compile quickly, which // not fixpointing accomplishes; and the fourth tier shouldn't need a fixpoint. if (validationEnabled()) validate(dfg); performStrengthReduction(dfg); performLocalCSE(dfg); performCPSRethreading(dfg); performCFA(dfg); performConstantFolding(dfg); bool changed = false; changed |= performCFGSimplification(dfg); changed |= performLocalCSE(dfg); if (validationEnabled()) validate(dfg); performCPSRethreading(dfg); if (!isFTL(mode)) { // Only run this if we're not FTLing, because currently for a LoadVarargs that is forwardable and // in a non-varargs inlined call frame, this will generate ForwardVarargs while the FTL // ArgumentsEliminationPhase will create a sequence of GetStack+PutStacks. The GetStack+PutStack // sequence then gets sunk, eliminating anything that looks like an escape for subsequent phases, // while the ForwardVarargs doesn't get simplified until later (or not at all) and looks like an // escape for all of the arguments. This then disables object allocation sinking. // // So, for now, we just disable this phase for the FTL. // // If we wanted to enable it, we'd have to do any of the following: // - Enable ForwardVarargs->GetStack+PutStack strength reduction, and have that run before // PutStack sinking and object allocation sinking. // - Make VarargsForwarding emit a GetLocal+SetLocal sequence, that we can later turn into // GetStack+PutStack. // // But, it's not super valuable to enable those optimizations, since the FTL // ArgumentsEliminationPhase does everything that this phase does, and it doesn't introduce this // pathology. changed |= performVarargsForwarding(dfg); // Do this after CFG simplification and CPS rethreading. } if (changed) { performCFA(dfg); performConstantFolding(dfg); } // If we're doing validation, then run some analyses, to give them an opportunity // to self-validate. Now is as good a time as any to do this. if (validationEnabled()) { dfg.m_dominators.computeIfNecessary(dfg); dfg.m_naturalLoops.computeIfNecessary(dfg); dfg.m_prePostNumbering.computeIfNecessary(dfg); } switch (mode) { case DFGMode: { dfg.m_fixpointState = FixpointConverged; performTierUpCheckInjection(dfg); performFastStoreBarrierInsertion(dfg); performCleanUp(dfg); performCPSRethreading(dfg); performDCE(dfg); performPhantomInsertion(dfg); performStackLayout(dfg); performVirtualRegisterAllocation(dfg); performWatchpointCollection(dfg); dumpAndVerifyGraph(dfg, "Graph after optimization:"); JITCompiler dataFlowJIT(dfg); if (codeBlock->codeType() == FunctionCode) dataFlowJIT.compileFunction(); else dataFlowJIT.compile(); return DFGPath; } case FTLMode: case FTLForOSREntryMode: { #if ENABLE(FTL_JIT) if (FTL::canCompile(dfg) == FTL::CannotCompile) { finalizer = std::make_unique<FailedFinalizer>(*this); return FailPath; } performCleanUp(dfg); // Reduce the graph size a bit. performCriticalEdgeBreaking(dfg); if (Options::createPreHeaders()) performLoopPreHeaderCreation(dfg); performCPSRethreading(dfg); performSSAConversion(dfg); performSSALowering(dfg); // Ideally, these would be run to fixpoint with the object allocation sinking phase. performArgumentsElimination(dfg); performPutStackSinking(dfg); performConstantHoisting(dfg); performGlobalCSE(dfg); performLivenessAnalysis(dfg); performIntegerRangeOptimization(dfg); performLivenessAnalysis(dfg); performCFA(dfg); performConstantFolding(dfg); performCleanUp(dfg); // Reduce the graph size a lot. changed = false; changed |= performStrengthReduction(dfg); if (Options::enableObjectAllocationSinking()) { changed |= performCriticalEdgeBreaking(dfg); changed |= performObjectAllocationSinking(dfg); } if (changed) { // State-at-tail and state-at-head will be invalid if we did strength reduction since // it might increase live ranges. performLivenessAnalysis(dfg); performCFA(dfg); performConstantFolding(dfg); } // Currently, this relies on pre-headers still being valid. That precludes running CFG // simplification before it, unless we re-created the pre-headers. There wouldn't be anything // wrong with running LICM earlier, if we wanted to put other CFG transforms above this point. // Alternatively, we could run loop pre-header creation after SSA conversion - but if we did that // then we'd need to do some simple SSA fix-up. performLICM(dfg); performCleanUp(dfg); performIntegerCheckCombining(dfg); performGlobalCSE(dfg); // At this point we're not allowed to do any further code motion because our reasoning // about code motion assumes that it's OK to insert GC points in random places. dfg.m_fixpointState = FixpointConverged; performLivenessAnalysis(dfg); performCFA(dfg); performGlobalStoreBarrierInsertion(dfg); if (Options::enableMovHintRemoval()) performMovHintRemoval(dfg); performCleanUp(dfg); performDCE(dfg); // We rely on this to kill dead code that won't be recognized as dead by LLVM. performStackLayout(dfg); performLivenessAnalysis(dfg); performOSRAvailabilityAnalysis(dfg); performWatchpointCollection(dfg); if (FTL::canCompile(dfg) == FTL::CannotCompile) { finalizer = std::make_unique<FailedFinalizer>(*this); return FailPath; } dumpAndVerifyGraph(dfg, "Graph just before FTL lowering:", shouldShowDisassembly(mode)); bool haveLLVM; Safepoint::Result safepointResult; { GraphSafepoint safepoint(dfg, safepointResult); haveLLVM = initializeLLVM(); } if (safepointResult.didGetCancelled()) return CancelPath; if (!haveLLVM) { if (Options::ftlCrashesIfCantInitializeLLVM()) { dataLog("LLVM can't be initialized.\n"); CRASH(); } finalizer = std::make_unique<FailedFinalizer>(*this); return FailPath; } FTL::State state(dfg); FTL::lowerDFGToLLVM(state); if (computeCompileTimes()) m_timeBeforeFTL = monotonicallyIncreasingTimeMS(); if (Options::llvmAlwaysFailsBeforeCompile()) { FTL::fail(state); return FTLPath; } FTL::compile(state, safepointResult); if (safepointResult.didGetCancelled()) return CancelPath; if (Options::llvmAlwaysFailsBeforeLink()) { FTL::fail(state); return FTLPath; } if (state.allocationFailed) { FTL::fail(state); return FTLPath; } if (state.jitCode->stackmaps.stackSize() > Options::llvmMaxStackSize()) { FTL::fail(state); return FTLPath; } FTL::link(state); if (state.allocationFailed) { FTL::fail(state); return FTLPath; } return FTLPath; #else RELEASE_ASSERT_NOT_REACHED(); return FailPath; #endif // ENABLE(FTL_JIT) } default: RELEASE_ASSERT_NOT_REACHED(); return FailPath; } }