示例#1
0
void InitBackground(const BACKGND *pBgnd) {
	int i;			// playfield counter
	PLAYFIELD *pPlayfield;	// pointer to current playfield

	// set current background
	pCurBgnd = pBgnd;

	// init background sky colour
	SetBgndColour(pBgnd->rgbSkyColour);

	// start of playfield array
	pPlayfield = pBgnd->fieldArray;

	// for each background playfield
	for (i = 0; i < pBgnd->numPlayfields; i++, pPlayfield++) {
		// init playfield pos
		pPlayfield->fieldX = intToFrac(pBgnd->ptInitWorld.x);
		pPlayfield->fieldY = intToFrac(pBgnd->ptInitWorld.y);

		// no scrolling
		pPlayfield->fieldXvel = intToFrac(0);
		pPlayfield->fieldYvel = intToFrac(0);

		// clear playfield display list
		pPlayfield->pDispList = NULL;

		// clear playfield moved flag
		pPlayfield->bMoved = false;
	}
}
示例#2
0
void OpenGLGraphicsManager::setActualScreenSize(uint width, uint height) {
	_outputScreenWidth = width;
	_outputScreenHeight = height;

	// Setup backbuffer size.
	_backBuffer.setDimensions(width, height);

	uint overlayWidth = width;
	uint overlayHeight = height;

	// WORKAROUND: We can only support surfaces up to the maximum supported
	// texture size. Thus, in case we encounter a physical size bigger than
	// this maximum texture size we will simply use an overlay as big as
	// possible and then scale it to the physical display size. This sounds
	// bad but actually all recent chips should support full HD resolution
	// anyway. Thus, it should not be a real issue for modern hardware.
	if (   overlayWidth  > (uint)g_context.maxTextureSize
	    || overlayHeight > (uint)g_context.maxTextureSize) {
		const frac_t outputAspect = intToFrac(_outputScreenWidth) / _outputScreenHeight;

		if (outputAspect > (frac_t)FRAC_ONE) {
			overlayWidth  = g_context.maxTextureSize;
			overlayHeight = intToFrac(overlayWidth) / outputAspect;
		} else {
			overlayHeight = g_context.maxTextureSize;
			overlayWidth  = fracToInt(overlayHeight * outputAspect);
		}
	}

	// HACK: We limit the minimal overlay size to 256x200, which is the
	// minimum of the dimensions of the two resolutions 256x240 (NES) and
	// 320x200 (many DOS games use this). This hopefully assure that our
	// GUI has working layouts.
	overlayWidth = MAX<uint>(overlayWidth, 256);
	overlayHeight = MAX<uint>(overlayHeight, 200);

	if (!_overlay || _overlay->getFormat() != _defaultFormatAlpha) {
		delete _overlay;
		_overlay = nullptr;

		_overlay = createSurface(_defaultFormatAlpha);
		assert(_overlay);
		// We always filter the overlay with GL_LINEAR. This assures it's
		// readable in case it needs to be scaled and does not affect it
		// otherwise.
		_overlay->enableLinearFiltering(true);
	}
	_overlay->allocate(overlayWidth, overlayHeight);
	_overlay->fill(0);

	// Re-setup the scaling for the screen and cursor
	recalculateDisplayArea();
	recalculateCursorScaling();

	// Something changed, so update the screen change ID.
	++_screenChangeID;
}
示例#3
0
frac_t OpenGLGraphicsManager::getDesiredGameScreenAspect() const {
	const uint width  = _currentState.gameWidth;
	const uint height = _currentState.gameHeight;

	if (_currentState.aspectRatioCorrection) {
		// In case we enable aspect ratio correction we force a 4/3 ratio.
		// But just for 320x200 and 640x400 games, since other games do not need
		// this.
		if ((width == 320 && height == 200) || (width == 640 && height == 400)) {
			return intToFrac(4) / 3;
		}
	}

	return intToFrac(width) / height;
}
示例#4
0
/**
 * Give a object a new image and new orientation flags.
 * @param pAniObj			Object to be updated
 * @param newflags			Objects new flags
 * @param hNewImg			Objects new image
 */
void AnimateObjectFlags(OBJECT *pAniObj, int newflags, SCNHANDLE hNewImg) {
	// validate object pointer
	assert(isValidObject(pAniObj));

	if (pAniObj->hImg != hNewImg
		|| (pAniObj->flags & DMA_HARDFLAGS) != (newflags & DMA_HARDFLAGS)) {
		// something has changed

		int oldAniX, oldAniY;	// objects old animation offsets
		int newAniX, newAniY;	// objects new animation offsets

		// get objects old animation offsets
		GetAniOffset(pAniObj->hImg, pAniObj->flags, &oldAniX, &oldAniY);

		// get objects new animation offsets
		GetAniOffset(hNewImg, newflags, &newAniX, &newAniY);

		if (hNewImg) {
			// get pointer to image
			const IMAGE *pNewImg = (IMAGE *)LockMem(hNewImg);

			// setup new shape
			pAniObj->width  = FROM_LE_16(pNewImg->imgWidth);
			pAniObj->height = FROM_LE_16(pNewImg->imgHeight) & ~C16_FLAG_MASK;
			newflags &= ~C16_FLAG_MASK;
			newflags |= FROM_LE_16(pNewImg->imgHeight) & C16_FLAG_MASK;

			// set objects bitmap definition
			pAniObj->hBits  = FROM_LE_32(pNewImg->hImgBits);
		} else {	// null image
			pAniObj->width  = 0;
			pAniObj->height = 0;
			pAniObj->hBits  = 0;
		}

		// set objects flags and signal a change
		pAniObj->flags = newflags | DMA_CHANGED;

		// set objects image
		pAniObj->hImg = hNewImg;

		// adjust objects position - subtract new from old for difference
		pAniObj->xPos += intToFrac(oldAniX - newAniX);
		pAniObj->yPos += intToFrac(oldAniY - newAniY);
	}
}
示例#5
0
void PlayfieldSetPos(int which, int newXpos, int newYpos) {
	PLAYFIELD *pPlayfield;	// pointer to relavent playfield

	// make sure there is a background
	assert(pCurBgnd != NULL);

	// make sure the playfield number is in range
	assert(which >= 0 && which < pCurBgnd->numPlayfields);

	// get playfield pointer
	pPlayfield = pCurBgnd->fieldArray + which;

	// set new integer position
	pPlayfield->fieldX = intToFrac(newXpos);
	pPlayfield->fieldY = intToFrac(newYpos);

	// set moved flag
	pPlayfield->bMoved = true;
}
示例#6
0
void ListWidget::reflowLayout() {
	Widget::reflowLayout();

	_leftPadding = g_gui.xmlEval()->getVar("Globals.ListWidget.Padding.Left", 0);
	_rightPadding = g_gui.xmlEval()->getVar("Globals.ListWidget.Padding.Right", 0);
	_topPadding = g_gui.xmlEval()->getVar("Globals.ListWidget.Padding.Top", 0);
	_bottomPadding = g_gui.xmlEval()->getVar("Globals.ListWidget.Padding.Bottom", 0);
	_hlLeftPadding = g_gui.xmlEval()->getVar("Globals.ListWidget.hlLeftPadding", 0);
	_hlRightPadding = g_gui.xmlEval()->getVar("Globals.ListWidget.hlRightPadding", 0);

	_scrollBarWidth = g_gui.xmlEval()->getVar("Globals.Scrollbar.Width", 0);

	// HACK: Once we take padding into account, there are times where
	// integer rounding leaves a big chunk of white space in the bottom
	// of the list.
	// We do a rough rounding on the decimal places of Entries Per Page,
	// to add another entry even if it goes a tad over the padding.
	frac_t entriesPerPage = intToFrac(_h - _topPadding - _bottomPadding) / kLineHeight;

	// Our threshold before we add another entry is 0.9375 (0xF000 with FRAC_BITS being 16).
	const frac_t threshold = intToFrac(15) / 16;

	if ((frac_t)(entriesPerPage & FRAC_LO_MASK) >= threshold)
		entriesPerPage += FRAC_ONE;

	_entriesPerPage = fracToInt(entriesPerPage);
	assert(_entriesPerPage > 0);

	delete[] _textWidth;
	_textWidth = new int[_entriesPerPage];

	for (int i = 0; i < _entriesPerPage; i++)
		_textWidth[i] = 0;

	if (_scrollBar) {
		_scrollBar->resize(_w - _scrollBarWidth + 1, 0, _scrollBarWidth, _h);
		scrollBarRecalc();
		scrollToCurrent();
	}
}
示例#7
0
void OpenGLGraphicsManager::recalculateDisplayArea() {
	if (!_gameScreen || _outputScreenHeight == 0) {
		return;
	}

	const frac_t outputAspect = intToFrac(_outputScreenWidth) / _outputScreenHeight;
	const frac_t desiredAspect = getDesiredGameScreenAspect();

	_displayWidth = _outputScreenWidth;
	_displayHeight = _outputScreenHeight;

	// Adjust one dimension for mantaining the aspect ratio.
	if (outputAspect < desiredAspect) {
		_displayHeight = intToFrac(_displayWidth) / desiredAspect;
	} else if (outputAspect > desiredAspect) {
		_displayWidth = fracToInt(_displayHeight * desiredAspect);
	}

	// We center the screen in the middle for now.
	_displayX = (_outputScreenWidth  - _displayWidth ) / 2; 
	_displayY = (_outputScreenHeight - _displayHeight) / 2; 
}
示例#8
0
void MultiMoveRelXY(OBJECT *pMultiObj, int deltaX, int deltaY) {
	// validate object pointer
	assert(pMultiObj >= objectList && pMultiObj <= objectList + NUM_OBJECTS - 1);

	if (deltaX == 0 && deltaY == 0)
		return;		// ignore no change

	// for all the objects that make up this multi-part
	do {
		// signal a change in the object
		pMultiObj->flags |= DMA_CHANGED;

		// adjust the x position
		pMultiObj->xPos += intToFrac(deltaX);

		// adjust the y position
		pMultiObj->yPos += intToFrac(deltaY);

		// next obj in list
		pMultiObj = pMultiObj->pSlave;

	} while (pMultiObj != NULL);
}
示例#9
0
void MultiAdjustXY(OBJECT *pMultiObj, int deltaX, int deltaY) {
	// validate object pointer
	assert(pMultiObj >= objectList && pMultiObj <= objectList + NUM_OBJECTS - 1);

	if (deltaX == 0 && deltaY == 0)
		return;		// ignore no change

	if (!TinselV2) {
		// *** This may be wrong!!!
		if (pMultiObj->flags & DMA_FLIPH) {
			// image is flipped horizontally - flip the x direction
			deltaX = -deltaX;
		}

		if (pMultiObj->flags & DMA_FLIPV) {
			// image is flipped vertically - flip the y direction
			deltaY = -deltaY;
		}
	}

	// for all the objects that make up this multi-part
	do {
		// signal a change in the object
		pMultiObj->flags |= DMA_CHANGED;

		// adjust the x position
		pMultiObj->xPos += intToFrac(deltaX);

		// adjust the y position
		pMultiObj->yPos += intToFrac(deltaY);

		// next obj in list
		pMultiObj = pMultiObj->pSlave;

	} while (pMultiObj != NULL);
}
示例#10
0
/**
 * Sort the specified object list in Z Y order.
 * @param pObjList			List to sort
 */
void SortObjectList(OBJECT *pObjList) {
	OBJECT *pPrev, *pObj;	// object list traversal pointers
	OBJECT head;		// temporary head of list - because pObjList is not usually a OBJECT

	// put at head of list
	head.pNext = pObjList->pNext;

	// set head of list dummy OBJ Z Y values to lowest possible
	head.yPos = intToFrac(MIN_INT16);
	head.zPos = MIN_INT;

	for (pPrev = &head, pObj = head.pNext; pObj != NULL; pPrev = pObj, pObj = pObj->pNext) {
		// check Z order
		if (pObj->zPos < pPrev->zPos) {
			// object Z is lower than previous Z

			// remove object from list
			pPrev->pNext = pObj->pNext;

			// re-insert object on list
			InsertObject(pObjList, pObj);

			// back to beginning of list
			pPrev = &head;
			pObj  = head.pNext;
		} else if (pObj->zPos == pPrev->zPos) {
			// Z values are the same - sort on Y
			if (fracToDouble(pObj->yPos) < fracToDouble(pPrev->yPos)) {
				// object Y is lower than previous Y

				// remove object from list
				pPrev->pNext = pObj->pNext;

				// re-insert object on list
				InsertObject(pObjList, pObj);

				// back to beginning of list
				pPrev = &head;
				pObj  = head.pNext;
			}
		}
	}
}
示例#11
0
bool OpenGLGraphicsManager::getGLPixelFormat(const Graphics::PixelFormat &pixelFormat, GLenum &glIntFormat, GLenum &glFormat, GLenum &glType) const {
#ifdef SCUMM_LITTLE_ENDIAN
	if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 0, 8, 16, 24)) { // ABGR8888
#else
	if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 24, 16, 8, 0)) { // RGBA8888
#endif
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_BYTE;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 6, 5, 0, 11, 5, 0, 0)) { // RGB565
		glIntFormat = GL_RGB;
		glFormat = GL_RGB;
		glType = GL_UNSIGNED_SHORT_5_6_5;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 1, 11, 6, 1, 0)) { // RGBA5551
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_SHORT_5_5_5_1;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 12, 8, 4, 0)) { // RGBA4444
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_SHORT_4_4_4_4;
		return true;
#if !USE_FORCED_GLES && !USE_FORCED_GLES2
	// The formats below are not supported by every GLES implementation.
	// Thus, we do not mark them as supported when a GLES context is setup.
	} else if (isGLESContext()) {
		return false;
#ifdef SCUMM_LITTLE_ENDIAN
	} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 24, 16, 8, 0)) { // RGBA8888
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_INT_8_8_8_8;
		return true;
#endif
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 0, 10, 5, 0, 0)) { // RGB555
		glIntFormat = GL_RGB;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_SHORT_1_5_5_5_REV;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 8, 4, 0, 12)) { // ARGB4444
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_SHORT_4_4_4_4_REV;
		return true;
#ifdef SCUMM_BIG_ENDIAN
	} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 0, 8, 16, 24)) { // ABGR8888
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_INT_8_8_8_8_REV;
		return true;
#endif
	} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 8, 16, 24, 0)) { // BGRA8888
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_INT_8_8_8_8;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 6, 5, 0, 0, 5, 11, 0)) { // BGR565
		glIntFormat = GL_RGB;
		glFormat = GL_RGB;
		glType = GL_UNSIGNED_SHORT_5_6_5_REV;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 1, 1, 6, 11, 0)) { // BGRA5551
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_SHORT_5_5_5_1;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 0, 4, 8, 12)) { // ABGR4444
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_SHORT_4_4_4_4_REV;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 4, 8, 12, 0)) { // BGRA4444
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_SHORT_4_4_4_4;
		return true;
#endif // !USE_FORCED_GLES && !USE_FORCED_GLES2
	} else {
		return false;
	}
}

frac_t OpenGLGraphicsManager::getDesiredGameScreenAspect() const {
	const uint width  = _currentState.gameWidth;
	const uint height = _currentState.gameHeight;

	if (_currentState.aspectRatioCorrection) {
		// In case we enable aspect ratio correction we force a 4/3 ratio.
		// But just for 320x200 and 640x400 games, since other games do not need
		// this.
		if ((width == 320 && height == 200) || (width == 640 && height == 400)) {
			return intToFrac(4) / 3;
		}
	}

	return intToFrac(width) / height;
}

void OpenGLGraphicsManager::recalculateDisplayArea() {
	if (!_gameScreen || _outputScreenHeight == 0) {
		return;
	}

	const frac_t outputAspect = intToFrac(_outputScreenWidth) / _outputScreenHeight;
	const frac_t desiredAspect = getDesiredGameScreenAspect();

	_displayWidth = _outputScreenWidth;
	_displayHeight = _outputScreenHeight;

	// Adjust one dimension for mantaining the aspect ratio.
	if (outputAspect < desiredAspect) {
		_displayHeight = intToFrac(_displayWidth) / desiredAspect;
	} else if (outputAspect > desiredAspect) {
		_displayWidth = fracToInt(_displayHeight * desiredAspect);
	}

	// We center the screen in the middle for now.
	_displayX = (_outputScreenWidth  - _displayWidth ) / 2;
	_displayY = (_outputScreenHeight - _displayHeight) / 2;

	// Setup drawing limitation for game graphics.
	// This invovles some trickery because OpenGL's viewport coordinate system
	// is upside down compared to ours.
	_backBuffer.setScissorBox(_displayX,
	                          _outputScreenHeight - _displayHeight - _displayY,
	                          _displayWidth,
	                          _displayHeight);
	// Clear the whole screen for the first three frames to remove leftovers.
	_scissorOverride = 3;

	// Update the cursor position to adjust for new display area.
	setMousePosition(_cursorX, _cursorY);

	// Force a redraw to assure screen is properly redrawn.
	_forceRedraw = true;
}

void OpenGLGraphicsManager::updateCursorPalette() {
	if (!_cursor || !_cursor->hasPalette()) {
		return;
	}

	if (_cursorPaletteEnabled) {
		_cursor->setPalette(0, 256, _cursorPalette);
	} else {
		_cursor->setPalette(0, 256, _gamePalette);
	}

	_cursor->setColorKey(_cursorKeyColor);
}

void OpenGLGraphicsManager::recalculateCursorScaling() {
	if (!_cursor || !_gameScreen) {
		return;
	}

	// By default we use the unscaled versions.
	_cursorHotspotXScaled = _cursorHotspotX;
	_cursorHotspotYScaled = _cursorHotspotY;
	_cursorWidthScaled = _cursor->getWidth();
	_cursorHeightScaled = _cursor->getHeight();

	// In case scaling is actually enabled we will scale the cursor according
	// to the game screen.
	if (!_cursorDontScale) {
		const frac_t screenScaleFactorX = intToFrac(_displayWidth)  / _gameScreen->getWidth();
		const frac_t screenScaleFactorY = intToFrac(_displayHeight) / _gameScreen->getHeight();

		_cursorHotspotXScaled = fracToInt(_cursorHotspotXScaled * screenScaleFactorX);
		_cursorWidthScaled    = fracToInt(_cursorWidthScaled    * screenScaleFactorX);

		_cursorHotspotYScaled = fracToInt(_cursorHotspotYScaled * screenScaleFactorY);
		_cursorHeightScaled   = fracToInt(_cursorHeightScaled   * screenScaleFactorY);
	}
}

#ifdef USE_OSD
const Graphics::Font *OpenGLGraphicsManager::getFontOSD() {
	return FontMan.getFontByUsage(Graphics::FontManager::kLocalizedFont);
}
#endif

void OpenGLGraphicsManager::saveScreenshot(const Common::String &filename) const {
	const uint width  = _outputScreenWidth;
	const uint height = _outputScreenHeight;

	// A line of a BMP image must have a size divisible by 4.
	// We calculate the padding bytes needed here.
	// Since we use a 3 byte per pixel mode, we can use width % 4 here, since
	// it is equal to 4 - (width * 3) % 4. (4 - (width * Bpp) % 4, is the
	// usual way of computing the padding bytes required).
	const uint linePaddingSize = width % 4;
	const uint lineSize        = width * 3 + linePaddingSize;

	// Allocate memory for screenshot
	uint8 *pixels = new uint8[lineSize * height];

	// Get pixel data from OpenGL buffer
	GL_CALL(glReadPixels(0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, pixels));

	// BMP stores as BGR. Since we can't assume that GL_BGR is supported we
	// will swap the components from the RGB we read to BGR on our own.
	for (uint y = height; y-- > 0;) {
		uint8 *line = pixels + y * lineSize;

		for (uint x = width; x > 0; --x, line += 3) {
			SWAP(line[0], line[2]);
		}
	}

	// Open file
	Common::DumpFile out;
	out.open(filename);

	// Write BMP header
	out.writeByte('B');
	out.writeByte('M');
	out.writeUint32LE(height * lineSize + 54);
	out.writeUint32LE(0);
	out.writeUint32LE(54);
	out.writeUint32LE(40);
	out.writeUint32LE(width);
	out.writeUint32LE(height);
	out.writeUint16LE(1);
	out.writeUint16LE(24);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);

	// Write pixel data to BMP
	out.write(pixels, lineSize * height);

	// Free allocated memory
	delete[] pixels;
}

} // End of namespace OpenGL
示例#12
0
/**
 * Initialise a object using a OBJ_INIT structure to supply parameters.
 * @param pInitTbl			Pointer to object initialisation table
 */
OBJECT *InitObject(const OBJ_INIT *pInitTbl) {
	// allocate a new object
	OBJECT *pObj = AllocObject();

	// make sure object created
	assert(pObj != NULL);

	// set objects shape
	pObj->hImg = pInitTbl->hObjImg;

	// set objects ID
	pObj->oid = pInitTbl->objID;

	// set objects flags
	pObj->flags = DMA_CHANGED | pInitTbl->objFlags;

	// set objects Z position
	pObj->zPos = pInitTbl->objZ;

	// get pointer to image
	if (pInitTbl->hObjImg) {
		int aniX, aniY;		// objects animation offsets
		PALQ *pPalQ = NULL;	// palette queue pointer
		const IMAGE *pImg = (const IMAGE *)LockMem(pInitTbl->hObjImg);	// handle to image

		if (pImg->hImgPal) {
			// allocate a palette for this object
			pPalQ = AllocPalette(FROM_LE_32(pImg->hImgPal));

			// make sure palette allocated
			assert(pPalQ != NULL);
		}

		// assign palette to object
		pObj->pPal = pPalQ;

		// set objects size
		pObj->width  = FROM_LE_16(pImg->imgWidth);
		pObj->height = FROM_LE_16(pImg->imgHeight) & ~C16_FLAG_MASK;
		pObj->flags &= ~C16_FLAG_MASK;
		pObj->flags |= FROM_LE_16(pImg->imgHeight) & C16_FLAG_MASK;

		// set objects bitmap definition
		pObj->hBits = FROM_LE_32(pImg->hImgBits);

		// get animation offset of object
		GetAniOffset(pObj->hImg, pInitTbl->objFlags, &aniX, &aniY);

		// set objects X position - subtract ani offset
		pObj->xPos = intToFrac(pInitTbl->objX - aniX);

		// set objects Y position - subtract ani offset
		pObj->yPos = intToFrac(pInitTbl->objY - aniY);
	} else {	// no image handle - null image

		// set objects X position
		pObj->xPos = intToFrac(pInitTbl->objX);

		// set objects Y position
		pObj->yPos = intToFrac(pInitTbl->objY);
	}

	// return new object
	return pObj;
}
示例#13
0
bool OpenGLGraphicsManager::getGLPixelFormat(const Graphics::PixelFormat &pixelFormat, GLenum &glIntFormat, GLenum &glFormat, GLenum &glType) const {
#ifdef SCUMM_LITTLE_ENDIAN
	if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 0, 8, 16, 24)) { // ABGR8888
#else
	if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 24, 16, 8, 0)) { // RGBA8888
#endif
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_BYTE;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 6, 5, 0, 11, 5, 0, 0)) { // RGB565
		glIntFormat = GL_RGB;
		glFormat = GL_RGB;
		glType = GL_UNSIGNED_SHORT_5_6_5;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 1, 11, 6, 1, 0)) { // RGBA5551
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_SHORT_5_5_5_1;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 12, 8, 4, 0)) { // RGBA4444
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_SHORT_4_4_4_4;
		return true;
#ifndef USE_GLES
#ifdef SCUMM_LITTLE_ENDIAN
	} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 24, 16, 8, 0)) { // RGBA8888
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_INT_8_8_8_8;
		return true;
#endif
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 0, 10, 5, 0, 0)) { // RGB555
		// GL_BGRA does not exist in every GLES implementation so should not be configured if
		// USE_GLES is set.
		glIntFormat = GL_RGB;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_SHORT_1_5_5_5_REV;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 16, 8, 0, 24)) { // ARGB8888
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_INT_8_8_8_8_REV;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 8, 4, 0, 12)) { // ARGB4444
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_SHORT_4_4_4_4_REV;
		return true;
#ifdef SCUMM_BIG_ENDIAN
	} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 0, 8, 16, 24)) { // ABGR8888
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_INT_8_8_8_8_REV;
		return true;
#endif
	} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 8, 16, 24, 0)) { // BGRA8888
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_INT_8_8_8_8;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 6, 5, 0, 0, 5, 11, 0)) { // BGR565
		glIntFormat = GL_RGB;
		glFormat = GL_BGR;
		glType = GL_UNSIGNED_SHORT_5_6_5;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 1, 1, 6, 11, 0)) { // BGRA5551
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_SHORT_5_5_5_1;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 0, 4, 8, 12)) { // ABGR4444
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_SHORT_4_4_4_4_REV;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 4, 8, 12, 0)) { // BGRA4444
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_SHORT_4_4_4_4;
		return true;
#endif
	} else {
		return false;
	}
}

frac_t OpenGLGraphicsManager::getDesiredGameScreenAspect() const {
	const uint width  = _currentState.gameWidth;
	const uint height = _currentState.gameHeight;

	if (_currentState.aspectRatioCorrection) {
		// In case we enable aspect ratio correction we force a 4/3 ratio.
		// But just for 320x200 and 640x400 games, since other games do not need
		// this.
		if ((width == 320 && height == 200) || (width == 640 && height == 400)) {
			return intToFrac(4) / 3;
		}
	}

	return intToFrac(width) / height;
}

void OpenGLGraphicsManager::recalculateDisplayArea() {
	if (!_gameScreen || _outputScreenHeight == 0) {
		return;
	}

	const frac_t outputAspect = intToFrac(_outputScreenWidth) / _outputScreenHeight;
	const frac_t desiredAspect = getDesiredGameScreenAspect();

	_displayWidth = _outputScreenWidth;
	_displayHeight = _outputScreenHeight;

	// Adjust one dimension for mantaining the aspect ratio.
	if (outputAspect < desiredAspect) {
		_displayHeight = intToFrac(_displayWidth) / desiredAspect;
	} else if (outputAspect > desiredAspect) {
		_displayWidth = fracToInt(_displayHeight * desiredAspect);
	}

	// We center the screen in the middle for now.
	_displayX = (_outputScreenWidth  - _displayWidth ) / 2; 
	_displayY = (_outputScreenHeight - _displayHeight) / 2; 
}

void OpenGLGraphicsManager::updateCursorPalette() {
	if (!_cursor || !_cursor->hasPalette()) {
		return;
	}

	if (_cursorPaletteEnabled) {
		_cursor->setPalette(0, 256, _cursorPalette);
	} else {
		_cursor->setPalette(0, 256, _gamePalette);
	}

	// We remove all alpha bits from the palette entry of the color key.
	// This makes sure its properly handled as color key.
	const Graphics::PixelFormat &hardwareFormat = _cursor->getHardwareFormat();
	const uint32 aMask = (0xFF >> hardwareFormat.aLoss) << hardwareFormat.aShift;

	if (hardwareFormat.bytesPerPixel == 2) {
		uint16 *palette = (uint16 *)_cursor->getPalette() + _cursorKeyColor;
		*palette &= ~aMask;
	} else if (hardwareFormat.bytesPerPixel == 4) {
		uint32 *palette = (uint32 *)_cursor->getPalette() + _cursorKeyColor;
		*palette &= ~aMask;
	} else {
		warning("OpenGLGraphicsManager::updateCursorPalette: Unsupported pixel depth %d", hardwareFormat.bytesPerPixel);
	}
}

void OpenGLGraphicsManager::recalculateCursorScaling() {
	if (!_cursor || !_gameScreen) {
		return;
	}

	// By default we use the unscaled versions.
	_cursorHotspotXScaled = _cursorHotspotX;
	_cursorHotspotYScaled = _cursorHotspotY;
	_cursorWidthScaled = _cursor->getWidth();
	_cursorHeightScaled = _cursor->getHeight();

	// In case scaling is actually enabled we will scale the cursor according
	// to the game screen.
	if (!_cursorDontScale) {
		const frac_t screenScaleFactorX = intToFrac(_displayWidth)  / _gameScreen->getWidth();
		const frac_t screenScaleFactorY = intToFrac(_displayHeight) / _gameScreen->getHeight();

		_cursorHotspotXScaled = fracToInt(_cursorHotspotXScaled * screenScaleFactorX);
		_cursorWidthScaled    = fracToInt(_cursorWidthScaled    * screenScaleFactorX);

		_cursorHotspotYScaled = fracToInt(_cursorHotspotYScaled * screenScaleFactorY);
		_cursorHeightScaled   = fracToInt(_cursorHeightScaled   * screenScaleFactorY);
	}
}

#ifdef USE_OSD
const Graphics::Font *OpenGLGraphicsManager::getFontOSD() {
	return FontMan.getFontByUsage(Graphics::FontManager::kLocalizedFont);
}
#endif

void OpenGLGraphicsManager::saveScreenshot(const Common::String &filename) const {
	const uint width  = _outputScreenWidth;
	const uint height = _outputScreenHeight;

	// A line of a BMP image must have a size divisible by 4.
	// We calculate the padding bytes needed here.
	// Since we use a 3 byte per pixel mode, we can use width % 4 here, since
	// it is equal to 4 - (width * 3) % 4. (4 - (width * Bpp) % 4, is the
	// usual way of computing the padding bytes required).
	const uint linePaddingSize = width % 4;
	const uint lineSize        = width * 3 + linePaddingSize;

	// Allocate memory for screenshot
	uint8 *pixels = new uint8[lineSize * height];

	// Get pixel data from OpenGL buffer
	GLCALL(glReadPixels(0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, pixels));

	// BMP stores as BGR. Since we can't assume that GL_BGR is supported we
	// will swap the components from the RGB we read to BGR on our own.
	for (uint y = height; y-- > 0;) {
		uint8 *line = pixels + y * lineSize;

		for (uint x = width; x > 0; --x, line += 3) {
			SWAP(line[0], line[2]);
		}
	}

	// Open file
	Common::DumpFile out;
	out.open(filename);

	// Write BMP header
	out.writeByte('B');
	out.writeByte('M');
	out.writeUint32LE(height * lineSize + 54);
	out.writeUint32LE(0);
	out.writeUint32LE(54);
	out.writeUint32LE(40);
	out.writeUint32LE(width);
	out.writeUint32LE(height);
	out.writeUint16LE(1);
	out.writeUint16LE(24);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);

	// Write pixel data to BMP
	out.write(pixels, lineSize * height);

	// Free allocated memory
	delete[] pixels;
}

} // End of namespace OpenGL
示例#14
0
void OpenGLGraphicsManager::setActualScreenSize(uint width, uint height) {
	_outputScreenWidth = width;
	_outputScreenHeight = height;

	// Setup coordinates system.
	GLCALL(glViewport(0, 0, _outputScreenWidth, _outputScreenHeight));

	GLCALL(glMatrixMode(GL_PROJECTION));
	GLCALL(glLoadIdentity());
#ifdef USE_GLES
	GLCALL(glOrthof(0, _outputScreenWidth, _outputScreenHeight, 0, -1, 1));
#else
	GLCALL(glOrtho(0, _outputScreenWidth, _outputScreenHeight, 0, -1, 1));
#endif
	GLCALL(glMatrixMode(GL_MODELVIEW));
	GLCALL(glLoadIdentity());

	uint overlayWidth = width;
	uint overlayHeight = height;

	// WORKAROUND: We can only support surfaces up to the maximum supported
	// texture size. Thus, in case we encounter a physical size bigger than
	// this maximum texture size we will simply use an overlay as big as
	// possible and then scale it to the physical display size. This sounds
	// bad but actually all recent chips should support full HD resolution
	// anyway. Thus, it should not be a real issue for modern hardware.
	if (   overlayWidth  > (uint)Texture::getMaximumTextureSize()
	    || overlayHeight > (uint)Texture::getMaximumTextureSize()) {
		const frac_t outputAspect = intToFrac(_outputScreenWidth) / _outputScreenHeight;

		if (outputAspect > (frac_t)FRAC_ONE) {
			overlayWidth  = Texture::getMaximumTextureSize();
			overlayHeight = intToFrac(overlayWidth) / outputAspect;
		} else {
			overlayHeight = Texture::getMaximumTextureSize();
			overlayWidth  = fracToInt(overlayHeight * outputAspect);
		}
	}

	// HACK: We limit the minimal overlay size to 256x200, which is the
	// minimum of the dimensions of the two resolutions 256x240 (NES) and
	// 320x200 (many DOS games use this). This hopefully assure that our
	// GUI has working layouts.
	overlayWidth = MAX<uint>(overlayWidth, 256);
	overlayHeight = MAX<uint>(overlayHeight, 200);

	if (!_overlay || _overlay->getFormat() != _defaultFormatAlpha) {
		delete _overlay;
		_overlay = nullptr;

		_overlay = createTexture(_defaultFormatAlpha);
		assert(_overlay);
		// We always filter the overlay with GL_LINEAR. This assures it's
		// readable in case it needs to be scaled and does not affect it
		// otherwise.
		_overlay->enableLinearFiltering(true);
	}
	_overlay->allocate(overlayWidth, overlayHeight);
	_overlay->fill(0);

#ifdef USE_OSD
	if (!_osd || _osd->getFormat() != _defaultFormatAlpha) {
		delete _osd;
		_osd = nullptr;

		_osd = createTexture(_defaultFormatAlpha);
		assert(_osd);
		// We always filter the osd with GL_LINEAR. This assures it's
		// readable in case it needs to be scaled and does not affect it
		// otherwise.
		_osd->enableLinearFiltering(true);
	}
	_osd->allocate(_overlay->getWidth(), _overlay->getHeight());
	_osd->fill(0);
#endif

	// Re-setup the scaling for the screen and cursor
	recalculateDisplayArea();
	recalculateCursorScaling();

	// Something changed, so update the screen change ID.
	++_screenChangeID;
}
示例#15
0
OSystem::TransactionError OpenGLGraphicsManager::endGFXTransaction() {
	assert(_transactionMode == kTransactionActive);

	uint transactionError = OSystem::kTransactionSuccess;

	bool setupNewGameScreen = false;
	if (   _oldState.gameWidth  != _currentState.gameWidth
	    || _oldState.gameHeight != _currentState.gameHeight) {
		setupNewGameScreen = true;
	}

#ifdef USE_RGB_COLOR
	if (_oldState.gameFormat != _currentState.gameFormat) {
		setupNewGameScreen = true;
	}

	// Check whether the requested format can actually be used.
	Common::List<Graphics::PixelFormat> supportedFormats = getSupportedFormats();
	// In case the requested format is not usable we will fall back to CLUT8.
	if (Common::find(supportedFormats.begin(), supportedFormats.end(), _currentState.gameFormat) == supportedFormats.end()) {
		_currentState.gameFormat = Graphics::PixelFormat::createFormatCLUT8();
		transactionError |= OSystem::kTransactionFormatNotSupported;
	}
#endif

	do {
		uint requestedWidth  = _currentState.gameWidth;
		uint requestedHeight = _currentState.gameHeight;
		const uint desiredAspect = getDesiredGameScreenAspect();
		requestedHeight = intToFrac(requestedWidth) / desiredAspect;

		if (!loadVideoMode(requestedWidth, requestedHeight,
#ifdef USE_RGB_COLOR
		                   _currentState.gameFormat
#else
		                   Graphics::PixelFormat::createFormatCLUT8()
#endif
		                  )
		   // HACK: This is really nasty but we don't have any guarantees of
		   // a context existing before, which means we don't know the maximum
		   // supported texture size before this. Thus, we check whether the
		   // requested game resolution is supported over here.
		   || (   _currentState.gameWidth  > (uint)Texture::getMaximumTextureSize()
		       || _currentState.gameHeight > (uint)Texture::getMaximumTextureSize())) {
			if (_transactionMode == kTransactionActive) {
				// Try to setup the old state in case its valid and is
				// actually different from the new one.
				if (_oldState.valid && _oldState != _currentState) {
					// Give some hints on what failed to set up.
					if (   _oldState.gameWidth  != _currentState.gameWidth
					    || _oldState.gameHeight != _currentState.gameHeight) {
						transactionError |= OSystem::kTransactionSizeChangeFailed;
					}

#ifdef USE_RGB_COLOR
					if (_oldState.gameFormat != _currentState.gameFormat) {
						transactionError |= OSystem::kTransactionFormatNotSupported;
					}
#endif

					if (_oldState.aspectRatioCorrection != _currentState.aspectRatioCorrection) {
						transactionError |= OSystem::kTransactionAspectRatioFailed;
					}

					if (_oldState.graphicsMode != _currentState.graphicsMode) {
						transactionError |= OSystem::kTransactionModeSwitchFailed;
					}

					// Roll back to the old state.
					_currentState = _oldState;
					_transactionMode = kTransactionRollback;

					// Try to set up the old state.
					continue;
				}
			}

			// DON'T use error(), as this tries to bring up the debug
			// console, which WON'T WORK now that we might no have a
			// proper screen.
			warning("OpenGLGraphicsManager::endGFXTransaction: Could not load any graphics mode!");
			g_system->quit();
		}

		// In case we reach this we have a valid state, yay.
		_transactionMode = kTransactionNone;
		_currentState.valid = true;
	} while (_transactionMode == kTransactionRollback);

	if (setupNewGameScreen) {
		delete _gameScreen;
		_gameScreen = nullptr;

#ifdef USE_RGB_COLOR
		_gameScreen = createTexture(_currentState.gameFormat);
#else
		_gameScreen = createTexture(Graphics::PixelFormat::createFormatCLUT8());
#endif
		assert(_gameScreen);
		if (_gameScreen->hasPalette()) {
			_gameScreen->setPalette(0, 256, _gamePalette);
		}

		_gameScreen->allocate(_currentState.gameWidth, _currentState.gameHeight);
		_gameScreen->enableLinearFiltering(_currentState.graphicsMode == GFX_LINEAR);
		// We fill the screen to all black or index 0 for CLUT8.
		if (_currentState.gameFormat.bytesPerPixel == 1) {
			_gameScreen->fill(0);
		} else {
			_gameScreen->fill(_gameScreen->getSurface()->format.RGBToColor(0, 0, 0));
		}
	}

	// Update our display area and cursor scaling. This makes sure we pick up
	// aspect ratio correction and game screen changes correctly.
	recalculateDisplayArea();
	recalculateCursorScaling();

	// Something changed, so update the screen change ID.
	++_screenChangeID;

	// Since transactionError is a ORd list of TransactionErrors this is
	// clearly wrong. But our API is simply broken.
	return (OSystem::TransactionError)transactionError;
}
示例#16
0
文件: text.cpp 项目: rayzer86/scummvm
/**
 * Main text outputting routine. If a object list is specified a
 * multi-object is created for the whole text and a pointer to the head
 * of the list is returned.
 * @param pList			Object list to add text to
 * @param szStr			String to output
 * @param color		Color for monochrome text
 * @param xPos			X position of string
 * @param yPos			Y position of string
 * @param hFont			Which font to use
 * @param mode			Mode flags for the string
 * @param sleepTime		Sleep time between each character (if non-zero)
 */
OBJECT *ObjectTextOut(OBJECT **pList, char *szStr, int color,
                      int xPos, int yPos, SCNHANDLE hFont, int mode, int sleepTime) {
    int xJustify;	// x position of text after justification
    int yOffset;	// offset to next line of text
    OBJECT *pFirst;	// head of multi-object text list
    OBJECT *pChar = 0;	// object ptr for the character
    byte c;
    SCNHANDLE hImg;
    const IMAGE *pImg;

    // make sure there is a linked list to add text to
    assert(pList);

    // get font pointer
    const FONT *pFont = (const FONT *)LockMem(hFont);

    // init head of text list
    pFirst = NULL;

    // get image for capital W
    assert(pFont->fontDef[(int)'W']);
    pImg = (const IMAGE *)LockMem(FROM_32(pFont->fontDef[(int)'W']));

    // get height of capital W for offset to next line
    yOffset = FROM_16(pImg->imgHeight) & ~C16_FLAG_MASK;

    while (*szStr) {
        // x justify the text according to the mode flags
        xJustify = JustifyText(szStr, xPos, pFont, mode);

        // repeat until end of string or end of line
        while ((c = *szStr) != EOS_CHAR && c != LF_CHAR) {
            if (g_bMultiByte) {
                if (c & 0x80)
                    c = ((c & ~0x80) << 8) + *++szStr;
            }
            hImg = FROM_32(pFont->fontDef[c]);

            if (hImg == 0) {
                // no image for this character

                // add font spacing for a space character
                xJustify += FROM_32(pFont->spaceSize);
            } else {	// printable character

                int aniX, aniY;		// char image animation offsets

                OBJ_INIT oi;
                oi.hObjImg  = FROM_32(pFont->fontInit.hObjImg);
                oi.objFlags = FROM_32(pFont->fontInit.objFlags);
                oi.objID    = FROM_32(pFont->fontInit.objID);
                oi.objX     = FROM_32(pFont->fontInit.objX);
                oi.objY     = FROM_32(pFont->fontInit.objY);
                oi.objZ     = FROM_32(pFont->fontInit.objZ);

                // allocate and init a character object
                if (pFirst == NULL)
                    // first time - init head of list
                    pFirst = pChar = InitObject(&oi);	// FIXME: endian issue using fontInit!!!
                else
                    // chain to multi-char list
                    pChar = pChar->pSlave = InitObject(&oi);	// FIXME: endian issue using fontInit!!!

                // convert image handle to pointer
                pImg = (const IMAGE *)LockMem(hImg);

                // fill in character object
                pChar->hImg   = hImg;			// image def
                pChar->width  = FROM_16(pImg->imgWidth);		// width of chars bitmap
                pChar->height = FROM_16(pImg->imgHeight) & ~C16_FLAG_MASK;	// height of chars bitmap
                pChar->hBits  = FROM_32(pImg->hImgBits);		// bitmap

                // check for absolute positioning
                if (mode & TXT_ABSOLUTE)
                    pChar->flags |= DMA_ABS;

                // set characters color - only effective for mono fonts
                pChar->constant = color;

                // get Y animation offset
                GetAniOffset(hImg, pChar->flags, &aniX, &aniY);

                // set x position - ignore animation point
                pChar->xPos = intToFrac(xJustify);

                // set y position - adjust for animation point
                pChar->yPos = intToFrac(yPos - aniY);

                if (mode & TXT_SHADOW) {
                    // we want to shadow the character
                    OBJECT *pShad;

                    // allocate a object for the shadow and chain to multi-char list
                    pShad = pChar->pSlave = AllocObject();

                    // copy the character for a shadow
                    CopyObject(pShad, pChar);

                    // add shadow offsets to characters position
                    pShad->xPos += intToFrac(FROM_32(pFont->xShadow));
                    pShad->yPos += intToFrac(FROM_32(pFont->yShadow));

                    // shadow is behind the character
                    pShad->zPos--;

                    // shadow is always mono
                    pShad->flags = DMA_CNZ | DMA_CHANGED;

                    // check for absolute positioning
                    if (mode & TXT_ABSOLUTE)
                        pShad->flags |= DMA_ABS;

                    // shadow always uses first palette entry
                    // should really alloc a palette here also ????
                    pShad->constant = 1;

                    // add shadow to object list
                    InsertObject(pList, pShad);
                }

                // add character to object list
                InsertObject(pList, pChar);

                // move to end of list
                if (pChar->pSlave)
                    pChar = pChar->pSlave;

                // add character spacing
                xJustify += FROM_16(pImg->imgWidth);
            }

            // finally add the inter-character spacing
            xJustify += FROM_32(pFont->xSpacing);

            // next character in string
            ++szStr;
        }

        // adjust the text y position and add the inter-line spacing
        yPos += yOffset + FROM_32(pFont->ySpacing);

        // check for newline
        if (c == LF_CHAR)
            // next character in string
            ++szStr;
    }

    // return head of list
    return pFirst;
}
示例#17
0
uint32 SoundGen2GS::mixSound() {
	int i, b;

	memset(_sndBuffer, 0, BUFFER_SIZE << 1);

	if (!_playing || _playingSound == -1)
		return BUFFER_SIZE;

	// Handle Apple IIGS sound mixing here
	// TODO: Implement playing both waves in an oscillator
	// TODO: Implement swap-mode in an oscillator
	for (uint midiChan = 0; midiChan < _midiChannels.size(); midiChan++) {
		for (uint gsChan = 0; gsChan < _midiChannels[midiChan]._gsChannels.size(); gsChan++) {
			IIgsChannelInfo &channel = _midiChannels[midiChan]._gsChannels[gsChan];
			if (channel.playing()) { // Only mix in actively playing channels
				// Frequency multiplier was 1076.0 based on tests made with MESS 0.117.
				// Tests made with KEGS32 averaged the multiplier to around 1045.
				// So this is a guess but maybe it's 1046.5... i.e. C6's frequency?
				double hertz = C6_FREQ * pow(SEMITONE, fracToDouble(channel.note));
				channel.posAdd = doubleToFrac(hertz / getRate());
				channel.vol = doubleToFrac(fracToDouble(channel.envVol) * fracToDouble(channel.chanVol) / 127.0);
				double tempVol = fracToDouble(channel.vol)/127.0;
				for (i = 0; i < IIGS_BUFFER_SIZE; i++) {
					b = channel.relocatedSample[fracToInt(channel.pos)];
					// TODO: Find out what volume/amplification setting is loud enough
					//       but still doesn't clip when playing many channels on it.
					_sndBuffer[i] += (int16) (b * tempVol * 256/4);
					channel.pos += channel.posAdd;

					if (channel.pos >= intToFrac(channel.size)) {
						if (channel.loop) {
							// Don't divide by zero on zero length samples
							channel.pos %= intToFrac(channel.size + (channel.size == 0));
							// Probably we should loop the envelope too
							channel.envSeg = 0;
							channel.envVol = channel.startEnvVol;
						} else {
							channel.pos = channel.chanVol = 0;
							channel.end = true;
							break;
						}
					}
				}

				if (channel.envSeg < ENVELOPE_SEGMENT_COUNT) {
					const IIgsEnvelopeSegment &seg = channel.ins->env.seg[channel.envSeg];
					// I currently assume enveloping works with the same speed as the MIDI
					// (i.e. with 1/60ths of a second ticks).
					// TODO: Check if enveloping really works with the same speed as MIDI
					frac_t envVolDelta = doubleToFrac(seg.inc/256.0);
					if (intToFrac(seg.bp) >= channel.envVol) {
						channel.envVol += envVolDelta;
						if (channel.envVol >= intToFrac(seg.bp)) {
							channel.envVol = intToFrac(seg.bp);
							channel.envSeg += 1;
						}
					} else {
						channel.envVol -= envVolDelta;
						if (channel.envVol <= intToFrac(seg.bp)) {
							channel.envVol = intToFrac(seg.bp);
							channel.envSeg += 1;
						}
					}
				}
			}
		}
	}

	removeStoppedSounds();

	return IIGS_BUFFER_SIZE;
}
示例#18
0
/**
 * Fill output buffer by advancing the generators for a 1/60th of a second.
 * @return Number of generated samples
 */
uint SoundGen2GS::generateOutput() {
	memset(_out, 0, _outSize * 2 * 2);

	if (!_playing || _playingSound == -1)
		return _outSize * 2;

	int16 *p = _out;
	int n = _outSize;
	while (n--) {
		int outl = 0;
		int outr = 0;
		for (int k = 0; k < MAX_GENERATORS; k++) {
			IIgsGenerator *g = &_generators[k];
			if (!g->ins)
				continue;
			const IIgsInstrumentHeader *i = g->ins;

			// Advance envelope
			int vol = fracToInt(g->a);
			if (g->a <= i->env[g->seg].bp) {
				g->a += i->env[g->seg].inc * ENVELOPE_COEF;
				if (g->a > i->env[g->seg].bp) {
					g->a = i->env[g->seg].bp;
					g->seg++;
				}
			} else {
				g->a -= i->env[g->seg].inc * ENVELOPE_COEF;
				if (g->a < i->env[g->seg].bp) {
					g->a = i->env[g->seg].bp;
					g->seg++;
				}
			}

			// TODO: Advance vibrato here. The Apple IIGS uses a LFO with
			// triangle wave to modulate the frequency of both oscillators.
			// In Apple IIGS the vibrato and the envelope are updated at the
			// same time, so the vibrato speed depends on ENVELOPE_COEF.

			// Advance oscillators
			int s0 = 0;
			int s1 = 0;
			if (!g->osc[0].halt) {
				s0 = g->osc[0].base[fracToInt(g->osc[0].p)];
				g->osc[0].p += g->osc[0].pd;
				if ((uint)fracToInt(g->osc[0].p) >= g->osc[0].size) {
					g->osc[0].p -= intToFrac(g->osc[0].size);
					if (!g->osc[0].loop)
						g->osc[0].halt = 1;
					if (g->osc[0].swap) {
						g->osc[0].halt = 1;
						g->osc[1].halt = 0;
					}
				}
			}
			if (!g->osc[1].halt) {
				s1 = g->osc[1].base[fracToInt(g->osc[1].p)];
				g->osc[1].p += g->osc[1].pd;
				if ((uint)fracToInt(g->osc[1].p) >= g->osc[1].size) {
					g->osc[1].p -= intToFrac(g->osc[1].size);
					if (!g->osc[1].loop)
						g->osc[1].halt = 1;
					if (g->osc[1].swap) {
						g->osc[0].halt = 0;
						g->osc[1].halt = 1;
					}
				}
			}

			// Take envelope and MIDI volume information into account.
			// Also amplify.
			s0 *= vol * g->vel / 127 * 80 / 256;
			s1 *= vol * g->vel / 127 * 80 / 256;

			// Select output channel.
			if (g->osc[0].chn)
				outl += s0;
			else
				outr += s0;

			if (g->osc[1].chn)
				outl += s1;
			else
				outr += s1;
		}

		if (outl > 32768)
			outl = 32768;
		if (outl < -32767)
			outl = -32767;
		if (outr > 32768)
			outr = 32768;
		if (outr < -32767)
			outr = -32767;

		*p++ = outl;
		*p++ = outr;
	}

	return _outSize * 2;
}