void gmersennemod( int n, giant g ) /* g := g (mod 2^n - 1) */ { int the_sign; giant scratch3 = borrowGiant(g->capacity); giant scratch4 = borrowGiant(1); if ((the_sign = gsign(g)) < 0) absg(g); while (bitlen(g) > n) { gtog(g,scratch3); gshiftright(n,scratch3); addg(scratch3,g); gshiftleft(n,scratch3); subg(scratch3,g); } if(isZero(g)) goto out; int_to_giant(1,scratch3); gshiftleft(n,scratch3); int_to_giant(1,scratch4); subg(scratch4,scratch3); if(gcompg(g,scratch3) >= 0) subg(scratch3,g); if (the_sign < 0) { g->sign = -g->sign; addg(scratch3,g); } out: returnGiant(scratch3); returnGiant(scratch4); }
int binvaux(giant p, giant x) /* Binary inverse method. Returns zero if no inverse exists, in which case x becomes GCD(x,p). */ { giant scratch7; giant u0; giant u1; giant v0; giant v1; int result = 1; int giantSize; PROF_START; if(isone(x)) return(result); giantSize = 4 * abs(p->sign); scratch7 = borrowGiant(giantSize); u0 = borrowGiant(giantSize); u1 = borrowGiant(giantSize); v0 = borrowGiant(giantSize); v1 = borrowGiant(giantSize); int_to_giant(1, v0); gtog(x, v1); int_to_giant(0,x); gtog(p, u1); while(!isZero(v1)) { gtog(u1, u0); bdivg(v1, u0); gtog(x, scratch7); gtog(v0, x); mulg(u0, v0); subg(v0,scratch7); gtog(scratch7, v0); gtog(u1, scratch7); gtog(v1, u1); mulg(u0, v1); subg(v1,scratch7); gtog(scratch7, v1); } if (!isone(u1)) { gtog(u1,x); if(x->sign<0) addg(p, x); result = 0; goto done; } if (x->sign<0) addg(p, x); done: returnGiant(scratch7); returnGiant(u0); returnGiant(u1); returnGiant(v0); returnGiant(v1); PROF_END(binvauxTime); return(result); }
void make_base_prim(curveParams *cp) /* Jams cp->basePrime with 2^q-k. Assumes valid maxDigits, q, k. */ { giant tmp = borrowGiant(cp->maxDigits); CKASSERT(cp->primeType != FPT_General); int_to_giant(1, cp->basePrime); gshiftleft((int)cp->q, cp->basePrime); int_to_giant(cp->k, tmp); subg(tmp, cp->basePrime); returnGiant(tmp); }
int signature_compare(giant p0x, giant p1x, giant p2x, curveParams *par) /* Returns non-zero iff p0x cannot be the x-coordinate of the sum of two points whose respective x-coordinates are p1x, p2x. */ { int ret = 0; giant t1; giant t2; giant t3; giant t4; giant t5; PROF_START; t1 = borrowGiant(par->maxDigits); t2 = borrowGiant(par->maxDigits); t3 = borrowGiant(par->maxDigits); t4 = borrowGiant(par->maxDigits); t5 = borrowGiant(par->maxDigits); if(gcompg(p1x, p2x) == 0) { int_to_giant(1, t1); numer_double(p1x, t1, t2, par); denom_double(p1x, t1, t3, par); mulg(p0x, t3); subg(t3, t2); feemod(par, t2); } else { numer_plus(p1x, p2x, t1, par); gshiftleft(1, t1); feemod(par, t1); int_to_giant(1, t3); numer_times(p1x, t3, p2x, t3, t2, par); int_to_giant(1, t4); int_to_giant(1, t5); denom_times(p1x, t4 , p2x, t5, t3, par); /* Now we require t3 x0^2 - t1 x0 + t2 == 0. */ mulg(p0x, t3); feemod(par, t3); subg(t1, t3); mulg(p0x, t3); feemod(par, t3); addg(t3, t2); feemod(par, t2); } if(!isZero(t2)) ret = SIGNATURE_INVALID; returnGiant(t1); returnGiant(t2); returnGiant(t3); returnGiant(t4); returnGiant(t5); PROF_END(sigCompTime); return(ret); }
/* * New, 13 Jan 1997. */ static void feepowermodg(curveParams *par, giant x, giant n) /* Power ladder. x := x^n (mod 2^q-k) */ { int len, pos; giant t1; PROF_START; t1 = borrowGiant(par->maxDigits); gtog(x, t1); int_to_giant(1, x); len = bitlen(n); pos = 0; while(1) { if(bitval(n, pos++)) { mulg(t1, x); feemod(par, x); } if(pos>=len) break; gsquare(t1); feemod(par, t1); } returnGiant(t1); PROF_END(powerModTime); }
static void powermodg( giant x, giant n, curveParams *cp ) /* x becomes x^n (mod basePrime). */ { int len, pos; giant scratch2 = borrowGiant(cp->maxDigits); gtog(x, scratch2); int_to_giant(1, x); len = bitlen(n); pos = 0; while (1) { if (bitval(n, pos++)) { mulg(scratch2, x); feemod(cp, x); } if (pos>=len) break; gsquare(scratch2); feemod(cp, scratch2); } returnGiant(scratch2); }
static void numer_plus(giant x1, giant x2, giant res, curveParams *par) /* Numerator algebra. res = (x1 x2 + a)(x1 + x2) + 2(c x1 x2 + b). */ { giant t1; giant t2; PROF_START; t1 = borrowGiant(par->maxDigits); t2 = borrowGiant(par->maxDigits); gtog(x1, t1); mulg(x2, t1); feemod(par, t1); gtog(x2, t2); addg(x1, t2); feemod(par, t2); gtog(t1, res); if(!isZero(par->a)) addg(par->a, res); mulg(t2, res); feemod(par, res); if(par->curveType == FCT_Weierstrass) { // i.e., isZero(par->c) int_to_giant(0, t1); } else { mulg(par->c, t1); feemod(par, t1); } if(!isZero(par->b)) addg(par->b, t1); gshiftleft(1, t1); addg(t1, res); feemod(par, res); returnGiant(t1); returnGiant(t2); PROF_END(numerPlusTime); }
/* * g *= (int n) * * FIXME - we can improve this... */ void imulg(unsigned n, giant g) { giant tmp = borrowGiant(abs(g->sign) + sizeof(int)); int_to_giant(n, tmp); mulg(tmp, g); returnGiant(tmp); }
static void powFp2(giant a, giant b, giant w2, giant n, curveParams *cp) /* Perform powering in the field F_p^2: a + b w := (a + b w)^n (mod p), where parameter w2 is a quadratic nonresidue (formally equal to w^2). */ { int j; giant t6; giant t7; giant t8; giant t9; if(isZero(n)) { int_to_giant(1,a); int_to_giant(0,b); return; } t6 = borrowGiant(cp->maxDigits); t7 = borrowGiant(cp->maxDigits); t8 = borrowGiant(cp->maxDigits); t9 = borrowGiant(cp->maxDigits); gtog(a, t8); gtog(b, t9); for(j = bitlen(n)-2; j >= 0; j--) { gtog(b, t6); mulg(a, b); addg(b,b); feemod(cp, b); /* b := 2 a b. */ gsquare(t6); feemod(cp, t6); mulg(w2, t6); feemod(cp, t6); gsquare(a); addg(t6, a); feemod(cp, a); /* a := a^2 + b^2 w2. */ if(bitval(n, j)) { gtog(b, t6); mulg(t8, b); feemod(cp, b); gtog(a, t7); mulg(t9, a); addg(a, b); feemod(cp, b); mulg(t9, t6); feemod(cp, t6); mulg(w2, t6); feemod(cp, t6); mulg(t8, a); addg(t6, a); feemod(cp, a); } } returnGiant(t6); returnGiant(t7); returnGiant(t8); returnGiant(t9); return; }
void ellDoubleProj(pointProj pt, curveParams *cp) /* pt := 2 pt on the curve. */ { giant x = pt->x, y = pt->y, z = pt->z; giant t1; giant t2; giant t3; if(isZero(y) || isZero(z)) { int_to_giant(1,x); int_to_giant(1,y); int_to_giant(0,z); return; } t1 = borrowGiant(cp->maxDigits); t2 = borrowGiant(cp->maxDigits); t3 = borrowGiant(cp->maxDigits); if((cp->a->sign >= 0) || (cp->a->n[0] != 3)) { /* Path prior to Apr2001. */ gtog(z,t1); gsquare(t1); feemod(cp, t1); gsquare(t1); feemod(cp, t1); mulg(cp->a, t1); feemod(cp, t1); /* t1 := a z^4. */ gtog(x, t2); gsquare(t2); feemod(cp, t2); smulg(3, t2); /* t2 := 3x^2. */ addg(t2, t1); feemod(cp, t1); /* t1 := slope m. */ } else { /* New optimization for a = -3 (post Apr 2001). */ gtog(z, t1); gsquare(t1); feemod(cp, t1); /* t1 := z^2. */ gtog(x, t2); subg(t1, t2); /* t2 := x-z^2. */ addg(x, t1); smulg(3, t1); /* t1 := 3(x+z^2). */ mulg(t2, t1); feemod(cp, t1); /* t1 := slope m. */ } mulg(y, z); addg(z,z); feemod(cp, z); /* z := 2 y z. */ gtog(y, t2); gsquare(t2); feemod(cp, t2); /* t2 := y^2. */ gtog(t2, t3); gsquare(t3); feemod(cp, t3); /* t3 := y^4. */ gshiftleft(3, t3); /* t3 := 8 y^4. */ mulg(x, t2); gshiftleft(2, t2); feemod(cp, t2); /* t2 := 4xy^2. */ gtog(t1, x); gsquare(x); feemod(cp, x); subg(t2, x); subg(t2, x); feemod(cp, x); /* x done. */ gtog(t1, y); subg(x, t2); mulg(t2, y); subg(t3, y); feemod(cp, y); returnGiant(t1); returnGiant(t2); returnGiant(t3); }
void ellMulProj(pointProj pt0, pointProj pt1, giant k, curveParams *cp) /* General elliptic multiplication; pt1 := k*pt0 on the curve, with k an arbitrary integer. */ { giant x = pt0->x, y = pt0->y, z = pt0->z, xx = pt1->x, yy = pt1->y, zz = pt1->z; int ksign, hlen, klen, b, hb, kb; giant t0; CKASSERT(cp->curveType == FCT_Weierstrass); if(isZero(k)) { int_to_giant(1, xx); int_to_giant(1, yy); int_to_giant(0, zz); return; } t0 = borrowGiant(cp->maxDigits); ksign = k->sign; if(ksign < 0) negg(k); gtog(x,xx); gtog(y,yy); gtog(z,zz); gtog(k, t0); addg(t0, t0); addg(k, t0); /* t0 := 3k. */ hlen = bitlen(t0); klen = bitlen(k); for(b = hlen-2; b > 0; b--) { ellDoubleProj(pt1,cp); hb = bitval(t0, b); if(b < klen) kb = bitval(k, b); else kb = 0; if((hb != 0) && (kb == 0)) ellAddProj(pt1, pt0, cp); else if((hb == 0) && (kb !=0)) ellSubProj(pt1, pt0, cp); } if(ksign < 0) { ellNegProj(pt1, cp); k->sign = -k->sign; } returnGiant(t0); }
/* * Specify private data for key created by new_public(). * Generates k->x. */ void set_priv_key_giant(key k, giant privGiant) { curveParams *cp = k->cp; /* elliptiy multiply of initial public point times private key */ #if CRYPTKIT_ELL_PROJ_ENABLE if((k->twist == CURVE_PLUS) && (cp->curveType == FCT_Weierstrass)) { /* projective */ pointProj pt1 = newPointProj(cp->maxDigits); CKASSERT((cp->y1Plus != NULL) && (!isZero(cp->y1Plus))); CKASSERT(k->y != NULL); /* pt1 := {x1Plus, y1Plus, 1} */ gtog(cp->x1Plus, pt1->x); gtog(cp->y1Plus, pt1->y); int_to_giant(1, pt1->z); /* pt1 := pt1 * privateKey */ ellMulProjSimple(pt1, privGiant, cp); /* result back to {k->x, k->y} */ gtog(pt1->x, k->x); gtog(pt1->y, k->y); freePointProj(pt1); // FIXME - clear the giants } else { #else { #endif /* CRYPTKIT_ELL_PROJ_ENABLE */ /* FEE */ if(k->twist == CURVE_PLUS) { gtog(cp->x1Plus, k->x); } else { gtog(cp->x1Minus, k->x); } elliptic_simple(k->x, privGiant, k->cp); } } int key_equal(key one, key two) { if (keys_inconsistent(one, two)) return 0; return !gcompg(one->x, two->x); } static void make_base(curveParams *par, giant result) /* Jams result with 2^q-k. */ { gtog(par->basePrime, result); }
void normalizeProj(pointProj pt, curveParams *cp) /* Obtain actual x,y coords via normalization: {x,y,z} := {x/z^2, y/z^3, 1}. */ { giant x = pt->x, y = pt->y, z = pt->z; giant t1; CKASSERT(cp->curveType == FCT_Weierstrass); if(isZero(z)) { int_to_giant(1,x); int_to_giant(1,y); return; } t1 = borrowGiant(cp->maxDigits); binvg_cp(cp, z); // was binvaux(p, z); gtog(z, t1); gsquare(z); feemod(cp, z); mulg(z, x); feemod(cp, x); mulg(t1, z); mulg(z, y); feemod(cp, y); int_to_giant(1, z); returnGiant(t1); }
/* * New optimzation of curveOrderJustify using known reciprocal, 11 June 1997. * g is set to be within [2, curveOrder-2]. */ static void curveOrderJustifyWithRecip(giant g, giant curveOrder, giant recip) { giant tmp; CKASSERT(!isZero(curveOrder)); modg_via_recip(curveOrder, recip, g); // g now in [0, curveOrder-1] if(isZero(g)) { /* * First degenerate case - (g == 0) : set g := 2 */ dbgLog(("curveOrderJustify: case 1\n")); int_to_giant(2, g); return; } if(isone(g)) { /* * Second case - (g == 1) : set g := 2 */ dbgLog(("curveOrderJustify: case 2\n")); int_to_giant(2, g); return; } tmp = borrowGiant(g->capacity); gtog(g, tmp); iaddg(1, tmp); if(gcompg(tmp, curveOrder) == 0) { /* * Third degenerate case - (g == (curveOrder-1)) : set g -= 1 */ dbgLog(("curveOrderJustify: case 3\n")); int_to_giant(1, tmp); subg(tmp, g); } returnGiant(tmp); return; }
static void bdivg(giant v, giant u) /* u becomes greatest power of two not exceeding u/v. */ { int diff = bitlen(u) - bitlen(v); giant scratch7; if (diff<0) { int_to_giant(0,u); return; } scratch7 = borrowGiant(u->capacity); gtog(v, scratch7); gshiftleft(diff,scratch7); if(gcompg(u,scratch7) < 0) diff--; if(diff<0) { int_to_giant(0,u); returnGiant(scratch7); return; } int_to_giant(1,u); gshiftleft(diff,u); returnGiant(scratch7); }
/* * Elliptic multiply: x := n * {x, 1} */ void elliptic_simple(giant x, giant n, curveParams *par) { giant ztmp = borrowGiant(par->maxDigits); giant cur_n = borrowGiant(par->maxDigits); START_ELL_MEASURE(n); int_to_giant(1, ztmp); elliptic(x, ztmp, n, par); binvg_cp(par, ztmp); mulg(ztmp, x); feemod(par, x); END_ELL_MEASURE; returnGiant(cur_n); returnGiant(ztmp); }
static void numer_times(giant x1, giant z1, giant x2, giant z2, giant res, curveParams *par) /* Numerator algebra. res := (x1 x2 - a z1 z2)^2 - 4 b(x1 z2 + x2 z1 + c z1 z2) z1 z2 */ { giant t1; giant t2; giant t3; giant t4; PROF_START; t1 = borrowGiant(par->maxDigits); t2 = borrowGiant(par->maxDigits); t3 = borrowGiant(par->maxDigits); t4 = borrowGiant(par->maxDigits); gtog(x1, t1); mulg(x2, t1); feemod(par, t1); gtog(z1, t2); mulg(z2, t2); feemod(par, t2); gtog(t1, res); if(!isZero(par->a)) { gtog(par->a, t3); mulg(t2, t3); feemod(par, t3); subg(t3, res); } gsquare(res); feemod(par, res); if(isZero(par->b)) goto done; if(par->curveType != FCT_Weierstrass) { // i.e., !isZero(par->c) gtog(par->c, t3); mulg(t2, t3); feemod(par, t3); } else int_to_giant(0, t3); gtog(z1, t4); mulg(x2, t4); feemod(par, t4); addg(t4, t3); gtog(x1, t4); mulg(z2, t4); feemod(par, t4); addg(t4, t3); mulg(par->b, t3); feemod(par, t3); mulg(t2, t3); gshiftleft(2, t3); feemod(par, t3); subg(t3, res); feemod(par, res); done: returnGiant(t1); returnGiant(t2); returnGiant(t3); returnGiant(t4); PROF_END(numerTimesTime); }
static void numer_double(giant x, giant z, giant res, curveParams *par) /* Numerator algebra. res := (x^2 - a z^2)^2 - 4 b (2 x + c z) z^3. */ { giant t1; giant t2; PROF_START; t1 = borrowGiant(par->maxDigits); t2 = borrowGiant(par->maxDigits); gtog(x, t1); gsquare(t1); feemod(par, t1); gtog(z, res); gsquare(res); feemod(par, res); gtog(res, t2); if(!isZero(par->a) ) { if(!isone(par->a)) { /* Speedup - REC 17 Jan 1997. */ mulg(par->a, res); feemod(par, res); } subg(res, t1); feemod(par, t1); } gsquare(t1); feemod(par, t1); /* t1 := (x^2 - a z^2)^2. */ if(isZero(par->b)) { /* Speedup - REC 17 Jan 1997. */ gtog(t1, res); goto done; } if(par->curveType != FCT_Weierstrass) { // i.e., !isZero(par->c) // Speedup - REC 17 Jan 1997. gtog(z, res); mulg(par->c, res); feemod(par, res); } else { int_to_giant(0, res); } addg(x, res); addg(x, res); mulg(par->b, res); feemod(par, res); gshiftleft(2, res); mulg(z, res); feemod(par, res); mulg(t2, res); feemod(par, res); negg(res); addg(t1, res); feemod(par, res); done: returnGiant(t1); returnGiant(t2); PROF_END(numerDoubleTime); }
/* * Init an empty feePubKey from a DER-encoded blob, public and private key versions. */ feeReturn feePubKeyInitFromDERPubBlob(feePubKey pubKey, unsigned char *keyBlob, size_t keyBlobLen) { pubKeyInst *pkinst = (pubKeyInst *) pubKey; feeReturn frtn; int version; if(pkinst == NULL) { return FR_BadPubKey; } /* kind of messy, maybe we should clean this up. But new_public() does too * much - e.g., it allocates the x and y which we really don't want */ memset(pkinst, 0, sizeof(pubKeyInst)); pkinst->plus = (key) fmalloc(sizeof(keystruct)); pkinst->minus = (key) fmalloc(sizeof(keystruct)); if((pkinst->plus == NULL) || (pkinst->minus == NULL)) { return FR_Memory; } memset(pkinst->plus, 0, sizeof(keystruct)); memset(pkinst->minus, 0, sizeof(keystruct)); pkinst->cp = NULL; pkinst->privGiant = NULL; pkinst->plus->twist = CURVE_PLUS; pkinst->minus->twist = CURVE_MINUS; frtn = feeDERDecodePublicKey(keyBlob, (unsigned)keyBlobLen, &version, // currently unused &pkinst->cp, &pkinst->plus->x, &pkinst->minus->x, &pkinst->plus->y); if(frtn) { return frtn; } /* minus curve, y is not used */ pkinst->minus->y = newGiant(1); int_to_giant(0, pkinst->minus->y); pkinst->plus->cp = pkinst->minus->cp = pkinst->cp; return FR_Success; }
void iaddg(int i, giant g) { /* positive g becomes g + (int)i */ int j; giantDigit carry; int size = abs(g->sign); if (isZero(g)) { int_to_giant(i,g); } else { carry = i; for(j=0; ((j<size) && (carry != 0)); j++) { g->n[j] = giantAddDigits(g->n[j], carry, &carry); } if(carry) { ++g->sign; // realloc if (g->sign > (int)g->capacity) CKRaise("iaddg overflow!"); g->n[size] = carry; } } }
void findPointProj(pointProj pt, giant seed, curveParams *cp) /* Starting with seed, finds a random (projective) point {x,y,1} on curve. */ { giant x = pt->x, y = pt->y, z = pt->z; CKASSERT(cp->curveType == FCT_Weierstrass); feemod(cp, seed); while(1) { gtog(seed, x); gsquare(x); feemod(cp, x); // x := seed^2 addg(cp->a, x); // x := seed^2 + a mulg(seed,x); // x := seed^3 + a*seed addg(cp->b, x); feemod(cp, x); // x := seed^3 + a seed + b. /* test cubic form for having root. */ if(sqrtmod(x, cp)) break; iaddg(1, seed); } gtog(x, y); gtog(seed,x); int_to_giant(1, z); }
/* * Create new feeSig object, including a random large integer 'randGiant' for * possible use in salting a feeHash object, and 'PmX', equal to * randGiant 'o' P1. Note that this is not called when *verifying* a * signature, only when signing. */ feeSig feeSigNewWithKey( feePubKey pubKey, feeRandFcn randFcn, /* optional */ void *randRef) { sigInst *sinst = sinstAlloc(); feeRand frand; unsigned char *randBytes; unsigned randBytesLen; curveParams *cp; if(pubKey == NULL) { return NULL; } cp = feePubKeyCurveParams(pubKey); if(cp == NULL) { return NULL; } /* * Generate random m, a little larger than key size, save as randGiant */ randBytesLen = (feePubKeyBitsize(pubKey) / 8) + 1; randBytes = (unsigned char*) fmalloc(randBytesLen); if(randFcn) { randFcn(randRef, randBytes, randBytesLen); } else { frand = feeRandAlloc(); feeRandBytes(frand, randBytes, randBytesLen); feeRandFree(frand); } sinst->randGiant = giant_with_data(randBytes, randBytesLen); memset(randBytes, 0, randBytesLen); ffree(randBytes); #if FEE_DEBUG if(isZero(sinst->randGiant)) { printf("feeSigNewWithKey: randGiant = 0!\n"); } #endif // FEE_DEBUG /* * Justify randGiant to be in [2, x1OrderPlus] */ x1OrderPlusJustify(sinst->randGiant, cp); /* PmX := randGiant 'o' P1 */ sinst->PmX = newGiant(cp->maxDigits); #if CRYPTKIT_ELL_PROJ_ENABLE if(cp->curveType == FCT_Weierstrass) { pointProjStruct pt0; sinst->PmY = newGiant(cp->maxDigits); /* cook up pt0 as P1 */ pt0.x = sinst->PmX; pt0.y = sinst->PmY; pt0.z = borrowGiant(cp->maxDigits); gtog(cp->x1Plus, pt0.x); gtog(cp->y1Plus, pt0.y); int_to_giant(1, pt0.z); /* pt0 := P1 'o' randGiant */ ellMulProjSimple(&pt0, sinst->randGiant, cp); returnGiant(pt0.z); } else { if(SIG_CURVE == CURVE_PLUS) { gtog(cp->x1Plus, sinst->PmX); } else { gtog(cp->x1Minus, sinst->PmX); } elliptic_simple(sinst->PmX, sinst->randGiant, cp); } #else /* CRYPTKIT_ELL_PROJ_ENABLE */ if(SIG_CURVE == CURVE_PLUS) { gtog(cp->x1Plus, sinst->PmX); } else { gtog(cp->x1Minus, sinst->PmX); } elliptic_simple(sinst->PmX, sinst->randGiant, cp); #endif /* CRYPTKIT_ELL_PROJ_ENABLE */ return sinst; }
feeReturn feeSigVerify(feeSig sig, const unsigned char *data, unsigned dataLen, feePubKey pubKey) { pointProjStruct Q; giant messageGiant = NULL; pointProjStruct scratch; sigInst *sinst = (sigInst*) sig; feeReturn frtn; curveParams *cp; key origKey; // may be plus or minus key if(sinst->PmX == NULL) { dbgLog(("sigVerify without parse!\n")); return FR_IllegalArg; } cp = feePubKeyCurveParams(pubKey); if(cp->curveType != FCT_Weierstrass) { return feeSigVerifyNoProj(sig, data, dataLen, pubKey); } borrowPointProj(&Q, cp->maxDigits); borrowPointProj(&scratch, cp->maxDigits); /* * Q := P1 */ gtog(cp->x1Plus, Q.x); gtog(cp->y1Plus, Q.y); int_to_giant(1, Q.z); messageGiant = giant_with_data(data, dataLen); // M(ciphertext) /* Q := u 'o' P1 */ ellMulProjSimple(&Q, sinst->u, cp); /* scratch := theirPub */ origKey = feePubKeyPlusCurve(pubKey); gtog(origKey->x, scratch.x); gtog(origKey->y, scratch.y); int_to_giant(1, scratch.z); #if SIG_DEBUG if(sigDebug) { printf("verify origKey:\n"); printKey(origKey); printf("messageGiant: "); printGiant(messageGiant); printf("curveParams:\n"); printCurveParams(cp); } #endif // SIG_DEBUG /* scratch := M 'o' theirPub */ ellMulProjSimple(&scratch, messageGiant, cp); #if SIG_DEBUG if(sigDebug) { printf("signature_compare, with\n"); printf("p0 = Q:\n"); printGiant(Q.x); printf("p1 = Pm:\n"); printGiant(sinst->PmX); printf("p2 = scratch = R:\n"); printGiant(scratch.x); } #endif // SIG_DEBUG if(signature_compare(Q.x, sinst->PmX, scratch.x, cp)) { frtn = FR_InvalidSignature; #if LOG_BAD_SIG printf("***yup, bad sig***\n"); #endif // LOG_BAD_SIG } else { frtn = FR_Success; } freeGiant(messageGiant); returnPointProj(&Q); returnPointProj(&scratch); return frtn; }
/* * Completely rewritten in CryptKit-18, 13 Jan 1997, for new IEEE-style * curveParameters. */ void elliptic_add(giant x1, giant x2, giant x3, curveParams *par, int s) { /* Addition algorithm for x3 = x1 + x2 on the curve, with sign ambiguity s. From theory, we know that if {x1,1} and {x2,1} are on a curve, then their elliptic sum (x1,1} + {x2,1} = {x3,1} must have x3 as one of two values: x3 = U/2 + s*Sqrt[U^2/4 - V] where sign s = +-1, and U,V are functions of x1,x2. Tho present function is called a maximum of twice, to settle which of +- is s. When a call is made, it is guaranteed already that x1, x2 both lie on the same curve (+- curve); i.e., which curve (+-) is not connected at all with sign s of the x3 relation. */ giant cur_n; giant t1; giant t2; giant t3; giant t4; giant t5; PROF_START; cur_n = borrowGiant(par->maxDigits); t1 = borrowGiant(par->maxDigits); t2 = borrowGiant(par->maxDigits); t3 = borrowGiant(par->maxDigits); t4 = borrowGiant(par->maxDigits); t5 = borrowGiant(par->maxDigits); if(gcompg(x1, x2)==0) { int_to_giant(1, t1); numer_double(x1, t1, x3, par); denom_double(x1, t1, t2, par); binvg_cp(par, t2); mulg(t2, x3); feemod(par, x3); goto out; } numer_plus(x1, x2, t1, par); int_to_giant(1, t3); numer_times(x1, t3, x2, t3, t2, par); int_to_giant(1, t4); int_to_giant(1, t5); denom_times(x1, t4, x2, t5, t3, par); binvg_cp(par, t3); mulg(t3, t1); feemod(par, t1); /* t1 := U/2. */ mulg(t3, t2); feemod(par, t2); /* t2 := V. */ /* Now x3 will be t1 +- Sqrt[t1^2 - t2]. */ gtog(t1, t4); gsquare(t4); feemod(par, t4); subg(t2, t4); make_base(par, cur_n); iaddg(1, cur_n); gshiftright(2, cur_n); /* cur_n := (p+1)/4. */ feepowermodg(par, t4, cur_n); /* t4 := t2^((p+1)/4) (mod p). */ gtog(t1, x3); if(s != SIGN_PLUS) negg(t4); addg(t4, x3); feemod(par, x3); out: returnGiant(cur_n); returnGiant(t1); returnGiant(t2); returnGiant(t3); returnGiant(t4); returnGiant(t5); PROF_END(ellAddTime); }
static int sqrtmod(giant x, curveParams *cp) /* If Sqrt[x] (mod p) exists, function returns 1, else 0. In either case x is modified, but if 1 is returned, x:= Sqrt[x] (mod p). */ { int rtn; giant t0 = borrowGiant(cp->maxDigits); giant t1 = borrowGiant(cp->maxDigits); giant t2 = borrowGiant(cp->maxDigits); giant t3 = borrowGiant(cp->maxDigits); giant t4 = borrowGiant(cp->maxDigits); giant p = cp->basePrime; feemod(cp, x); /* Justify the argument. */ gtog(x, t0); /* Store x for eventual validity check on square root. */ if((p->n[0] & 3) == 3) { /* The case p = 3 (mod 4). */ gtog(p, t1); iaddg(1, t1); gshiftright(2, t1); powermodg(x, t1, cp); goto resolve; } /* Next, handle case p = 5 (mod 8). */ if((p->n[0] & 7) == 5) { gtog(p, t1); int_to_giant(1, t2); subg(t2, t1); gshiftright(2, t1); gtog(x, t2); powermodg(t2, t1, cp); /* t2 := x^((p-1)/4) % p. */ iaddg(1, t1); gshiftright(1, t1); /* t1 := (p+3)/8. */ if(isone(t2)) { powermodg(x, t1, cp); /* x^((p+3)/8) is root. */ goto resolve; } else { int_to_giant(1, t2); subg(t2, t1); /* t1 := (p-5)/8. */ gshiftleft(2,x); powermodg(x, t1, cp); mulg(t0, x); addg(x, x); feemod(cp, x); /* 2x (4x)^((p-5)/8. */ goto resolve; } } /* Next, handle tougher case: p = 1 (mod 8). */ int_to_giant(2, t1); while(1) { /* Find appropriate nonresidue. */ gtog(t1, t2); gsquare(t2); subg(x, t2); feemod(cp, t2); if(jacobi_symbol(t2, cp) == -1) break; iaddg(1, t1); } /* t2 is now w^2 in F_p^2. */ int_to_giant(1, t3); gtog(p, t4); iaddg(1, t4); gshiftright(1, t4); powFp2(t1, t3, t2, t4, cp); gtog(t1, x); resolve: gtog(x,t1); gsquare(t1); feemod(cp, t1); if(gcompg(t0, t1) == 0) { rtn = 1; /* Success. */ } else { rtn = 0; /* no square root */ } returnGiant(t0); returnGiant(t1); returnGiant(t2); returnGiant(t3); returnGiant(t4); return rtn; }
feeReturn feeECDSASign( feePubKey pubKey, feeSigFormat format, // Signature format DER 9.62 / RAW const unsigned char *data, // data to be signed unsigned dataLen, // in bytes feeRandFcn randFcn, // optional void *randRef, // optional unsigned char **sigData, // malloc'd and RETURNED unsigned *sigDataLen) // RETURNED { curveParams *cp; /* giant integers per IEEE P1363 notation */ giant c; // both 1363 'c' and 'i' // i.e., x-coord of u's pub key giant d; giant u; // random private key giant s; // private key as giant giant f; // data (message) as giant feeReturn frtn = FR_Success; feeRand frand; unsigned char *randBytes; unsigned randBytesLen; unsigned groupBytesLen; giant privGiant; #if ECDSA_SIGN_USE_PROJ pointProjStruct pt; // pt->x = c giant pty; // pt->y giant ptz; // pt->z #endif // ECDSA_SIGN_USE_PROJ if(pubKey == NULL) { return FR_BadPubKey; } cp = feePubKeyCurveParams(pubKey); if(cp == NULL) { return FR_BadPubKey; } if(cp->curveType != FCT_Weierstrass) { return FR_IllegalCurve; } CKASSERT(!isZero(cp->x1OrderPlus)); /* * Private key and message to be signed as giants */ privGiant = feePubKeyPrivData(pubKey); if(privGiant == NULL) { dbgLog(("Attempt to Sign without private data\n")); return FR_IllegalArg; } s = borrowGiant(cp->maxDigits); gtog(privGiant, s); if(dataLen > (cp->maxDigits * GIANT_BYTES_PER_DIGIT)) { f = borrowGiant(BYTES_TO_GIANT_DIGITS(dataLen)); } else { f = borrowGiant(cp->maxDigits); } deserializeGiant(data, f, dataLen); /* * Certicom SEC1 states that if the digest is larger than the modulus, * use the left q bits of the digest. */ unsigned hashBits = dataLen * 8; if(hashBits > cp->q) { gshiftright(hashBits - cp->q, f); } sigDbg(("ECDSA sign:\n")); sigLogGiant(" s : ", s); sigLogGiant(" f : ", f); c = borrowGiant(cp->maxDigits); d = borrowGiant(cp->maxDigits); u = borrowGiant(cp->maxDigits); if(randFcn == NULL) { frand = feeRandAlloc(); } else { frand = NULL; } /* * Random size is just larger than base prime */ groupBytesLen = ((feePubKeyBitsize(pubKey)+7) / 8); randBytesLen = groupBytesLen+8; // +8bytes (64bits) to reduce the biais when with reduction mod prime. Per FIPS186-4 - "Using Extra Random Bits" randBytes = (unsigned char*) fmalloc(randBytesLen); #if ECDSA_SIGN_USE_PROJ /* quick temp pointProj */ pty = borrowGiant(cp->maxDigits); ptz = borrowGiant(cp->maxDigits); pt.x = c; pt.y = pty; pt.z = ptz; #endif // ECDSA_SIGN_USE_PROJ while(1) { /* Repeat this loop until we have a non-zero c and d */ /* * 1) Obtain random u in [2, x1OrderPlus-2] */ SIGPROF_START; if(randFcn) { randFcn(randRef, randBytes, randBytesLen); } else { feeRandBytes(frand, randBytes, randBytesLen); } deserializeGiant(randBytes, u, randBytesLen); sigLogGiant(" raw u : ", u); sigLogGiant(" order : ", cp->x1OrderPlus); x1OrderPlusJustify(u, cp); SIGPROF_END(signStep1); sigLogGiant(" in range u : ", u); /* * note 'o' indicates elliptic multiply, * is integer mult. * * 2) Compute x coordinate, call it c, of u 'o' G * 3) Reduce: c := c mod x1OrderPlus; * 4) If c == 0, goto (1); */ SIGPROF_START; gtog(cp->x1Plus, c); #if ECDSA_SIGN_USE_PROJ /* projective coordinates */ gtog(cp->y1Plus, pty); int_to_giant(1, ptz); ellMulProjSimple(&pt, u, cp); #else /* ECDSA_SIGN_USE_PROJ */ /* the FEE way */ elliptic_simple(c, u, cp); #endif /* ECDSA_SIGN_USE_PROJ */ SIGPROF_END(signStep2); SIGPROF_START; x1OrderPlusMod(c, cp); SIGPROF_END(signStep34); if(isZero(c)) { dbgLog(("feeECDSASign: zero modulo (1)\n")); continue; } /* * 5) Compute u^(-1) mod x1OrderPlus; */ SIGPROF_START; gtog(u, d); binvg_x1OrderPlus(cp, d); SIGPROF_END(signStep5); sigLogGiant(" u^(-1) : ", d); /* * 6) Compute signature d as: * d = [u^(-1) (f + s*c)] (mod x1OrderPlus) */ SIGPROF_START; mulg(c, s); // s *= c x1OrderPlusMod(s, cp); addg(f, s); // s := f + (s * c) x1OrderPlusMod(s, cp); mulg(s, d); // d := u^(-1) (f + (s * c)) x1OrderPlusMod(d, cp); SIGPROF_END(signStep67); /* * 7) If d = 0, goto (1); */ if(isZero(d)) { dbgLog(("feeECDSASign: zero modulo (2)\n")); continue; } sigLogGiant(" c : ", c); sigLogGiant(" d : ", d); break; // normal successful exit } /* * 8) signature is now the integer pair (c, d). */ /* * Cook up raw data representing the signature. */ SIGPROF_START; ECDSA_encode(format,groupBytesLen, c, d, sigData, sigDataLen); SIGPROF_END(signStep8); if(frand != NULL) { feeRandFree(frand); } ffree(randBytes); returnGiant(u); returnGiant(d); returnGiant(c); returnGiant(f); returnGiant(s); #if ECDSA_SIGN_USE_PROJ returnGiant(pty); returnGiant(ptz); #endif /* ECDSA_SIGN_USE_PROJ */ return frtn; }
feeReturn feeECDSAVerify(const unsigned char *sigData, size_t sigDataLen, const unsigned char *data, unsigned dataLen, feePubKey pubKey, feeSigFormat format) { /* giant integers per IEEE P1363 notation */ giant h; // s^(-1) giant h1; // f h giant h2; // c times h giant littleC; // newGiant from ECDSA_decode giant littleD; // ditto giant c; // borrowed, full size giant d; // ditto giant cPrime = NULL; // i mod r pointProj h1G = NULL; // h1 'o' G pointProj h2W = NULL; // h2 'o' W key W; // i.e., their public key unsigned version; feeReturn frtn; curveParams *cp = feePubKeyCurveParams(pubKey); unsigned groupBytesLen = ((feePubKeyBitsize(pubKey)+7) / 8); int result; if(cp == NULL) { return FR_BadPubKey; } /* * First decode the byteRep string. */ frtn = ECDSA_decode( format, groupBytesLen, sigData, sigDataLen, &littleC, &littleD, &version); if(frtn) { return frtn; } /* * littleC and littleD have capacity = abs(sign), probably * not big enough.... */ c = borrowGiant(cp->maxDigits); d = borrowGiant(cp->maxDigits); gtog(littleC, c); gtog(littleD, d); freeGiant(littleC); freeGiant(littleD); sigDbg(("ECDSA verify:\n")); /* * Verify that c and d are within [1,group_order-1] */ if((gcompg(cp->cOrderPlus, c) != 1) || (gcompg(cp->cOrderPlus, d) != 1) || isZero(c) || isZero(d)) { returnGiant(c); returnGiant(d); return FR_InvalidSignature; } /* * W = signer's public key */ W = feePubKeyPlusCurve(pubKey); /* * 1) Compute h = d^(-1) (mod x1OrderPlus); */ SIGPROF_START; h = borrowGiant(cp->maxDigits); gtog(d, h); binvg_x1OrderPlus(cp, h); SIGPROF_END(vfyStep1); /* * 2) h1 = digest as giant (skips assigning to 'f' in P1363) */ if(dataLen > (cp->maxDigits * GIANT_BYTES_PER_DIGIT)) { h1 = borrowGiant(BYTES_TO_GIANT_DIGITS(dataLen)); } else { h1 = borrowGiant(cp->maxDigits); } deserializeGiant(data, h1, dataLen); /* * Certicom SEC1 states that if the digest is larger than the modulus, * use the left q bits of the digest. */ unsigned hashBits = dataLen * 8; if(hashBits > cp->q) { gshiftright(hashBits - cp->q, h1); } sigLogGiant(" Wx : ", W->x); sigLogGiant(" f : ", h1); sigLogGiant(" c : ", c); sigLogGiant(" d : ", d); sigLogGiant(" s^(-1) : ", h); /* * 3) Compute h1 = f * h mod x1OrderPlus; */ SIGPROF_START; mulg(h, h1); // h1 := f * h x1OrderPlusMod(h1, cp); SIGPROF_END(vfyStep3); /* * 4) Compute h2 = c * h (mod x1OrderPlus); */ SIGPROF_START; h2 = borrowGiant(cp->maxDigits); gtog(c, h2); mulg(h, h2); // h2 := c * h x1OrderPlusMod(h2, cp); SIGPROF_END(vfyStep4); /* * 5) Compute h2W = h2 'o' W (W = theirPub) */ CKASSERT((W->y != NULL) && !isZero(W->y)); h2W = newPointProj(cp->maxDigits); gtog(W->x, h2W->x); gtog(W->y, h2W->y); int_to_giant(1, h2W->z); ellMulProjSimple(h2W, h2, cp); /* * 6) Compute h1G = h1 'o' G (G = {x1Plus, y1Plus, 1} ) */ CKASSERT((cp->y1Plus != NULL) && !isZero(cp->y1Plus)); h1G = newPointProj(cp->maxDigits); gtog(cp->x1Plus, h1G->x); gtog(cp->y1Plus, h1G->y); int_to_giant(1, h1G->z); ellMulProjSimple(h1G, h1, cp); /* * 7) h1G := (h1 'o' G) + (h2 'o' W) */ ellAddProj(h1G, h2W, cp); /* * 8) If elliptic sum is point at infinity, signature is bad; stop. */ if(isZero(h1G->z)) { dbgLog(("feeECDSAVerify: h1 * G = point at infinity\n")); result = 1; goto vfyDone; } normalizeProj(h1G, cp); /* * 9) cPrime = x coordinate of elliptic sum, mod x1OrderPlus */ cPrime = borrowGiant(cp->maxDigits); gtog(h1G->x, cPrime); x1OrderPlusMod(cPrime, cp); /* * 10) Good sig iff cPrime == c */ result = gcompg(c, cPrime); vfyDone: if(result) { frtn = FR_InvalidSignature; #if LOG_BAD_SIG printf("***yup, bad sig***\n"); #endif // LOG_BAD_SIG } else { frtn = FR_Success; } returnGiant(c); returnGiant(d); returnGiant(h); returnGiant(h1); returnGiant(h2); if(h1G != NULL) { freePointProj(h1G); } if(h2W != NULL) { freePointProj(h2W); } if(cPrime != NULL) { returnGiant(cPrime); } return frtn; }
void ellAddProj(pointProj pt0, pointProj pt1, curveParams *cp) /* pt0 := pt0 + pt1 on the curve. */ { giant x0 = pt0->x, y0 = pt0->y, z0 = pt0->z, x1 = pt1->x, y1 = pt1->y, z1 = pt1->z; giant t1; giant t2; giant t3; giant t4; giant t5; giant t6; giant t7; if(isZero(z0)) { gtog(x1,x0); gtog(y1,y0); gtog(z1,z0); return; } if(isZero(z1)) return; t1 = borrowGiant(cp->maxDigits); t2 = borrowGiant(cp->maxDigits); t3 = borrowGiant(cp->maxDigits); t4 = borrowGiant(cp->maxDigits); t5 = borrowGiant(cp->maxDigits); t6 = borrowGiant(cp->maxDigits); t7 = borrowGiant(cp->maxDigits); gtog(x0, t1); gtog(y0,t2); gtog(z0, t3); gtog(x1, t4); gtog(y1, t5); if(!isone(z1)) { gtog(z1, t6); gtog(t6, t7); gsquare(t7); feemod(cp, t7); mulg(t7, t1); feemod(cp, t1); mulg(t6, t7); feemod(cp, t7); mulg(t7, t2); feemod(cp, t2); } gtog(t3, t7); gsquare(t7); feemod(cp, t7); mulg(t7, t4); feemod(cp, t4); mulg(t3, t7); feemod(cp, t7); mulg(t7, t5); feemod(cp, t5); negg(t4); addg(t1, t4); feemod(cp, t4); negg(t5); addg(t2, t5); feemod(cp, t5); if(isZero(t4)) { if(isZero(t5)) { ellDoubleProj(pt0, cp); } else { int_to_giant(1, x0); int_to_giant(1, y0); int_to_giant(0, z0); } goto out; } addg(t1, t1); subg(t4, t1); feemod(cp, t1); addg(t2, t2); subg(t5, t2); feemod(cp, t2); if(!isone(z1)) { mulg(t6, t3); feemod(cp, t3); } mulg(t4, t3); feemod(cp, t3); gtog(t4, t7); gsquare(t7); feemod(cp, t7); mulg(t7, t4); feemod(cp, t4); mulg(t1, t7); feemod(cp, t7); gtog(t5, t1); gsquare(t1); feemod(cp, t1); subg(t7, t1); feemod(cp, t1); subg(t1, t7); subg(t1, t7); feemod(cp, t7); mulg(t7, t5); feemod(cp, t5); mulg(t2, t4); feemod(cp, t4); gtog(t5, t2); subg(t4,t2); feemod(cp, t2); if(t2->n[0] & 1) { /* Test if t2 is odd. */ addg(cp->basePrime, t2); } gshiftright(1, t2); gtog(t1, x0); gtog(t2, y0); gtog(t3, z0); out: returnGiant(t1); returnGiant(t2); returnGiant(t3); returnGiant(t4); returnGiant(t5); returnGiant(t6); returnGiant(t7); }