static void
intel_bufferobj_copy_subdata(GLcontext *ctx,
			     struct gl_buffer_object *src,
			     struct gl_buffer_object *dst,
			     GLintptr read_offset, GLintptr write_offset,
			     GLsizeiptr size)
{
   struct intel_context *intel = intel_context(ctx);
   struct intel_buffer_object *intel_src = intel_buffer_object(src);
   struct intel_buffer_object *intel_dst = intel_buffer_object(dst);
   drm_intel_bo *src_bo, *dst_bo;

   if (size == 0)
      return;

   /* If we're in system memory, just map and memcpy. */
   if (intel_src->sys_buffer || intel_dst->sys_buffer) {
      /* The same buffer may be used, but note that regions copied may
       * not overlap.
       */
      if (src == dst) {
	 char *ptr = intel_bufferobj_map(ctx, GL_COPY_WRITE_BUFFER,
					 GL_READ_WRITE, dst);
	 memcpy(ptr + write_offset, ptr + read_offset, size);
	 intel_bufferobj_unmap(ctx, GL_COPY_WRITE_BUFFER, dst);
      } else {
	 const char *src_ptr;
	 char *dst_ptr;

	 src_ptr =  intel_bufferobj_map(ctx, GL_COPY_READ_BUFFER,
					GL_READ_ONLY, src);
	 dst_ptr =  intel_bufferobj_map(ctx, GL_COPY_WRITE_BUFFER,
					GL_WRITE_ONLY, dst);

	 memcpy(dst_ptr + write_offset, src_ptr + read_offset, size);

	 intel_bufferobj_unmap(ctx, GL_COPY_READ_BUFFER, src);
	 intel_bufferobj_unmap(ctx, GL_COPY_WRITE_BUFFER, dst);
      }
   }

   /* Otherwise, we have real BOs, so blit them. */

   dst_bo = intel_bufferobj_buffer(intel, intel_dst, INTEL_WRITE_PART);
   src_bo = intel_bufferobj_buffer(intel, intel_src, INTEL_READ);

   intel_emit_linear_blit(intel,
			  dst_bo, write_offset,
			  src_bo, read_offset, size);

   /* Since we've emitted some blits to buffers that will (likely) be used
    * in rendering operations in other cache domains in this batch, emit a
    * flush.  Once again, we wish for a domain tracker in libdrm to cover
    * usage inside of a batchbuffer.
    */
   intel_batchbuffer_emit_mi_flush(intel->batch);
}
示例#2
0
/* Attach to a pbo, discarding our data.  Effectively zero-copy upload
 * the pbo's data.
 */
void
intel_region_attach_pbo(struct intel_context *intel,
                        struct intel_region *region,
                        struct intel_buffer_object *pbo)
{
   dri_bo *buffer;

   if (region->pbo == pbo)
      return;

   _DBG("%s %p %p\n", __FUNCTION__, region, pbo);

   /* If there is already a pbo attached, break the cow tie now.
    * Don't call intel_region_release_pbo() as that would
    * unnecessarily allocate a new buffer we would have to immediately
    * discard.
    */
   if (region->pbo) {
      region->pbo->region = NULL;
      region->pbo = NULL;
   }

   if (region->buffer) {
      dri_bo_unreference(region->buffer);
      region->buffer = NULL;
   }

   /* make sure pbo has a buffer of its own */
   buffer = intel_bufferobj_buffer(intel, pbo, INTEL_WRITE_FULL);

   region->pbo = pbo;
   region->pbo->region = region;
   dri_bo_reference(buffer);
   region->buffer = buffer;
}
示例#3
0
static GLenum
intel_buffer_object_purgeable(struct gl_context * ctx,
                              struct gl_buffer_object *obj,
                              GLenum option)
{
    struct intel_buffer_object *intel_obj = intel_buffer_object (obj);

    if (intel_obj->buffer != NULL)
        return intel_buffer_purgeable(intel_obj->buffer);

    if (option == GL_RELEASED_APPLE) {
        if (intel_obj->sys_buffer != NULL) {
            free(intel_obj->sys_buffer);
            intel_obj->sys_buffer = NULL;
        }

        return GL_RELEASED_APPLE;
    } else {
        /* XXX Create the buffer and madvise(MADV_DONTNEED)? */
        struct intel_context *intel = intel_context(ctx);
        drm_intel_bo *bo = intel_bufferobj_buffer(intel, intel_obj, INTEL_READ);

        return intel_buffer_purgeable(bo);
    }
}
示例#4
0
void brw_draw_init( struct brw_context *brw )
{
   GLcontext *ctx = &brw->intel.ctx;
   struct vbo_context *vbo = vbo_context(ctx);
   GLuint i;
   
   /* Register our drawing function: 
    */
   vbo->draw_prims = brw_draw_prims;

   brw->vb.upload.size = BRW_UPLOAD_INIT_SIZE;

   for (i = 0; i < BRW_NR_UPLOAD_BUFS; i++) {
      brw->vb.upload.vbo[i] = ctx->Driver.NewBufferObject(ctx, 1, GL_ARRAY_BUFFER_ARB);
      
      /* NOTE:  These are set to no-backing-store.
       */
      bmBufferSetInvalidateCB(&brw->intel,
			      intel_bufferobj_buffer(intel_buffer_object(brw->vb.upload.vbo[i])),
			      brw_invalidate_vbo_cb,
			      &brw->intel,
			      GL_TRUE);
   }

   ctx->Driver.BufferData( ctx, 
			   GL_ARRAY_BUFFER_ARB, 
			   BRW_UPLOAD_INIT_SIZE,
			   NULL,
			   GL_DYNAMIC_DRAW_ARB,
			   brw->vb.upload.vbo[0] );
}
示例#5
0
文件: intel_tex.c 项目: airlied/mesa
static bool
intel_set_texture_storage_for_buffer_object(struct gl_context *ctx,
                                            struct gl_texture_object *tex_obj,
                                            struct gl_buffer_object *buffer_obj,
                                            uint32_t buffer_offset,
                                            uint32_t row_stride,
                                            bool read_only)
{
   struct brw_context *brw = brw_context(ctx);
   struct intel_texture_object *intel_texobj = intel_texture_object(tex_obj);
   struct gl_texture_image *image = tex_obj->Image[0][0];
   struct intel_texture_image *intel_image = intel_texture_image(image);
   struct intel_buffer_object *intel_buffer_obj = intel_buffer_object(buffer_obj);

   if (!read_only) {
      /* Renderbuffers have the restriction that the buffer offset and
       * surface pitch must be a multiple of the element size.  If it's
       * not, we have to fail and fall back to software.
       */
      int cpp = _mesa_get_format_bytes(image->TexFormat);
      if (buffer_offset % cpp || row_stride % cpp) {
         perf_debug("Bad PBO alignment; fallback to CPU mapping\n");
         return false;
      }

      if (!brw->format_supported_as_render_target[image->TexFormat]) {
         perf_debug("Non-renderable PBO format; fallback to CPU mapping\n");
         return false;
      }
   }

   assert(intel_texobj->mt == NULL);

   drm_intel_bo *bo = intel_bufferobj_buffer(brw, intel_buffer_obj,
                                             buffer_offset,
                                             row_stride * image->Height);
   intel_texobj->mt =
      intel_miptree_create_for_bo(brw, bo,
                                  image->TexFormat,
                                  buffer_offset,
                                  image->Width, image->Height, image->Depth,
                                  row_stride,
                                  0);
   if (!intel_texobj->mt)
      return false;

   if (!_swrast_init_texture_image(image))
      return false;

   intel_miptree_reference(&intel_image->mt, intel_texobj->mt);

   /* The miptree is in a validated state, so no need to check later. */
   intel_texobj->needs_validate = false;
   intel_texobj->validated_first_level = 0;
   intel_texobj->validated_last_level = 0;
   intel_texobj->_Format = intel_texobj->mt->format;

   return true;
}
示例#6
0
static void
gen8_upload_3dstate_so_buffers(struct brw_context *brw)
{
   struct gl_context *ctx = &brw->ctx;
   /* BRW_NEW_TRANSFORM_FEEDBACK */
   struct gl_transform_feedback_object *xfb_obj =
      ctx->TransformFeedback.CurrentObject;
   struct brw_transform_feedback_object *brw_obj =
      (struct brw_transform_feedback_object *) xfb_obj;

   /* Set up the up to 4 output buffers.  These are the ranges defined in the
    * gl_transform_feedback_object.
    */
   for (int i = 0; i < 4; i++) {
      struct intel_buffer_object *bufferobj =
         intel_buffer_object(xfb_obj->Buffers[i]);

      if (!bufferobj) {
         BEGIN_BATCH(8);
         OUT_BATCH(_3DSTATE_SO_BUFFER << 16 | (8 - 2));
         OUT_BATCH((i << SO_BUFFER_INDEX_SHIFT));
         OUT_BATCH(0);
         OUT_BATCH(0);
         OUT_BATCH(0);
         OUT_BATCH(0);
         OUT_BATCH(0);
         OUT_BATCH(0);
         ADVANCE_BATCH();
         continue;
      }

      uint32_t start = xfb_obj->Offset[i];
      assert(start % 4 == 0);
      uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
      drm_intel_bo *bo =
         intel_bufferobj_buffer(brw, bufferobj, start, end - start);
      assert(end <= bo->size);

      perf_debug("Missing MOCS setup for 3DSTATE_SO_BUFFER.");

      BEGIN_BATCH(8);
      OUT_BATCH(_3DSTATE_SO_BUFFER << 16 | (8 - 2));
      OUT_BATCH(GEN8_SO_BUFFER_ENABLE | (i << SO_BUFFER_INDEX_SHIFT) |
                GEN8_SO_BUFFER_OFFSET_WRITE_ENABLE |
                GEN8_SO_BUFFER_OFFSET_ADDRESS_ENABLE |
                (BDW_MOCS_WB << 22));
      OUT_RELOC64(bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, start);
      OUT_BATCH(xfb_obj->Size[i] / 4 - 1);
      OUT_RELOC64(brw_obj->offset_bo,
                  I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
                  i * sizeof(uint32_t));
      if (brw_obj->zero_offsets)
         OUT_BATCH(0); /* Zero out the offset and write that to offset_bo */
      else
         OUT_BATCH(0xFFFFFFFF); /* Use offset_bo as the "Stream Offset." */
      ADVANCE_BATCH();
   }
   brw_obj->zero_offsets = false;
}
示例#7
0
/* XXX: Do this for TexSubImage also:
 */
static GLboolean
try_pbo_upload(struct intel_context *intel,
               struct intel_texture_image *intelImage,
               const struct gl_pixelstore_attrib *unpack,
               GLint internalFormat,
               GLint width, GLint height,
               GLenum format, GLenum type, const void *pixels)
{
   struct intel_buffer_object *pbo = intel_buffer_object(unpack->BufferObj);
   GLuint src_offset, src_stride;
   GLuint dst_offset, dst_stride;

   if (!pbo ||
       intel->ctx._ImageTransferState ||
       unpack->SkipPixels || unpack->SkipRows) {
      _mesa_printf("%s: failure 1\n", __FUNCTION__);
      return GL_FALSE;
   }

   src_offset = (GLuint) pixels;

   if (unpack->RowLength > 0)
      src_stride = unpack->RowLength;
   else
      src_stride = width;

   dst_offset = intel_miptree_image_offset(intelImage->mt,
                                           intelImage->face,
                                           intelImage->level);

   dst_stride = intelImage->mt->pitch;

   intelFlush(&intel->ctx);
   LOCK_HARDWARE(intel);
   {
      struct _DriBufferObject *src_buffer =
         intel_bufferobj_buffer(intel, pbo, INTEL_READ);
      struct _DriBufferObject *dst_buffer =
         intel_region_buffer(intel->intelScreen, intelImage->mt->region,
                             INTEL_WRITE_FULL);


      intelEmitCopyBlit(intel,
                        intelImage->mt->cpp,
                        src_stride, src_buffer, src_offset,
                        dst_stride, dst_buffer, dst_offset,
                        0, 0, 0, 0, width, height,
			GL_COPY);

      intel_batchbuffer_flush(intel->batch);
   }
   UNLOCK_HARDWARE(intel);

   return GL_TRUE;
}
示例#8
0
static void
upload_3dstate_so_buffers(struct brw_context *brw)
{
    struct gl_context *ctx = &brw->ctx;
    /* BRW_NEW_VERTEX_PROGRAM */
    const struct gl_shader_program *vs_prog =
            ctx->Shader.CurrentVertexProgram;
    const struct gl_transform_feedback_info *linked_xfb_info =
            &vs_prog->LinkedTransformFeedback;
    /* BRW_NEW_TRANSFORM_FEEDBACK */
    struct gl_transform_feedback_object *xfb_obj =
            ctx->TransformFeedback.CurrentObject;
    int i;

    /* Set up the up to 4 output buffers.  These are the ranges defined in the
     * gl_transform_feedback_object.
     */
    for (i = 0; i < 4; i++) {
        struct intel_buffer_object *bufferobj =
            intel_buffer_object(xfb_obj->Buffers[i]);
        drm_intel_bo *bo;
        uint32_t start, end;
        uint32_t stride;

        if (!xfb_obj->Buffers[i]) {
            /* The pitch of 0 in this command indicates that the buffer is
             * unbound and won't be written to.
             */
            BEGIN_BATCH(4);
            OUT_BATCH(_3DSTATE_SO_BUFFER << 16 | (4 - 2));
            OUT_BATCH((i << SO_BUFFER_INDEX_SHIFT));
            OUT_BATCH(0);
            OUT_BATCH(0);
            ADVANCE_BATCH();

            continue;
        }

        bo = intel_bufferobj_buffer(brw, bufferobj, INTEL_WRITE_PART);
        stride = linked_xfb_info->BufferStride[i] * 4;

        start = xfb_obj->Offset[i];
        assert(start % 4 == 0);
        end = ALIGN(start + xfb_obj->Size[i], 4);
        assert(end <= bo->size);

        BEGIN_BATCH(4);
        OUT_BATCH(_3DSTATE_SO_BUFFER << 16 | (4 - 2));
        OUT_BATCH((i << SO_BUFFER_INDEX_SHIFT) | stride);
        OUT_RELOC(bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, start);
        OUT_RELOC(bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, end);
        ADVANCE_BATCH();
    }
}
int brw_prepare_indices( struct brw_context *brw,
			 const struct _mesa_index_buffer *index_buffer,
			 dri_bo **bo_return,
			 GLuint *offset_return)
{
   GLcontext *ctx = &brw->intel.ctx;
   struct intel_context *intel = &brw->intel;
   GLuint ib_size = get_size(index_buffer->type) * index_buffer->count;
   dri_bo *bo;
   struct gl_buffer_object *bufferobj = index_buffer->obj;
   GLuint offset = (GLuint)index_buffer->ptr;
   int ret;

   /* Turn into a proper VBO:
    */
   if (!bufferobj->Name) {
     
      /* Get new bufferobj, offset:
       */
      get_space(brw, ib_size, &bo, &offset);

      /* Straight upload
       */
      dri_bo_subdata(bo, offset, ib_size, index_buffer->ptr);
   } else {
      /* If the index buffer isn't aligned to its element size, we have to
       * rebase it into a temporary.
       */
       if ((get_size(index_buffer->type) - 1) & offset) {
           GLubyte *map = ctx->Driver.MapBuffer(ctx,
                                                GL_ELEMENT_ARRAY_BUFFER_ARB,
                                                GL_DYNAMIC_DRAW_ARB,
                                                bufferobj);
           map += offset;

	   get_space(brw, ib_size, &bo, &offset);

	   dri_bo_subdata(bo, offset, ib_size, map);

           ctx->Driver.UnmapBuffer(ctx, GL_ELEMENT_ARRAY_BUFFER_ARB, bufferobj);
       } else {
	  bo = intel_bufferobj_buffer(intel, intel_buffer_object(bufferobj),
				      INTEL_READ);
	  dri_bo_reference(bo);
       }
   }

   *bo_return = bo;
   *offset_return = offset;
   ret = dri_bufmgr_check_aperture_space(bo);
   return ret;
}
示例#10
0
static void brw_upload_indices(struct brw_context *brw)
{
   struct gl_context *ctx = &brw->ctx;
   const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
   GLuint ib_size;
   drm_intel_bo *old_bo = brw->ib.bo;
   struct gl_buffer_object *bufferobj;
   GLuint offset;
   GLuint ib_type_size;

   if (index_buffer == NULL)
      return;

   ib_type_size = _mesa_sizeof_type(index_buffer->type);
   ib_size = ib_type_size * index_buffer->count;
   bufferobj = index_buffer->obj;

   /* Turn into a proper VBO:
    */
   if (!_mesa_is_bufferobj(bufferobj)) {
      /* Get new bufferobj, offset:
       */
      intel_upload_data(brw, index_buffer->ptr, ib_size, ib_type_size,
			&brw->ib.bo, &offset);
   } else {
      offset = (GLuint) (unsigned long) index_buffer->ptr;

      /* If the index buffer isn't aligned to its element size, we have to
       * rebase it into a temporary.
       */
      if ((ib_type_size - 1) & offset) {
         perf_debug("copying index buffer to a temporary to work around "
                    "misaligned offset %d\n", offset);

         GLubyte *map = ctx->Driver.MapBufferRange(ctx,
                                                   offset,
                                                   ib_size,
                                                   GL_MAP_READ_BIT,
                                                   bufferobj,
                                                   MAP_INTERNAL);

         intel_upload_data(brw, map, ib_size, ib_type_size,
                           &brw->ib.bo, &offset);

         ctx->Driver.UnmapBuffer(ctx, bufferobj, MAP_INTERNAL);
      } else {
         drm_intel_bo *bo =
            intel_bufferobj_buffer(brw, intel_buffer_object(bufferobj),
                                   offset, ib_size);
         if (bo != brw->ib.bo) {
            drm_intel_bo_unreference(brw->ib.bo);
            brw->ib.bo = bo;
            drm_intel_bo_reference(bo);
         }
      }
   }

   /* Use 3DPRIMITIVE's start_vertex_offset to avoid re-uploading
    * the index buffer state when we're just moving the start index
    * of our drawing.
    */
   brw->ib.start_vertex_offset = offset / ib_type_size;

   if (brw->ib.bo != old_bo)
      brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;

   if (index_buffer->type != brw->ib.type) {
      brw->ib.type = index_buffer->type;
      brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
   }
}
示例#11
0
void
brw_prepare_vertices(struct brw_context *brw)
{
   struct gl_context *ctx = &brw->ctx;
   /* CACHE_NEW_VS_PROG */
   GLbitfield64 vs_inputs = brw->vs.prog_data->inputs_read;
   const unsigned char *ptr = NULL;
   GLuint interleaved = 0;
   unsigned int min_index = brw->vb.min_index + brw->basevertex;
   unsigned int max_index = brw->vb.max_index + brw->basevertex;
   int delta, i, j;

   struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
   GLuint nr_uploads = 0;

   /* _NEW_POLYGON
    *
    * On gen6+, edge flags don't end up in the VUE (either in or out of the
    * VS).  Instead, they're uploaded as the last vertex element, and the data
    * is passed sideband through the fixed function units.  So, we need to
    * prepare the vertex buffer for it, but it's not present in inputs_read.
    */
   if (brw->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
                           ctx->Polygon.BackMode != GL_FILL)) {
      vs_inputs |= VERT_BIT_EDGEFLAG;
   }

   if (0)
      fprintf(stderr, "%s %d..%d\n", __FUNCTION__, min_index, max_index);

   /* Accumulate the list of enabled arrays. */
   brw->vb.nr_enabled = 0;
   while (vs_inputs) {
      GLuint i = ffsll(vs_inputs) - 1;
      struct brw_vertex_element *input = &brw->vb.inputs[i];

      vs_inputs &= ~BITFIELD64_BIT(i);
      brw->vb.enabled[brw->vb.nr_enabled++] = input;
   }

   if (brw->vb.nr_enabled == 0)
      return;

   if (brw->vb.nr_buffers)
      return;

   for (i = j = 0; i < brw->vb.nr_enabled; i++) {
      struct brw_vertex_element *input = brw->vb.enabled[i];
      const struct gl_client_array *glarray = input->glarray;

      if (_mesa_is_bufferobj(glarray->BufferObj)) {
	 struct intel_buffer_object *intel_buffer =
	    intel_buffer_object(glarray->BufferObj);
	 int k;

	 /* If we have a VB set to be uploaded for this buffer object
	  * already, reuse that VB state so that we emit fewer
	  * relocations.
	  */
	 for (k = 0; k < i; k++) {
	    const struct gl_client_array *other = brw->vb.enabled[k]->glarray;
	    if (glarray->BufferObj == other->BufferObj &&
		glarray->StrideB == other->StrideB &&
		glarray->InstanceDivisor == other->InstanceDivisor &&
		(uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
	    {
	       input->buffer = brw->vb.enabled[k]->buffer;
	       input->offset = glarray->Ptr - other->Ptr;
	       break;
	    }
	 }
	 if (k == i) {
	    struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];

	    /* Named buffer object: Just reference its contents directly. */
	    buffer->offset = (uintptr_t)glarray->Ptr;
	    buffer->stride = glarray->StrideB;
	    buffer->step_rate = glarray->InstanceDivisor;

            uint32_t offset, size;
            if (glarray->InstanceDivisor) {
               offset = buffer->offset;
               size = (buffer->stride * ((brw->num_instances /
                                          glarray->InstanceDivisor) - 1) +
                       glarray->_ElementSize);
            } else {
               if (min_index == -1) {
                  offset = 0;
                  size = intel_buffer->Base.Size;
               } else {
                  offset = buffer->offset + min_index * buffer->stride;
                  size = (buffer->stride * (max_index - min_index) +
                          glarray->_ElementSize);
               }
            }
            buffer->bo = intel_bufferobj_buffer(brw, intel_buffer,
                                                offset, size);
            drm_intel_bo_reference(buffer->bo);

	    input->buffer = j++;
	    input->offset = 0;
	 }

	 /* This is a common place to reach if the user mistakenly supplies
	  * a pointer in place of a VBO offset.  If we just let it go through,
	  * we may end up dereferencing a pointer beyond the bounds of the
	  * GTT.  We would hope that the VBO's max_index would save us, but
	  * Mesa appears to hand us min/max values not clipped to the
	  * array object's _MaxElement, and _MaxElement frequently appears
	  * to be wrong anyway.
	  *
	  * The VBO spec allows application termination in this case, and it's
	  * probably a service to the poor programmer to do so rather than
	  * trying to just not render.
	  */
	 assert(input->offset < brw->vb.buffers[input->buffer].bo->size);
      } else {
	 /* Queue the buffer object up to be uploaded in the next pass,
	  * when we've decided if we're doing interleaved or not.
	  */
	 if (nr_uploads == 0) {
	    interleaved = glarray->StrideB;
	    ptr = glarray->Ptr;
	 }
	 else if (interleaved != glarray->StrideB ||
                  glarray->Ptr < ptr ||
                  (uintptr_t)(glarray->Ptr - ptr) + glarray->_ElementSize > interleaved)
	 {
            /* If our stride is different from the first attribute's stride,
             * or if the first attribute's stride didn't cover our element,
             * disable the interleaved upload optimization.  The second case
             * can most commonly occur in cases where there is a single vertex
             * and, for example, the data is stored on the application's
             * stack.
             *
             * NOTE: This will also disable the optimization in cases where
             * the data is in a different order than the array indices.
             * Something like:
             *
             *     float data[...];
             *     glVertexAttribPointer(0, 4, GL_FLOAT, 32, &data[4]);
             *     glVertexAttribPointer(1, 4, GL_FLOAT, 32, &data[0]);
             */
	    interleaved = 0;
	 }

	 upload[nr_uploads++] = input;
      }
   }

   /* If we need to upload all the arrays, then we can trim those arrays to
    * only the used elements [min_index, max_index] so long as we adjust all
    * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
    */
   brw->vb.start_vertex_bias = 0;
   delta = min_index;
   if (nr_uploads == brw->vb.nr_enabled) {
      brw->vb.start_vertex_bias = -delta;
      delta = 0;
   }

   /* Handle any arrays to be uploaded. */
   if (nr_uploads > 1) {
      if (interleaved) {
	 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
	 /* All uploads are interleaved, so upload the arrays together as
	  * interleaved.  First, upload the contents and set up upload[0].
	  */
	 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
				 buffer, interleaved);
	 buffer->offset -= delta * interleaved;

	 for (i = 0; i < nr_uploads; i++) {
	    /* Then, just point upload[i] at upload[0]'s buffer. */
	    upload[i]->offset =
	       ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
	    upload[i]->buffer = j;
	 }
	 j++;

	 nr_uploads = 0;
      }
   }
   /* Upload non-interleaved arrays */
   for (i = 0; i < nr_uploads; i++) {
      struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
      if (upload[i]->glarray->InstanceDivisor == 0) {
         copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
                                 buffer, upload[i]->glarray->_ElementSize);
      } else {
         /* This is an instanced attribute, since its InstanceDivisor
          * is not zero. Therefore, its data will be stepped after the
          * instanced draw has been run InstanceDivisor times.
          */
         uint32_t instanced_attr_max_index =
            (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
         copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
                                 buffer, upload[i]->glarray->_ElementSize);
      }
      buffer->offset -= delta * buffer->stride;
      buffer->step_rate = upload[i]->glarray->InstanceDivisor;
      upload[i]->buffer = j++;
      upload[i]->offset = 0;
   }

   brw->vb.nr_buffers = j;
}
static bool
do_blit_drawpixels(struct gl_context * ctx,
		   GLint x, GLint y, GLsizei width, GLsizei height,
		   GLenum format, GLenum type,
		   const struct gl_pixelstore_attrib *unpack,
		   const GLvoid * pixels)
{
   struct brw_context *brw = brw_context(ctx);
   struct intel_buffer_object *src = intel_buffer_object(unpack->BufferObj);
   GLuint src_offset;
   drm_intel_bo *src_buffer;

   DBG("%s\n", __FUNCTION__);

   if (!intel_check_blit_fragment_ops(ctx, false))
      return false;

   if (ctx->DrawBuffer->_NumColorDrawBuffers != 1) {
      DBG("%s: fallback due to MRT\n", __FUNCTION__);
      return false;
   }

   struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
   struct intel_renderbuffer *irb = intel_renderbuffer(rb);

   if (!_mesa_format_matches_format_and_type(irb->mt->format, format, type,
                                             false)) {
      DBG("%s: bad format for blit\n", __FUNCTION__);
      return false;
   }

   if (unpack->SwapBytes || unpack->LsbFirst ||
       unpack->SkipPixels || unpack->SkipRows) {
      DBG("%s: bad packing params\n", __FUNCTION__);
      return false;
   }

   int src_stride = _mesa_image_row_stride(unpack, width, format, type);
   bool src_flip = false;
   /* Mesa flips the src_stride for unpack->Invert, but we want our mt to have
    * a normal src_stride.
    */
   if (unpack->Invert) {
      src_stride = -src_stride;
      src_flip = true;
   }

   src_offset = (GLintptr)pixels;
   src_offset += _mesa_image_offset(2, unpack, width, height,
				    format, type, 0, 0, 0);

   intel_prepare_render(brw);

   src_buffer = intel_bufferobj_buffer(brw, src,
				       src_offset, width * height *
                                       irb->mt->cpp);

   struct intel_mipmap_tree *pbo_mt =
      intel_miptree_create_for_bo(brw,
                                  src_buffer,
                                  irb->mt->format,
                                  src_offset,
                                  width, height,
                                  src_stride, I915_TILING_NONE);
   if (!pbo_mt)
      return false;

   if (!intel_miptree_blit(brw,
                           pbo_mt, 0, 0,
                           0, 0, src_flip,
                           irb->mt, irb->mt_level, irb->mt_layer,
                           x, y, _mesa_is_winsys_fbo(ctx->DrawBuffer),
                           width, height, GL_COPY)) {
      DBG("%s: blit failed\n", __FUNCTION__);
      intel_miptree_release(&pbo_mt);
      return false;
   }

   intel_miptree_release(&pbo_mt);

   if (ctx->Query.CurrentOcclusionObject)
      ctx->Query.CurrentOcclusionObject->Result += width * height;

   intel_check_front_buffer_rendering(brw);

   DBG("%s: success\n", __FUNCTION__);
   return true;
}
示例#13
0
static GLboolean
do_blit_readpixels(GLcontext * ctx,
                   GLint x, GLint y, GLsizei width, GLsizei height,
                   GLenum format, GLenum type,
                   const struct gl_pixelstore_attrib *pack, GLvoid * pixels)
{
   struct intel_context *intel = intel_context(ctx);
   struct intel_region *src = intel_readbuf_region(intel);
   struct intel_buffer_object *dst = intel_buffer_object(pack->BufferObj);
   GLuint dst_offset;
   GLuint rowLength;
   drm_intel_bo *dst_buffer;
   GLboolean all;
   GLint dst_x, dst_y;

   if (INTEL_DEBUG & DEBUG_PIXEL)
      printf("%s\n", __FUNCTION__);

   if (!src)
      return GL_FALSE;

   if (!_mesa_is_bufferobj(pack->BufferObj)) {
      /* PBO only for now:
       */
      if (INTEL_DEBUG & DEBUG_PIXEL)
         printf("%s - not PBO\n", __FUNCTION__);
      return GL_FALSE;
   }


   if (ctx->_ImageTransferState ||
       !intel_check_blit_format(src, format, type)) {
      if (INTEL_DEBUG & DEBUG_PIXEL)
         printf("%s - bad format for blit\n", __FUNCTION__);
      return GL_FALSE;
   }

   if (pack->Alignment != 1 || pack->SwapBytes || pack->LsbFirst) {
      if (INTEL_DEBUG & DEBUG_PIXEL)
         printf("%s: bad packing params\n", __FUNCTION__);
      return GL_FALSE;
   }

   if (pack->RowLength > 0)
      rowLength = pack->RowLength;
   else
      rowLength = width;

   if (pack->Invert) {
      if (INTEL_DEBUG & DEBUG_PIXEL)
         printf("%s: MESA_PACK_INVERT not done yet\n", __FUNCTION__);
      return GL_FALSE;
   }
   else {
      if (ctx->ReadBuffer->Name == 0)
	 rowLength = -rowLength;
   }

   dst_offset = (GLintptr) _mesa_image_address(2, pack, pixels, width, height,
					       format, type, 0, 0, 0);

   if (!_mesa_clip_copytexsubimage(ctx,
				   &dst_x, &dst_y,
				   &x, &y,
				   &width, &height)) {
      return GL_TRUE;
   }

   intel_prepare_render(intel);

   all = (width * height * src->cpp == dst->Base.Size &&
	  x == 0 && dst_offset == 0);

   dst_x = 0;
   dst_y = 0;

   dst_buffer = intel_bufferobj_buffer(intel, dst,
					       all ? INTEL_WRITE_FULL :
					       INTEL_WRITE_PART);

   if (ctx->ReadBuffer->Name == 0)
      y = ctx->ReadBuffer->Height - (y + height);

   if (!intelEmitCopyBlit(intel,
			  src->cpp,
			  src->pitch, src->buffer, 0, src->tiling,
			  rowLength, dst_buffer, dst_offset, GL_FALSE,
			  x, y,
			  dst_x, dst_y,
			  width, height,
			  GL_COPY)) {
      return GL_FALSE;
   }

   if (INTEL_DEBUG & DEBUG_PIXEL)
      printf("%s - DONE\n", __FUNCTION__);

   return GL_TRUE;
}
int brw_prepare_vertices( struct brw_context *brw,
			       GLuint min_index,
			       GLuint max_index )
{
   GLcontext *ctx = &brw->intel.ctx;
   struct intel_context *intel = intel_context(ctx);
   GLuint tmp = brw->vs.prog_data->inputs_read; 
   GLuint i;
   const unsigned char *ptr = NULL;
   GLuint interleave = 0;
   int ret = 0;

   struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
   GLuint nr_enabled = 0;

   struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
   GLuint nr_uploads = 0;

   /* First build an array of pointers to ve's in vb.inputs_read
    */
   if (0)
      _mesa_printf("%s %d..%d\n", __FUNCTION__, min_index, max_index);

   /* Accumulate the list of enabled arrays. */
   while (tmp) {
      GLuint i = _mesa_ffsll(tmp)-1;
      struct brw_vertex_element *input = &brw->vb.inputs[i];

      tmp &= ~(1<<i);
      enabled[nr_enabled++] = input;
   }

   /* XXX: In the rare cases where this happens we fallback all
    * the way to software rasterization, although a tnl fallback
    * would be sufficient.  I don't know of *any* real world
    * cases with > 17 vertex attributes enabled, so it probably
    * isn't an issue at this point.
    */
   if (nr_enabled >= BRW_VEP_MAX)
       return -1;

   for (i = 0; i < nr_enabled; i++) {
      struct brw_vertex_element *input = enabled[i];

      input->element_size = get_size(input->glarray->Type) * input->glarray->Size;
      input->count = input->glarray->StrideB ? max_index + 1 - min_index : 1;

      if (input->glarray->BufferObj->Name != 0) {
	 struct intel_buffer_object *intel_buffer =
	    intel_buffer_object(input->glarray->BufferObj);

	 /* Named buffer object: Just reference its contents directly. */
	 input->bo = intel_bufferobj_buffer(intel, intel_buffer,
					    INTEL_READ);
	 dri_bo_reference(input->bo);
	 input->offset = (unsigned long)input->glarray->Ptr;
	 input->stride = input->glarray->StrideB;

	 ret |= dri_bufmgr_check_aperture_space(input->bo);
      } else {
	 /* Queue the buffer object up to be uploaded in the next pass,
	  * when we've decided if we're doing interleaved or not.
	  */
	 if (i == 0) {
	    /* Position array not properly enabled:
	     */
	    if (input->glarray->StrideB == 0)
	      return -1;

	    interleave = input->glarray->StrideB;
	    ptr = input->glarray->Ptr;
	 }
	 else if (interleave != input->glarray->StrideB ||
		  (const unsigned char *)input->glarray->Ptr - ptr < 0 ||
		  (const unsigned char *)input->glarray->Ptr - ptr > interleave)
	 {
	    interleave = 0;
	 }

	 upload[nr_uploads++] = input;
	 
	 /* We rebase drawing to start at element zero only when
	  * varyings are not in vbos, which means we can end up
	  * uploading non-varying arrays (stride != 0) when min_index
	  * is zero.  This doesn't matter as the amount to upload is
	  * the same for these arrays whether the draw call is rebased
	  * or not - we just have to upload the one element.
	  */
	 assert(min_index == 0 || input->glarray->StrideB == 0);
      }
   }

   /* Handle any arrays to be uploaded. */
   if (nr_uploads > 1 && interleave && interleave <= 256) {
      /* All uploads are interleaved, so upload the arrays together as
       * interleaved.  First, upload the contents and set up upload[0].
       */
      copy_array_to_vbo_array(brw, upload[0], interleave);

      ret |= dri_bufmgr_check_aperture_space(upload[0]->bo);
      for (i = 1; i < nr_uploads; i++) {
	 /* Then, just point upload[i] at upload[0]'s buffer. */
	 upload[i]->stride = interleave;
	 upload[i]->offset = upload[0]->offset +
	    ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
	 upload[i]->bo = upload[0]->bo;
	 dri_bo_reference(upload[i]->bo);
      }
   }
   else {
      /* Upload non-interleaved arrays */
      for (i = 0; i < nr_uploads; i++) {
          copy_array_to_vbo_array(brw, upload[i], upload[i]->element_size);
          if (upload[i]->bo) {
              ret |= dri_bufmgr_check_aperture_space(upload[i]->bo);
          }
      }
   }


   if (ret)
     return 1;


   return 0;
}
示例#15
0
static struct buffer *array_buffer( const struct gl_client_array *array )
{
   return intel_bufferobj_buffer(intel_buffer_object(array->BufferObj));
}
示例#16
0
void brw_upload_indices( struct brw_context *brw,
			 const struct _mesa_index_buffer *index_buffer )
{
   GLcontext *ctx = &brw->intel.ctx;
   struct intel_context *intel = &brw->intel;
   GLuint ib_size = get_size(index_buffer->type) * index_buffer->count;
   struct gl_buffer_object *bufferobj = index_buffer->obj;
   GLuint offset = (GLuint)index_buffer->ptr;

   /* Turn into a proper VBO:
    */
   if (!bufferobj->Name) {
     
      /* Get new bufferobj, offset:
       */
      get_space(brw, ib_size, &bufferobj, &offset);

      /* Straight upload
       */
      ctx->Driver.BufferSubData( ctx,
				 GL_ELEMENT_ARRAY_BUFFER_ARB,
				 offset, 
				 ib_size,
				 index_buffer->ptr,
				 bufferobj);
   } else {
      /* If the index buffer isn't aligned to its element size, we have to
       * rebase it into a temporary.
       */
       if ((get_size(index_buffer->type) - 1) & offset) {
           struct gl_buffer_object *vbo;
           GLuint voffset;
           GLubyte *map = ctx->Driver.MapBuffer(ctx,
                                                GL_ELEMENT_ARRAY_BUFFER_ARB,
                                                GL_DYNAMIC_DRAW_ARB,
                                                bufferobj);
           map += offset;
           get_space(brw, ib_size, &vbo, &voffset);
           
           ctx->Driver.BufferSubData(ctx,
                                     GL_ELEMENT_ARRAY_BUFFER_ARB,
                                     voffset,
                                     ib_size,
                                     map,
                                     vbo);
           ctx->Driver.UnmapBuffer(ctx, GL_ELEMENT_ARRAY_BUFFER_ARB, bufferobj);

           bufferobj = vbo;
           offset = voffset;
       }
   }

   /* Emit the indexbuffer packet:
    */
   {
      struct brw_indexbuffer ib;
      struct buffer *buffer = intel_bufferobj_buffer(intel_buffer_object(bufferobj));

      memset(&ib, 0, sizeof(ib));
   
      ib.header.bits.opcode = CMD_INDEX_BUFFER;
      ib.header.bits.length = sizeof(ib)/4 - 2;
      ib.header.bits.index_format = get_index_type(index_buffer->type);
      ib.header.bits.cut_index_enable = 0;
   

      BEGIN_BATCH(4, 0);
      OUT_BATCH( ib.header.dword );
      OUT_BATCH( bmBufferOffset(intel, buffer) + offset );
      OUT_BATCH( bmBufferOffset(intel, buffer) + offset + ib_size );
      OUT_BATCH( 0 );
      ADVANCE_BATCH();
   }
}
示例#17
0
static bool
do_blit_readpixels(struct gl_context * ctx,
                   GLint x, GLint y, GLsizei width, GLsizei height,
                   GLenum format, GLenum type,
                   const struct gl_pixelstore_attrib *pack, GLvoid * pixels)
{
   struct brw_context *brw = brw_context(ctx);
   struct intel_buffer_object *dst = intel_buffer_object(pack->BufferObj);
   GLuint dst_offset;
   drm_intel_bo *dst_buffer;
   GLint dst_x, dst_y;
   GLuint dirty;

   DBG("%s\n", __FUNCTION__);

   assert(_mesa_is_bufferobj(pack->BufferObj));

   struct gl_renderbuffer *rb = ctx->ReadBuffer->_ColorReadBuffer;
   struct intel_renderbuffer *irb = intel_renderbuffer(rb);

   if (ctx->_ImageTransferState ||
       !_mesa_format_matches_format_and_type(irb->mt->format, format, type,
                                             false)) {
      DBG("%s - bad format for blit\n", __FUNCTION__);
      return false;
   }

   if (pack->SwapBytes || pack->LsbFirst) {
      DBG("%s: bad packing params\n", __FUNCTION__);
      return false;
   }

   int dst_stride = _mesa_image_row_stride(pack, width, format, type);
   bool dst_flip = false;
   /* Mesa flips the dst_stride for pack->Invert, but we want our mt to have a
    * normal dst_stride.
    */
   struct gl_pixelstore_attrib uninverted_pack = *pack;
   if (pack->Invert) {
      dst_stride = -dst_stride;
      dst_flip = true;
      uninverted_pack.Invert = false;
   }

   dst_offset = (GLintptr)pixels;
   dst_offset += _mesa_image_offset(2, &uninverted_pack, width, height,
				    format, type, 0, 0, 0);

   if (!_mesa_clip_copytexsubimage(ctx,
				   &dst_x, &dst_y,
				   &x, &y,
				   &width, &height)) {
      return true;
   }

   dirty = brw->front_buffer_dirty;
   intel_prepare_render(brw);
   brw->front_buffer_dirty = dirty;

   dst_buffer = intel_bufferobj_buffer(brw, dst,
				       dst_offset, height * dst_stride);

   struct intel_mipmap_tree *pbo_mt =
      intel_miptree_create_for_bo(brw,
                                  dst_buffer,
                                  irb->mt->format,
                                  dst_offset,
                                  width, height,
                                  dst_stride, I915_TILING_NONE);

   if (!intel_miptree_blit(brw,
                           irb->mt, irb->mt_level, irb->mt_layer,
                           x, y, _mesa_is_winsys_fbo(ctx->ReadBuffer),
                           pbo_mt, 0, 0,
                           0, 0, dst_flip,
                           width, height, GL_COPY)) {
      return false;
   }

   intel_miptree_release(&pbo_mt);

   DBG("%s - DONE\n", __FUNCTION__);

   return true;
}
示例#18
0
文件: brw_draw.c 项目: alesegdia/mesa
static void
brw_emit_prim(struct brw_context *brw,
              const struct _mesa_prim *prim,
              uint32_t hw_prim)
{
   int verts_per_instance;
   int vertex_access_type;
   int indirect_flag;

   DBG("PRIM: %s %d %d\n", _mesa_enum_to_string(prim->mode),
       prim->start, prim->count);

   int start_vertex_location = prim->start;
   int base_vertex_location = prim->basevertex;

   if (prim->indexed) {
      vertex_access_type = brw->gen >= 7 ?
         GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM :
         GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM;
      start_vertex_location += brw->ib.start_vertex_offset;
      base_vertex_location += brw->vb.start_vertex_bias;
   } else {
      vertex_access_type = brw->gen >= 7 ?
         GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL :
         GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL;
      start_vertex_location += brw->vb.start_vertex_bias;
   }

   /* We only need to trim the primitive count on pre-Gen6. */
   if (brw->gen < 6)
      verts_per_instance = trim(prim->mode, prim->count);
   else
      verts_per_instance = prim->count;

   /* If nothing to emit, just return. */
   if (verts_per_instance == 0 && !prim->is_indirect)
      return;

   /* If we're set to always flush, do it before and after the primitive emit.
    * We want to catch both missed flushes that hurt instruction/state cache
    * and missed flushes of the render cache as it heads to other parts of
    * the besides the draw code.
    */
   if (brw->always_flush_cache)
      brw_emit_mi_flush(brw);

   /* If indirect, emit a bunch of loads from the indirect BO. */
   if (prim->is_indirect) {
      struct gl_buffer_object *indirect_buffer = brw->ctx.DrawIndirectBuffer;
      drm_intel_bo *bo = intel_bufferobj_buffer(brw,
            intel_buffer_object(indirect_buffer),
            prim->indirect_offset, 5 * sizeof(GLuint));

      indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;

      brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT, bo,
                            I915_GEM_DOMAIN_VERTEX, 0,
                            prim->indirect_offset + 0);
      brw_load_register_mem(brw, GEN7_3DPRIM_INSTANCE_COUNT, bo,
                            I915_GEM_DOMAIN_VERTEX, 0,
                            prim->indirect_offset + 4);

      brw_load_register_mem(brw, GEN7_3DPRIM_START_VERTEX, bo,
                            I915_GEM_DOMAIN_VERTEX, 0,
                            prim->indirect_offset + 8);
      if (prim->indexed) {
         brw_load_register_mem(brw, GEN7_3DPRIM_BASE_VERTEX, bo,
                               I915_GEM_DOMAIN_VERTEX, 0,
                               prim->indirect_offset + 12);
         brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
                               I915_GEM_DOMAIN_VERTEX, 0,
                               prim->indirect_offset + 16);
      } else {
         brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
                               I915_GEM_DOMAIN_VERTEX, 0,
                               prim->indirect_offset + 12);
         BEGIN_BATCH(3);
         OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
         OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
         OUT_BATCH(0);
         ADVANCE_BATCH();
      }
   } else {
      indirect_flag = 0;
   }

   BEGIN_BATCH(brw->gen >= 7 ? 7 : 6);

   if (brw->gen >= 7) {
      const int predicate_enable =
         (brw->predicate.state == BRW_PREDICATE_STATE_USE_BIT)
         ? GEN7_3DPRIM_PREDICATE_ENABLE : 0;

      OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2) | indirect_flag | predicate_enable);
      OUT_BATCH(hw_prim | vertex_access_type);
   } else {
      OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) |
                hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT |
                vertex_access_type);
   }
   OUT_BATCH(verts_per_instance);
   OUT_BATCH(start_vertex_location);
   OUT_BATCH(prim->num_instances);
   OUT_BATCH(prim->base_instance);
   OUT_BATCH(base_vertex_location);
   ADVANCE_BATCH();

   if (brw->always_flush_cache)
      brw_emit_mi_flush(brw);
}
示例#19
0
/* Pros:  
 *   - no waiting for idle before updating framebuffer.
 *   
 * Cons:
 *   - if upload is by memcpy, this may actually be slower than fallback path.
 *   - uploads the whole image even if destination is clipped
 *   
 * Need to benchmark.
 *
 * Given the questions about performance, implement for pbo's only.
 * This path is definitely a win if the pbo is already in agp.  If it
 * turns out otherwise, we can add the code necessary to upload client
 * data to agp space before performing the blit.  (Though it may turn
 * out to be better/simpler just to use the texture engine).
 */
static GLboolean
do_blit_drawpixels(GLcontext * ctx,
                   GLint x, GLint y,
                   GLsizei width, GLsizei height,
                   GLenum format, GLenum type,
                   const struct gl_pixelstore_attrib *unpack,
                   const GLvoid * pixels)
{
   struct intel_context *intel = intel_context(ctx);
   struct intel_region *dest = intel_drawbuf_region(intel);
   struct intel_buffer_object *src = intel_buffer_object(unpack->BufferObj);
   GLuint src_offset;
   GLuint rowLength;
   struct _DriFenceObject *fence = NULL;

   if (INTEL_DEBUG & DEBUG_PIXEL)
      _mesa_printf("%s\n", __FUNCTION__);


   if (!dest) {
      if (INTEL_DEBUG & DEBUG_PIXEL)
         _mesa_printf("%s - no dest\n", __FUNCTION__);
      return GL_FALSE;
   }

   if (src) {
      /* This validation should be done by core mesa:
       */
      if (!_mesa_validate_pbo_access(2, unpack, width, height, 1,
                                     format, type, pixels)) {
         _mesa_error(ctx, GL_INVALID_OPERATION, "glDrawPixels");
         return GL_TRUE;
      }
   }
   else {
      /* PBO only for now:
       */
      if (INTEL_DEBUG & DEBUG_PIXEL)
         _mesa_printf("%s - not PBO\n", __FUNCTION__);
      return GL_FALSE;
   }

   if (!intel_check_blit_format(dest, format, type)) {
      if (INTEL_DEBUG & DEBUG_PIXEL)
         _mesa_printf("%s - bad format for blit\n", __FUNCTION__);
      return GL_FALSE;
   }

   if (!intel_check_blit_fragment_ops(ctx)) {
      if (INTEL_DEBUG & DEBUG_PIXEL)
         _mesa_printf("%s - bad GL fragment state for blitter\n",
                      __FUNCTION__);
      return GL_FALSE;
   }

   if (ctx->Pixel.ZoomX != 1.0F) {
      if (INTEL_DEBUG & DEBUG_PIXEL)
         _mesa_printf("%s - bad PixelZoomX for blit\n", __FUNCTION__);
      return GL_FALSE;
   }


   if (unpack->RowLength > 0)
      rowLength = unpack->RowLength;
   else
      rowLength = width;

   if (ctx->Pixel.ZoomY == -1.0F) {
      if (INTEL_DEBUG & DEBUG_PIXEL)
         _mesa_printf("%s - bad PixelZoomY for blit\n", __FUNCTION__);
      return GL_FALSE;          /* later */
      y -= height;
   }
   else if (ctx->Pixel.ZoomY == 1.0F) {
      rowLength = -rowLength;
   }
   else {
      if (INTEL_DEBUG & DEBUG_PIXEL)
         _mesa_printf("%s - bad PixelZoomY for blit\n", __FUNCTION__);
      return GL_FALSE;
   }

   src_offset = (GLuint) _mesa_image_address(2, unpack, pixels, width, height,
                                             format, type, 0, 0, 0);

   intelFlush(&intel->ctx);
   LOCK_HARDWARE(intel);

   if (intel->driDrawable->numClipRects) {
      __DRIdrawablePrivate *dPriv = intel->driDrawable;
      int nbox = dPriv->numClipRects;
      drm_clip_rect_t *box = dPriv->pClipRects;
      drm_clip_rect_t rect;
      drm_clip_rect_t dest_rect;
      struct _DriBufferObject *src_buffer =
         intel_bufferobj_buffer(intel, src, INTEL_READ);
      int i;

      dest_rect.x1 = dPriv->x + x;
      dest_rect.y1 = dPriv->y + dPriv->h - (y + height);
      dest_rect.x2 = dest_rect.x1 + width;
      dest_rect.y2 = dest_rect.y1 + height;

      for (i = 0; i < nbox; i++) {
         if (!intel_intersect_cliprects(&rect, &dest_rect, &box[i]))
            continue;

         intelEmitCopyBlit(intel,
                           dest->cpp,
                           rowLength,
                           src_buffer, src_offset,
                           dest->pitch,
                           dest->buffer, 0,
                           rect.x1 - dest_rect.x1,
                           rect.y2 - dest_rect.y2,
                           rect.x1,
                           rect.y1, rect.x2 - rect.x1, rect.y2 - rect.y1,
			   ctx->Color.ColorLogicOpEnabled ?
			   ctx->Color.LogicOp : GL_COPY);
      }
      fence = intel_batchbuffer_flush(intel->batch);
      driFenceReference(fence);
   }
   UNLOCK_HARDWARE(intel);

   if (fence) {
      driFenceFinish(fence, DRM_FENCE_TYPE_EXE | DRM_I915_FENCE_TYPE_RW, GL_FALSE);
      driFenceUnReference(fence);
   }

   if (INTEL_DEBUG & DEBUG_PIXEL)
      _mesa_printf("%s - DONE\n", __FUNCTION__);

   return GL_TRUE;
}
示例#20
0
void
brw_prepare_vertices(struct brw_context *brw)
{
   struct gl_context *ctx = &brw->ctx;
   /* BRW_NEW_VS_PROG_DATA */
   const struct brw_vs_prog_data *vs_prog_data =
      brw_vs_prog_data(brw->vs.base.prog_data);
   GLbitfield64 vs_inputs = vs_prog_data->inputs_read;
   const unsigned char *ptr = NULL;
   GLuint interleaved = 0;
   unsigned int min_index = brw->vb.min_index + brw->basevertex;
   unsigned int max_index = brw->vb.max_index + brw->basevertex;
   unsigned i;
   int delta, j;

   struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
   GLuint nr_uploads = 0;

   /* _NEW_POLYGON
    *
    * On gen6+, edge flags don't end up in the VUE (either in or out of the
    * VS).  Instead, they're uploaded as the last vertex element, and the data
    * is passed sideband through the fixed function units.  So, we need to
    * prepare the vertex buffer for it, but it's not present in inputs_read.
    */
   if (brw->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
                           ctx->Polygon.BackMode != GL_FILL)) {
      vs_inputs |= VERT_BIT_EDGEFLAG;
   }

   if (0)
      fprintf(stderr, "%s %d..%d\n", __func__, min_index, max_index);

   /* Accumulate the list of enabled arrays. */
   brw->vb.nr_enabled = 0;
   while (vs_inputs) {
      GLuint index = ffsll(vs_inputs) - 1;
      struct brw_vertex_element *input = &brw->vb.inputs[index];

      vs_inputs &= ~BITFIELD64_BIT(index);
      brw->vb.enabled[brw->vb.nr_enabled++] = input;
   }

   if (brw->vb.nr_enabled == 0)
      return;

   if (brw->vb.nr_buffers)
      return;

   /* The range of data in a given buffer represented as [min, max) */
   struct intel_buffer_object *enabled_buffer[VERT_ATTRIB_MAX];
   uint32_t buffer_range_start[VERT_ATTRIB_MAX];
   uint32_t buffer_range_end[VERT_ATTRIB_MAX];

   for (i = j = 0; i < brw->vb.nr_enabled; i++) {
      struct brw_vertex_element *input = brw->vb.enabled[i];
      const struct gl_client_array *glarray = input->glarray;

      if (_mesa_is_bufferobj(glarray->BufferObj)) {
	 struct intel_buffer_object *intel_buffer =
	    intel_buffer_object(glarray->BufferObj);

         const uint32_t offset = (uintptr_t)glarray->Ptr;

         /* Start with the worst case */
         uint32_t start = 0;
         uint32_t range = intel_buffer->Base.Size;
         if (glarray->InstanceDivisor) {
            if (brw->num_instances) {
               start = offset + glarray->StrideB * brw->baseinstance;
               range = (glarray->StrideB * ((brw->num_instances - 1) /
                                            glarray->InstanceDivisor) +
                        glarray->_ElementSize);
            }
         } else {
            if (brw->vb.index_bounds_valid) {
               start = offset + min_index * glarray->StrideB;
               range = (glarray->StrideB * (max_index - min_index) +
                        glarray->_ElementSize);
            }
         }

	 /* If we have a VB set to be uploaded for this buffer object
	  * already, reuse that VB state so that we emit fewer
	  * relocations.
	  */
	 unsigned k;
	 for (k = 0; k < i; k++) {
	    const struct gl_client_array *other = brw->vb.enabled[k]->glarray;
	    if (glarray->BufferObj == other->BufferObj &&
		glarray->StrideB == other->StrideB &&
		glarray->InstanceDivisor == other->InstanceDivisor &&
		(uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
	    {
	       input->buffer = brw->vb.enabled[k]->buffer;
	       input->offset = glarray->Ptr - other->Ptr;

               buffer_range_start[input->buffer] =
                  MIN2(buffer_range_start[input->buffer], start);
               buffer_range_end[input->buffer] =
                  MAX2(buffer_range_end[input->buffer], start + range);
	       break;
	    }
	 }
	 if (k == i) {
	    struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];

	    /* Named buffer object: Just reference its contents directly. */
	    buffer->offset = offset;
	    buffer->stride = glarray->StrideB;
	    buffer->step_rate = glarray->InstanceDivisor;
            buffer->size = glarray->BufferObj->Size - offset;

            enabled_buffer[j] = intel_buffer;
            buffer_range_start[j] = start;
            buffer_range_end[j] = start + range;

	    input->buffer = j++;
	    input->offset = 0;
	 }
      } else {
	 /* Queue the buffer object up to be uploaded in the next pass,
	  * when we've decided if we're doing interleaved or not.
	  */
	 if (nr_uploads == 0) {
	    interleaved = glarray->StrideB;
	    ptr = glarray->Ptr;
	 }
	 else if (interleaved != glarray->StrideB ||
                  glarray->Ptr < ptr ||
                  (uintptr_t)(glarray->Ptr - ptr) + glarray->_ElementSize > interleaved)
	 {
            /* If our stride is different from the first attribute's stride,
             * or if the first attribute's stride didn't cover our element,
             * disable the interleaved upload optimization.  The second case
             * can most commonly occur in cases where there is a single vertex
             * and, for example, the data is stored on the application's
             * stack.
             *
             * NOTE: This will also disable the optimization in cases where
             * the data is in a different order than the array indices.
             * Something like:
             *
             *     float data[...];
             *     glVertexAttribPointer(0, 4, GL_FLOAT, 32, &data[4]);
             *     glVertexAttribPointer(1, 4, GL_FLOAT, 32, &data[0]);
             */
	    interleaved = 0;
	 }

	 upload[nr_uploads++] = input;
      }
   }

   /* Now that we've set up all of the buffers, we walk through and reference
    * each of them.  We do this late so that we get the right size in each
    * buffer and don't reference too little data.
    */
   for (i = 0; i < j; i++) {
      struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
      if (buffer->bo)
         continue;

      const uint32_t start = buffer_range_start[i];
      const uint32_t range = buffer_range_end[i] - buffer_range_start[i];

      buffer->bo = intel_bufferobj_buffer(brw, enabled_buffer[i], start, range);
      drm_intel_bo_reference(buffer->bo);
   }

   /* If we need to upload all the arrays, then we can trim those arrays to
    * only the used elements [min_index, max_index] so long as we adjust all
    * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
    */
   brw->vb.start_vertex_bias = 0;
   delta = min_index;
   if (nr_uploads == brw->vb.nr_enabled) {
      brw->vb.start_vertex_bias = -delta;
      delta = 0;
   }

   /* Handle any arrays to be uploaded. */
   if (nr_uploads > 1) {
      if (interleaved) {
	 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
	 /* All uploads are interleaved, so upload the arrays together as
	  * interleaved.  First, upload the contents and set up upload[0].
	  */
	 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
				 buffer, interleaved);
	 buffer->offset -= delta * interleaved;
         buffer->size += delta * interleaved;

	 for (i = 0; i < nr_uploads; i++) {
	    /* Then, just point upload[i] at upload[0]'s buffer. */
	    upload[i]->offset =
	       ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
	    upload[i]->buffer = j;
	 }
	 j++;

	 nr_uploads = 0;
      }
   }
   /* Upload non-interleaved arrays */
   for (i = 0; i < nr_uploads; i++) {
      struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
      if (upload[i]->glarray->InstanceDivisor == 0) {
         copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
                                 buffer, upload[i]->glarray->_ElementSize);
      } else {
         /* This is an instanced attribute, since its InstanceDivisor
          * is not zero. Therefore, its data will be stepped after the
          * instanced draw has been run InstanceDivisor times.
          */
         uint32_t instanced_attr_max_index =
            (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
         copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
                                 buffer, upload[i]->glarray->_ElementSize);
      }
      buffer->offset -= delta * buffer->stride;
      buffer->size += delta * buffer->stride;
      buffer->step_rate = upload[i]->glarray->InstanceDivisor;
      upload[i]->buffer = j++;
      upload[i]->offset = 0;
   }

   brw->vb.nr_buffers = j;
}