示例#1
0
/* executed on the actual hardware */
void main_realtime(int argc, char *argv[])
{
   main_init(argc, argv);
   main_realtime_init();
   interval_t interval;
   interval_init(&interval);
   DATA_DEFINITION();
   PERIODIC_THREAD_LOOP_BEGIN
   {
      dt = interval_measure(&interval);
      sensor_status = platform_read_sensors(&marg_data, &gps_data, &ultra_z, &baro_z, &voltage, &current, channels);
      main_step(dt, &marg_data, &gps_data, ultra_z, baro_z, voltage, current, channels, sensor_status, 0);
   }
   PERIODIC_THREAD_LOOP_END
}
示例#2
0
int scl_gps_read(gps_data_t *data_out)
{
   ASSERT_NOT_NULL(data_out);
   int ret_code = 0;
   pthread_mutex_lock(&mutex);
   timer += interval_measure(&interval);
   if (timer > GPS_TIMEOUT)
   {
      ret_code = -1;
   }
   else
   {
      *data_out = gps_data;
   }
   pthread_mutex_unlock(&mutex);
   return ret_code;
}
示例#3
0
int main(void)
{
   i2c_bus_t bus;
   int ret = i2c_bus_open(&bus, "/dev/i2c-3");
   if (ret < 0)
   {
      fatal("could not open i2c bus", ret);
      return EXIT_FAILURE;
   }

   /* ITG: */
   itg3200_dev_t itg;
itg_again:
   ret = itg3200_init(&itg, &bus, ITG3200_DLPF_42HZ);
   if (ret < 0)
   {
      fatal("could not inizialize ITG3200", ret);
      if (ret == -EAGAIN)
      {
         goto itg_again;   
      }
      return EXIT_FAILURE;
   }

   /* BMA: */
   bma180_dev_t bma;
   bma180_init(&bma, &bus, BMA180_RANGE_4G, BMA180_BW_10HZ);

   /* HMC: */
   hmc5883_dev_t hmc;
   hmc5883_init(&hmc, &bus);
   
   /* MS: */
   ms5611_dev_t ms;
   ret = ms5611_init(&ms, &bus, MS5611_OSR4096, MS5611_OSR4096);
   if (ret < 0)
   {
      fatal("could not inizialize MS5611", ret);
      return EXIT_FAILURE;
   }
   pthread_t thread;
   pthread_create(&thread, NULL, ms5611_reader, &ms);

   /* initialize AHRS filter: */
   madgwick_ahrs_t madgwick_ahrs;
   madgwick_ahrs_init(&madgwick_ahrs, STANDARD_BETA);

   interval_t interval;
   interval_init(&interval);
   float init = START_BETA;
   udp_socket_t *socket = udp_socket_create("10.0.0.100", 5005, 0, 0);

   /* kalman filter: */
   kalman_t kalman1, kalman2, kalman3;
   kalman_init(&kalman1, 1.0e-6, 1.0e-2, 0, 0);
   kalman_init(&kalman2, 1.0e-6, 1.0e-2, 0, 0);
   kalman_init(&kalman3, 1.0e-6, 1.0e-2, 0, 0);
   vec3_t global_acc; /* x = N, y = E, z = D */
   int init_done = 0;
   int converged = 0;
   sliding_avg_t *avg[3];
   avg[0] = sliding_avg_create(1000, 0.0);
   avg[1] = sliding_avg_create(1000, 0.0);
   avg[2] = sliding_avg_create(1000, -9.81);
   float alt_rel_last = 0.0;
   int udp_cnt = 0;
   while (1)
   {
      int i;
      float dt = interval_measure(&interval);
      init -= BETA_STEP;
      if (init < FINAL_BETA)
      {
         init = FINAL_BETA;
         init_done = 1;
      }
      madgwick_ahrs.beta = init;
      
      /* sensor data acquisition: */
      itg3200_read_gyro(&itg);
      bma180_read_acc(&bma);
      hmc5883_read(&hmc);
      
      /* state estimates and output: */
      euler_t euler;
      madgwick_ahrs_update(&madgwick_ahrs, itg.gyro.x, itg.gyro.y, itg.gyro.z, bma.raw.x, bma.raw.y, bma.raw.z, hmc.raw.x, hmc.raw.y, hmc.raw.z, 11.0, dt);
      
      quat_t q_body_to_world;
      quat_copy(&q_body_to_world, &madgwick_ahrs.quat);
      quat_rot_vec(&global_acc, &bma.raw, &q_body_to_world);
      for (i = 0; i < 3; i++)
      {
         global_acc.vec[i] -= sliding_avg_calc(avg[i], global_acc.vec[i]);
      }
      if (init_done)
      {
         kalman_in_t kalman_in;
         kalman_in.dt = dt;
         kalman_in.pos = 0;
         kalman_out_t kalman_out;

         kalman_in.acc = global_acc.x;
         kalman_run(&kalman_out, &kalman1, &kalman_in);
         kalman_in.acc = global_acc.y;
         kalman_run(&kalman_out, &kalman2, &kalman_in);
         kalman_in.acc = -global_acc.z;
         pthread_mutex_lock(&mutex);
         kalman_in.pos = alt_rel;
         pthread_mutex_unlock(&mutex);
         kalman_run(&kalman_out, &kalman3, &kalman_in);
         if (!converged)
         {
            if (fabs(kalman_out.pos - alt_rel) < 0.1)
            {
               converged = 1;   
               fprintf(stderr, "init done\n");
            }
         }
         if (converged) // && udp_cnt++ > 10)
         {
            if (udp_cnt++ == 10)
            {
               char buffer[1024];
               udp_cnt = 0;
               int len = sprintf(buffer, "%f %f %f %f %f %f %f", madgwick_ahrs.quat.q0, madgwick_ahrs.quat.q1, madgwick_ahrs.quat.q2, madgwick_ahrs.quat.q3,
                                                                 global_acc.x, global_acc.y, global_acc.z);
               udp_socket_send(socket, buffer, len);
            }
            printf("%f %f %f\n", -global_acc.z, alt_rel, kalman_out.pos);
            fflush(stdout);
         }
      }

      
   }
   return 0;
}
示例#4
0
void main_step(const float dt,
               const marg_data_t *marg_data,
               const gps_data_t *gps_data,
               const float ultra,
               const float baro,
               const float voltage,
               const float current,
               const float channels[MAX_CHANNELS],
               const uint16_t sensor_status,
               const bool override_hw)
{
   vec2_t ne_pos_err, ne_speed_sp, ne_spd_err;
   vec2_init(&ne_pos_err);
   vec2_init(&ne_speed_sp);
   vec2_init(&ne_spd_err);
   vec3_t mag_normal;
   vec3_init(&mag_normal);

   float u_pos_err = 0.0f;
   float u_spd_err = 0.0f;
   
   int bb_rate;
   if (calibrate)
   {
      ONCE(LOG(LL_INFO, "publishing calibration data; actuators disabled"));
      bb_rate = 20;
      goto out;
   }
   else
      bb_rate = 1;
   
   pos_in.dt = dt;
   pos_in.ultra_u = ultra;
   pos_in.baro_u = baro;
   
   if (!(sensor_status & MARG_VALID))
   {
      marg_err += 1;
      if (marg_err > 500)
      {
         /* we are in serious trouble */
         memset(setpoints, 0, sizeof(float) * platform.n_motors);
         platform_write_motors(setpoints);
         die();
      }
      goto out;
   }
   marg_err = 0;
   
   float cal_channels[MAX_CHANNELS];
   memcpy(cal_channels, channels, sizeof(cal_channels));
   if (sensor_status & RC_VALID)
   {
      /* apply calibration if remote control input is valid: */
      float cal_data[3] = {channels[CH_PITCH], channels[CH_ROLL], channels[CH_YAW]};
      cal_sample_apply(&rc_cal, cal_data);
      cal_channels[CH_PITCH] = cal_data[0];
      cal_channels[CH_ROLL] = cal_data[1];
      cal_channels[CH_YAW] = cal_data[2];
   }

   /* perform gyro calibration: */
   marg_data_t cal_marg_data;
   marg_data_init(&cal_marg_data);
   marg_data_copy(&cal_marg_data, marg_data);
   if (cal_sample_apply(&gyro_cal, cal_marg_data.gyro.ve) == 0 && gyro_moved(&marg_data->gyro))
   {
      if (interval_measure(&gyro_move_interval) > 1.0)
         LOG(LL_ERROR, "gyro moved during calibration, retrying");
      cal_reset(&gyro_cal);
   }

   /* update relative gps position, if we have a fix: */
   float mag_decl;
   if (sensor_status & GPS_VALID)
   {
      gps_util_update(&gps_rel_data, gps_data);
      pos_in.pos_n = gps_rel_data.dn;
      pos_in.pos_e = gps_rel_data.de;
      pos_in.speed_n = gps_rel_data.speed_n;
      pos_in.speed_e = gps_rel_data.speed_e;
      ONCE(gps_start_set(gps_data));
      mag_decl = mag_decl_get();
   }
   else
   {
      pos_in.pos_n = 0.0f;   
      pos_in.pos_e = 0.0f; 
      pos_in.speed_n = 0.0f;
      pos_in.speed_e = 0.0f;
      mag_decl = 0.0f;
   }

   /* apply acc/mag calibration: */
   acc_mag_cal_apply(&cal_marg_data.acc, &cal_marg_data.mag);
   vec_copy(&mag_normal, &cal_marg_data.mag);

   /* apply current magnetometer compensation: */
   cmc_apply(&cal_marg_data.mag, current);
   //printf("%f %f %f %f\n", current, cal_marg_data.mag.x, cal_marg_data.mag.y, cal_marg_data.mag.z);
   
   /* determine flight state: */
   bool flying = flight_state_update(&cal_marg_data.acc.ve[0]);
   if (!flying && pos_in.ultra_u == 7.0)
      pos_in.ultra_u = 0.2;
   
   /* compute orientation estimate: */
   euler_t euler;
   int ahrs_state = cal_ahrs_update(&euler, &cal_marg_data, mag_decl, dt);
   if (ahrs_state < 0 || !cal_complete(&gyro_cal))
      goto out;
   ONCE(init = 1; LOG(LL_DEBUG, "system initialized; orientation = yaw: %f pitch: %f roll: %f", euler.yaw, euler.pitch, euler.roll));

   /* rotate local ACC measurements into global NEU reference frame: */
   vec3_t world_acc;
   vec3_init(&world_acc);
   body_to_neu(&world_acc, &euler, &cal_marg_data.acc);
   
   /* center global ACC readings: */
   filter1_run(&lp_filter, &world_acc.ve[0], &acc_vec[0]);
   FOR_N(i, 3)
      pos_in.acc.ve[i] = world_acc.ve[i] - acc_vec[i];

   /* compute next 3d position estimate using Kalman filters: */
   pos_t pos_est;
   vec2_init(&pos_est.ne_pos);
   vec2_init(&pos_est.ne_speed);
   pos_update(&pos_est, &pos_in);

   /* execute flight logic (sets cm_x parameters used below): */
   bool hard_off = false;
   bool motors_enabled = flight_logic_run(&hard_off, sensor_status, flying, cal_channels, euler.yaw, &pos_est.ne_pos, pos_est.baro_u.pos, pos_est.ultra_u.pos, platform.max_thrust_n, platform.mass_kg, dt);
   
   /* execute up position/speed controller(s): */
   float a_u = 0.0f;
   if (cm_u_is_pos())
   {
      if (cm_u_is_baro_pos())
         a_u = u_ctrl_step(&u_pos_err, cm_u_sp(), pos_est.baro_u.pos, pos_est.baro_u.speed, dt);
      else /* ultra pos */
         a_u = u_ctrl_step(&u_pos_err, cm_u_sp(), pos_est.ultra_u.pos, pos_est.ultra_u.speed, dt);
   }
   else if (cm_u_is_spd())
      a_u = u_speed_step(&u_spd_err, cm_u_sp(), pos_est.baro_u.speed, dt);
   else
      a_u = cm_u_sp();
   
   /* execute north/east navigation and/or read speed vector input: */
   if (cm_att_is_gps_pos())
   {
      vec2_t pos_sp;
      vec2_init(&pos_sp);
      cm_att_sp(&pos_sp);
      navi_run(&ne_speed_sp, &ne_pos_err, &pos_sp, &pos_est.ne_pos, dt);
   }
   else if (cm_att_is_gps_spd())
      cm_att_sp(&ne_speed_sp);

   /* execute north/east speed controller: */
   vec2_t a_ne;
   vec2_init(&a_ne);
   ne_speed_ctrl_run(&a_ne, &ne_spd_err, &ne_speed_sp, dt, &pos_est.ne_speed);
   
   vec3_t a_neu;
   vec3_set(&a_neu, a_ne.x, a_ne.y, a_u);
   vec3_t f_neu;
   vec3_init(&f_neu);
   vec_scalar_mul(&f_neu, &a_neu, platform.mass_kg); /* f[i] = a[i] * m, makes ctrl device-independent */
   
   float hover_force = platform.mass_kg * 9.81f;
   f_neu.z += hover_force;

   /* execute NEU forces optimizer: */
   float thrust;
   vec2_t pr_pos_sp;
   vec2_init(&pr_pos_sp);
   att_thrust_calc(&pr_pos_sp, &thrust, &f_neu, euler.yaw, platform.max_thrust_n, 0);

   /* execute direct attitude angle control, if requested: */
   if (cm_att_is_angles())
      cm_att_sp(&pr_pos_sp);

   /* execute attitude angles controller: */
   vec2_t att_err;
   vec2_init(&att_err);
   vec2_t pr_spd;
   vec2_set(&pr_spd, -cal_marg_data.gyro.y, cal_marg_data.gyro.x);

   vec2_t pr_pos, pr_pos_ctrl;
   vec2_set(&pr_pos, -euler.pitch, euler.roll);
   vec2_init(&pr_pos_ctrl);
   att_ctrl_step(&pr_pos_ctrl, &att_err, dt, &pr_pos, &pr_spd, &pr_pos_sp);
 
   float piid_sp[3] = {0.0f, 0.0f, 0.0f};
   piid_sp[PIID_PITCH] = pr_pos_ctrl.ve[0];
   piid_sp[PIID_ROLL] = pr_pos_ctrl.ve[1];
 
   /* execute direct attitude rate control, if requested:*/
   if (cm_att_is_rates())
   {
      vec2_t rates_sp;
      vec2_init(&rates_sp);
      cm_att_sp(&rates_sp);
      piid_sp[PIID_PITCH] = rates_sp.ve[0];
      piid_sp[PIID_ROLL] = rates_sp.ve[1];
   }

   /* execute yaw position controller: */
   float yaw_speed_sp, yaw_err;
   if (cm_yaw_is_pos())
      yaw_speed_sp = yaw_ctrl_step(&yaw_err, cm_yaw_sp(), euler.yaw, cal_marg_data.gyro.z, dt);
   else
      yaw_speed_sp = cm_yaw_sp(); /* direct yaw speed control */
   //yaw_speed_sp = yaw_ctrl_step(&yaw_err, 0.0, euler.yaw, cal_marg_data.gyro.z, dt);
   piid_sp[PIID_YAW] = yaw_speed_sp;

   /* execute stabilizing PIID controller: */
   f_local_t f_local = {{thrust, 0.0f, 0.0f, 0.0f}};
   float piid_gyros[3] = {cal_marg_data.gyro.x, -cal_marg_data.gyro.y, cal_marg_data.gyro.z};
   piid_run(&f_local.ve[1], piid_gyros, piid_sp, dt);

   /* computate rpm ^ 2 out of the desired forces: */
   inv_coupling_calc(rpm_square, f_local.ve);

   /* compute motor setpoints out of rpm ^ 2: */
   piid_int_enable(platform_ac_calc(setpoints, motors_spinning(), voltage, rpm_square));

   /* enables motors, if flight logic requests it: */
   motors_state_update(flying, dt, motors_enabled);
   
   /* reset controllers, if motors are not controllable: */
   if (!motors_controllable())
   {
      navi_reset();
      ne_speed_ctrl_reset();
      u_ctrl_reset();
      att_ctrl_reset();
      piid_reset();
   }
 
   /* handle special cases for motor setpoints: */
   if (motors_starting())
      FOR_N(i, platform.n_motors) setpoints[i] = platform.ac.min;
   if (hard_off || motors_stopping())
      FOR_N(i, platform.n_motors) setpoints[i] = platform.ac.off_val;
   
   
   printf("%f %f %f\n", rad2deg(euler.pitch), rad2deg(euler.roll), rad2deg(euler.yaw));
   /* write motors: */
   if (!override_hw)
   {
      //platform_write_motors(setpoints);
   }

   /* set monitoring data: */
   mon_data_set(ne_pos_err.x, ne_pos_err.y, u_pos_err, yaw_err);

out:
   EVERY_N_TIMES(bb_rate, blackbox_record(dt, marg_data, gps_data, ultra, baro, voltage, current, channels, sensor_status, /* sensor inputs */
                          &ne_pos_err, u_pos_err, /* position errors */
                          &ne_spd_err, u_spd_err /* speed errors */,
                          &mag_normal));
}