示例#1
0
static int idaapi notify(processor_t::idp_notify msgid, ...)
{
  va_list va;
  va_start(va, msgid);

// A well behaving processor module should call invoke_callbacks()
// in his notify() function. If this function returns 0, then
// the processor module should process the notification itself
// Otherwise the code should be returned to the caller:

  int code = invoke_callbacks(HT_IDP, msgid, va);
  if ( code ) return code;

  switch ( msgid )
  {
    case processor_t::init:
//      __emit__(0xCC);   // debugger trap
      helper.create("$ h8");
      helper.supval(0, device, sizeof(device));
      inf.mf = 1;
    default:
      break;

    /* +++ START TYPEINFO CALLBACKS +++ */
    // see module/{i960,hppa}/reg.cpp starting on line 253
    // Decorate/undecorate a C symbol name
    // Arguments:
    // const til_t *ti    - pointer to til
    // const char *name   - name of symbol
    // const type_t *type - type of symbol. If NULL then it will try to guess.
    // char *outbuf       - output buffer
    // size_t bufsize     - size of the output buffer
    // bool mangle        - true-mangle, false-unmangle
    // cm_t cc            - real calling convention for VOIDARG functions
    // returns: true if success
    case processor_t::decorate_name:
      {
        const til_t *ti    = va_arg(va, const til_t *);
        const char *name   = va_arg(va, const char *);
        const type_t *type = va_arg(va, const type_t *);
        char *outbuf       = va_arg(va, char *);
        size_t bufsize     = va_arg(va, size_t);
        bool mangle        = va_argi(va, bool);
        cm_t real_cc       = va_argi(va, cm_t);
        return gen_decorate_name(ti, name, type, outbuf, bufsize, mangle, real_cc);
      }

    // Setup default type libraries (called after loading a new file into the database)
    // The processor module may load tils, setup memory model and perform other actions
    // required to set up the type system.
    // args:    none
    // returns: nothing
    case processor_t::setup_til:
      {
      }

    // Purpose: get prefix and size of 'segment based' ptr type (something like
    // char _ss *ptr). See description in typeinf.hpp.
    // Other modules simply set the pointer to NULL and return 0
    // Ilfak confirmed that this approach is correct for the H8.
    // Used only for BTMT_CLOSURE types, doubtful you will encounter them for H8.
    // Arguments:
    // unsigned int ptrt    - ...
    // const char **ptrname - output arg
    // returns: size of type
    case processor_t::based_ptr:
      {
        /*unsigned int ptrt =*/ va_arg(va, unsigned int);
        char **ptrname    = va_arg(va, char **);
        *ptrname = NULL;
        return 0;
      }

    // The H8 supports normal (64KB addressing, 16 bits) and advanced mode
    // (16MB addressing, 24 bits).  However, according to the Renesas technical
    // documentation, certain instructions accept 32-bit pointer values where
    // the upper 8 bits are "reserved".  Ilfak confirms that "4+1" is fine.
    // Used only for BTMT_CLOSURE types, doubtful you will encounter them for H8.
    case processor_t::max_ptr_size:
      {
        return 4+1;
      }

    // get default enum size
    // args:  cm_t cm
    // returns: sizeof(enum)
    case processor_t::get_default_enum_size:
      {
        // cm_t cm        =  va_argi(va, cm_t);
        return inf.cc.size_e;
      }

    case processor_t::use_stkarg_type:
      {
        ea_t ea            = va_arg(va, ea_t);
        const type_t *type = va_arg(va, const type_t *);
        const char *name   = va_arg(va, const char *);
        return h8_use_stkvar_type(ea, type, name);
      }

    // calculate number of purged bytes by the given function type
    // For cdecl functions, 'purged bytes' is always zero
    // See the IDA Pro Book, 2e, at the end of pp. 107 for details
    // args: type_t *type - must be function type
    // returns: number of bytes purged from the stack + 2
    case processor_t::calc_purged_bytes:
      {
        //e.g. const type_t t_int[] = { BT_INT, 0 };
        //const type_t *type = va_arg(va, const type_t *); // must be BT_FUNC
        return 0+2;
      }

    case processor_t::calc_arglocs2:
      {
        const type_t *type = va_arg(va, const type_t *);
        cm_t cc            = va_argi(va, cm_t);
        varloc_t *arglocs  = va_arg(va, varloc_t *);
        return h8_calc_arglocs(type, cc, arglocs);
      }

    /* +++ END TYPEINFO CALLBACKS +++ */

    case processor_t::term:
      free_ioports(ports, numports);
      break;

    case processor_t::newfile:   // new file loaded
      load_symbols();
      break;

    case processor_t::oldfile:   // old file loaded
      load_symbols();
      break;

    case processor_t::closebase:
    case processor_t::savebase:
      helper.supset(0, device);
      break;

    case processor_t::newprc:    // new processor type
      ptype = ptypes[va_arg(va, int)];
      setflag(ph.flag, PR_DEFSEG32, ptype & ADV);
      break;

    case processor_t::newasm:    // new assembler type
      break;

    case processor_t::newseg:    // new segment
      break;

    case processor_t::is_jump_func:
      {
        const func_t *pfn = va_arg(va, const func_t *);
        ea_t *jump_target = va_arg(va, ea_t *);
        return is_jump_func(pfn, jump_target);
      }

    case processor_t::is_sane_insn:
      return is_sane_insn(va_arg(va, int));

    case processor_t::may_be_func:
                                // can a function start here?
                                // arg: none, the instruction is in 'cmd'
                                // returns: probability 0..100
                                // 'cmd' structure is filled upon the entrace
                                // the idp module is allowed to modify 'cmd'
      return may_be_func();

  }
  va_end(va);
  return 1;
}
示例#2
0
文件: reg.cpp 项目: nealey/vera
static int notify(processor_t::idp_notify msgid, ...)
{
  va_list va;
  va_start(va, msgid);

// A well behaving processor module should call invoke_callbacks()
// in his notify() function. If this function returns 0, then
// the processor module should process the notification itself
// Otherwise the code should be returned to the caller:

  int code = invoke_callbacks(HT_IDP, msgid, va);
  if ( code ) return code;

  switch ( msgid )
  {
    case processor_t::init:
      helper.create("$ tms320c3x");
      inf.mf = 1; // MSB first
      inf.wide_high_byte_first = 1;
      init_analyzer();
      break;

    case processor_t::term:
      free_ioports(ports, numports);
    default:
      break;

    case processor_t::newfile:   // new file loaded
      inf.wide_high_byte_first = 0;
      {
        segment_t *s0 = get_first_seg();
        if ( s0 != NULL )
        {
          set_segm_name(s0, "CODE");
          segment_t *s1 = get_next_seg(s0->startEA);
          for (int i = dp; i <= rVds; i++)
          {
            SetDefaultRegisterValue(s0, i, BADSEL);
            SetDefaultRegisterValue(s1, i, BADSEL);
          }
        }
      }
      select_device(IORESP_ALL);
      break;

    case processor_t::oldfile:   // old file loaded
      inf.wide_high_byte_first = 0;
      idpflags = (ushort)helper.altval(-1);
      {
        char buf[MAXSTR];
        if ( helper.supval(-1, buf, sizeof(buf)) > 0 )
          set_device_name(buf, IORESP_NONE);
      }
      break;

    case processor_t::closebase:
    case processor_t::savebase:
      helper.altset(-1, idpflags);
      break;

    case processor_t::is_basic_block_end:
      return is_basic_block_end() ? 2 : 0;
  }
  va_end(va);
  return 1;
}
示例#3
0
//----------------------------------------------------------------------
static int idaapi notify(processor_t::idp_notify msgid, ...) // Various messages:
{
  va_list va;
  va_start(va, msgid);

// A well behaved processor module should call invoke_callbacks()
// in his notify() function. If this function returns 0, then
// the processor module should process the notification itself
// Otherwise the code should be returned to the caller:

  int code = invoke_callbacks(HT_IDP, msgid, va);
  if ( code ) return code;

  int retcode = 1;
  switch ( msgid )
  {
    case processor_t::init:
      helper.create("$ spc700");
      break;
    case processor_t::term:
      free_ioports(ports, numports);
      break;
    case processor_t::oldfile:
    case processor_t::newfile:
      {
        char buf[MAXSTR];
        const char *device_ptr = buf;
        ssize_t len = helper.hashstr("device", buf, sizeof(buf));
        if ( len <= 0 )
          device_ptr = "spc700";

        if ( msgid == processor_t::newfile )
        {
          set_device_name(device_ptr, IORESP_ALL);
          set_dsp_regs_enum();

          set_default_segreg_value(NULL, rDs, 0);
          set_default_segreg_value(NULL, rFp, 0);
        }
      }
      break;

    case processor_t::may_be_func:
      retcode = 0;
      ea_t cref_addr;
      for( cref_addr = get_first_cref_to(cmd.ea);
           cref_addr != BADADDR;
           cref_addr = get_next_cref_to(cmd.ea, cref_addr) )
      {
        uint8 opcode = get_byte(cref_addr);
        const struct opcode_info_t &opinfo = get_opcode_info(opcode);
        if ( opinfo.itype == SPC_call
          || opinfo.itype == SPC_jmp )
        {
          retcode = 100;
          break;
        }
      }
      break;

    case processor_t::is_call_insn:
      {
        const struct opcode_info_t &opinfo = get_opcode_info(get_byte(va_arg(va, ea_t)));
        if ( opinfo.itype == SPC_call )
          retcode = 2;
        else
          retcode = 0;
      }
      break;

    case processor_t::is_ret_insn:
      {
        const struct opcode_info_t &opinfo = get_opcode_info(get_byte(va_arg(va, ea_t)));
        if ( opinfo.itype == SPC_ret
          || opinfo.itype == SPC_reti )
          retcode = 2;
        else
          retcode = 0;
      }
      break;

    case processor_t::is_indirect_jump:
      {
        const struct opcode_info_t &opinfo = get_opcode_info(get_byte(va_arg(va, ea_t)));
        if ( opinfo.itype == SPC_jmp )
        {
          if ( opinfo.addr == ABS_IX_INDIR )
            retcode = 3;
          else
            retcode = 2;
        }
        else
          retcode = 1;
      }
      break;

    default:
      break;
  }
  va_end(va);

  return retcode;
}
示例#4
0
//----------------------------------------------------------------------
static int idaapi notify(processor_t::idp_notify msgid, ...)
{
  va_list va;
  va_start(va, msgid);

  // A well behaving processor module should call invoke_callbacks()
  // in his notify() function. If this function returns 0, then
  // the processor module should process the notification itself
  // Otherwise the code should be returned to the caller:

  int code = invoke_callbacks(HT_IDP, msgid, va);
  if ( code )
    return code;

  switch ( msgid )
  {
    case processor_t::init:
      inf.mf = 0;
      helper.create("$ 78k0s");
    default:
      break;

    case processor_t::term:
      free_ioports(ports, numports);
      break;

    case processor_t::newfile:
      {
      //функция "выбирает" из указанного файла *.cfg все записи(процессора)
      //и отображает их в диалоговом окне, в котором пользователь может выбрать
      //нужный ему процессор. После выбора имя процессора заносится в переменную device
      //Поумолчанию в DLG выделен процессор который указан в переменной .default
      //которая распологается в начале файла *.cfg
      inf.s_genflags |= INFFL_LZERO;
      char cfgfile[QMAXFILE];
      get_cfg_filename(cfgfile, sizeof(cfgfile));
      if ( choose_ioport_device(cfgfile, device, sizeof(device), parse_area_line0) )
        //Устанавливает в ядре иды имя выбранного процессора
        //Вычитывает все "записи"(порты)  относящиеся к этому процессору
        //И подписывает в файле все байты вычитанные из *.cfg файла
        set_device_name(device, IORESP_ALL);
      } break;

    case processor_t::newprc:
      {
      char buf[MAXSTR];
      if ( helper.supval(-1, buf, sizeof(buf)) > 0 )
        set_device_name(buf, IORESP_PORT);
      } break;

    case processor_t::newseg:    // new segment
      {
      segment_t *s = va_arg(va, segment_t *);
      // Set default value of DS register for all segments
      set_default_dataseg(s->sel);
      } break;

  }
  va_end(va);
  return 1;
}
示例#5
0
// The kernel event notifications
// Here you may take desired actions upon some kernel events
static int notify(processor_t::idp_notify msgid, ...)
{
    va_list va;
    va_start(va, msgid);

    // A well behavior processor module should call invoke_callbacks()
    // in his notify() function. If this function returns 0, then
    // the processor module should process the notification itself
    // Otherwise the code should be returned to the caller:

    int code = invoke_callbacks(HT_IDP, msgid, va);
    if ( code ) return code;

    switch ( msgid ) {

        case processor_t::init:
            // this processor is big endian
            inf.mf = 1;
        default:
            break;

        case processor_t::term:
            free_ioports(ports, numports);
            break;

        case processor_t::newfile:
            if ( choose_ioport_device(cfgname, device, sizeof(device), NULL) )
                set_device_name(device, IORESP_ALL);
            // default configuration
            if ( refresh_idpflags() == 0 ) {
                idpflags = 0;
                idpflags |= NETNODE_USE_INSN_SYNTHETIC;
                idpflags |= NETNODE_USE_REG_ALIASES;
            }

            // patch register names according to idpflags
            patch_regnames();
            break;

        case processor_t::newprc:
            ptype = processor_subtype_t(va_arg(va, int));
//            msg("ptype = %s\n", ptype == prc_m32r ? "m32r" : ptype == prc_m32rx ? "m32rx" : "???");
            break;

        case processor_t::oldfile:
            refresh_idpflags();
            {
              char buf[MAXSTR];
              if ( helper.supval(-1, buf, sizeof(buf)) > 0 )
                set_device_name(buf, IORESP_NONE);
            }
            // patch register names according to idpflags
            patch_regnames();
            break;

        case processor_t::savebase:
        case processor_t::closebase:
            // synchronize the database long variable with the current configuration settings
#ifdef DEBUG
            msg("Saving configuration: synthetic insn %s, aliases registers %s\n",
                use_synthetic_insn() ? "true " : "false",
                use_reg_aliases() ? "true" : "false"
            );
#endif
            helper.altset(-1, idpflags);
            helper.supset(-1, device);
            break;
    }

    va_end(va);

    return(1);
}
示例#6
0
文件: reg.cpp 项目: nealey/vera
static int notify(processor_t::idp_notify msgid, ...) { // Various messages:
  va_list va;
  va_start(va, msgid);

// A well behaving processor module should call invoke_callbacks()
// in his notify() function. If this function returns 0, then
// the processor module should process the notification itself
// Otherwise the code should be returned to the caller:

  int code = invoke_callbacks(HT_IDP, msgid, va);
  if ( code ) return code;


  switch(msgid)
  {
    case processor_t::init:
      inf.mf = 1;                                 // MSB first
    default:
      break;

    case processor_t::newfile:
      {

        segment_t *sptr = get_first_seg();
        if( sptr != NULL )
        {
          if( sptr->startEA - get_segm_base( sptr ) == 0 )
          {
            inf.beginEA = sptr->startEA + 0xC;
            inf.startIP = 0xC;

            for( int i = 0; i < qnumber(entries); i++ )
            {
              ea_t ea = sptr->startEA + entries[i].off;
              if( isEnabled(ea) )
              {
                doWord( ea, 2 );
// ig: set_op_type - внутренняя функция, ее нельзя использовать
//                set_op_type( ea, offflag(), 0 );
                set_offset( ea, 0, sptr->startEA );
                ea_t ea1 = sptr->startEA + get_word( ea );
                auto_make_proc( ea1 );
                set_name( ea, entries[i].name );
// ig: так получше будет?
                set_cmt( sptr->startEA+get_word(ea), entries[i].cmt, 1 );
              }
            }
          }

          set_segm_class( sptr, "CODE" );
        }

        segment_t s;
        ea_t bottom = toEA( inf.baseaddr, 0 );
        intmem       = s.startEA = freechunk( bottom, 256, 0xF );
        s.endEA      = s.startEA + 256;
        s.sel        = allocate_selector( s.startEA >> 4 );
        s.type       = SEG_IMEM;                    // internal memory
        add_segm_ex( &s, "INTMEM", NULL, ADDSEG_OR_DIE);

        const predefined_t *ptr;
        for( ptr = iregs; ptr->name != NULL; ptr++ )
        {
          ea_t ea = intmem + ptr->addr;
          ea_t oldea = get_name_ea( BADADDR, ptr->name );
          if( oldea != ea )
          {
            if( oldea != BADADDR )    set_name( oldea, NULL );
            do_unknown( ea, DOUNK_EXPAND );
            set_name( ea, ptr->name );
          }
          if( ptr->cmt != NULL )      set_cmt( ea, ptr->cmt, 1 );
        }
      }
      break;

    case processor_t::oldfile:
      sel_t sel;
      if( atos( "INTMEM", &sel) ) intmem = specialSeg(sel);
      break;

    case processor_t::newseg:
      {                 // default DS is equal to CS
        segment_t *sptr = va_arg(va, segment_t *);
        sptr->defsr[rVds-ph.regFirstSreg] = sptr->sel;
      }
  }
  va_end(va);

  return(1);
}
示例#7
0
文件: reg.cpp 项目: nealey/vera
static int notify(processor_t::idp_notify msgid, ...)
{
  va_list va;
  va_start(va, msgid);

// A well behaving processor module should call invoke_callbacks()
// in his notify() function. If this function returns 0, then
// the processor module should process the notification itself
// Otherwise the code should be returned to the caller:

  int code = invoke_callbacks(HT_IDP, msgid, va);
  if ( code ) return code;

  switch(msgid)
  {
    case processor_t::init:
      helper.create("$ pic");
      helper.supval(0, device, sizeof(device));
    default:
      break;

    case processor_t::term:
      free_mappings();
      free_ioports(ports, numports);
      break;

    case processor_t::newfile:   // new file loaded
      {
        segment_t *s0 = get_first_seg();
        if ( s0 != NULL )
        {
          set_segm_name(s0, "CODE");
          dataseg = AdditionalSegment(0x200, 0, "DATA");
          segment_t *s1 = get_next_seg(s0->startEA);
          SetDefaultRegisterValue(s0, BANK, 0);
          SetDefaultRegisterValue(s1, BANK, 0);
          SetDefaultRegisterValue(s0, PCLATH, 0);
          SetDefaultRegisterValue(s1, PCLATH, 0);
          SetDefaultRegisterValue(s0, PCLATU, 0);
          SetDefaultRegisterValue(s1, PCLATU, 0);
          setup_device(IORESP_INT);
          apply_symbols();
        }
      }
      break;

    case processor_t::oldfile:   // old file loaded
      idpflags = (ushort)helper.altval(-1);
      dataseg  = helper.altval(0);
      create_mappings();
      for ( segment_t *s=get_first_seg(); s != NULL; s=get_next_seg(s->startEA) )
      {
        if ( s->defsr[PCLATH-ph.regFirstSreg] == BADSEL )
          s->defsr[PCLATH-ph.regFirstSreg] = 0;
      }
      break;

    case processor_t::closebase:
    case processor_t::savebase:
      helper.altset(0,  dataseg);
      helper.altset(-1, idpflags);
      helper.supset(0,  device);
      break;

    case processor_t::newprc:    // new processor type
      {
        int n = va_arg(va, int);
        static bool set = false;
        if ( set )
          return 0;
        set = true;
        if ( ptypes[n] != ptype )
        {
          ptype = ptypes[n];
          ph.cnbits = 12 + 2*n;
        }
        switch ( ptype )
        {
          case PIC12:
            register_names[PCLATH] = "status";
            cfgname = "pic12.cfg";
            break;
          case PIC14:
            cfgname = "pic14.cfg";
            break;
          case PIC16:
            register_names[BANK] = "bsr";
            cfgname = "pic16.cfg";
            idpflags = 0;
            ph.cnbits = 8;
            ph.regLastSreg = PCLATU;
            break;
          default:
            error("interr in setprc");
            break;
        }
      }
      break;

    case processor_t::newasm:    // new assembler type
      break;

    case processor_t::newseg:    // new segment
      break;

  }
  va_end(va);
  return 1;
}
示例#8
0
文件: reg.cpp 项目: nealey/vera
static int notify(processor_t::idp_notify msgid, ...)
{
    static int first_time = 1;
    va_list va;
    va_start(va, msgid);

// A well behaving processor module should call invoke_callbacks()
// in his notify() function. If this function returns 0, then
// the processor module should process the notification itself
// Otherwise the code should be returned to the caller:

    int code = invoke_callbacks(HT_IDP, msgid, va);
    if ( code ) return code;

    switch ( msgid )
    {
    case processor_t::init:
        helper.create("$ intel 8051");
        inf.mf = 1;       // Set a big endian mode of the IDA kernel
    default:
        break;

    case processor_t::term:
        free_ioports(ports, numports);
        break;

    case processor_t::newfile:
    {
        segment_t *sptr = get_first_seg();
        if ( sptr != NULL )
        {
            if ( sptr->startEA-get_segm_base(sptr) == 0 )
            {
                inf.beginEA = sptr->startEA;
                inf.startIP = 0;
                for ( int i=0; i < qnumber(entries); i++ )
                {
                    if ( entries[i].proc > ptype )
                        continue;
                    ea_t ea = inf.beginEA+entries[i].off;
                    if ( isEnabled(ea) && get_byte(ea) != 0xFF )
                    {
                        add_entry(ea, ea, entries[i].name, 1);
                        set_cmt(ea, entries[i].cmt, 1);
                    }
                }
            }
        }
        segment_t *scode = get_first_seg();
        set_segm_class(scode, "CODE");

        if ( ptype > prc_51 )
        {
            AdditionalSegment(0x10000-256-128, 256+128, "RAM");
            if ( scode != NULL )
            {
                ea_t align = (scode->endEA + 0xFFF) & ~0xFFF;
                if ( getseg(align-7) == scode )     // the code segment size is
                {   // multiple of 4K or near it
                    uchar b0 = get_byte(align-8);
                    // 251:
                    //  0  : 1-source, 0-binary mode
                    //  6,7: must be 1s
                    // 82930:
                    //  0  : 1-source, 0-binary mode
                    //  7  : must be 1s
//              uchar b1 = get_byte(align-7);
                    // 251
                    //  0: eprommap 0 - FE2000..FE4000 is mapped into 00E000..100000
                    //              1 - .............. is not mapped ...............
                    //  1: must be 1
                    //  3:
                    //  2: must be 1
                    //  4: intr 1 - upon interrupt PC,PSW are pushed into stack
                    //          0 - upon interrupt only PC is pushed into stack
                    //  5: must be 1
                    //  6: must be 1
                    //  7: must be 1
                    // 82930:
                    //  3: must be 1
                    //  5: must be 1
                    //  6: must be 1
                    //  7: must be 1
//                msg("b0=%x b1=%x\n", b0, b1);
//              if ( (b0 & 0x80) == 0x80 && (b1 & 0xEA) == 0xEA )
                    {   // the init bits are correct
                        char pname[sizeof(inf.procName)+1];
                        inf.get_proc_name(pname);
                        char ntype = (b0 & 1) ? 's' : 'b';
                        char *ptr = tail(pname)-1;
                        if ( ntype != *ptr
                                && askyn_c(1,
                                           "HIDECANCEL\n"
                                           "The input file seems to be for the %s mode of the processor. "
                                           "Do you want to change the current processor type?",
                                           ntype == 's' ? "source" : "binary") > 0 )
                        {
                            *ptr = ntype;
                            first_time = 1;
                            set_processor_type(pname, SETPROC_COMPAT);
                        }
                    }
                }
            }
        }

        // the default data segment will be INTMEM
        {
            segment_t *s = getseg(intmem);
            if ( s != NULL )
                set_default_dataseg(s->sel);
        }

        if ( choose_ioport_device(cfgname, device, sizeof(device), parse_area_line0) )
            set_device_name(device, IORESP_ALL);

        if ( get_segm_by_name("RAM") == NULL )
            AdditionalSegment(256, 0, "RAM");
        if ( get_segm_by_name("FSR") == NULL )
            AdditionalSegment(128, 128, "FSR");
        setup_data_segment_pointers();
    }
    break;

    case processor_t::oldfile:
        setup_data_segment_pointers();
        break;

    case processor_t::newseg:
        // make the default DS point to INTMEM
        // (8051 specific issue)
    {
        segment_t *newseg = va_arg(va, segment_t *);
        segment_t *intseg = getseg(intmem);
        if ( intseg != NULL )
            newseg->defsr[rVds-ph.regFirstSreg] = intseg->sel;
    }
    break;

    case processor_t::newprc:
    {
        processor_subtype_t prcnum = processor_subtype_t(va_arg(va, int));
        if ( !first_time && prcnum != ptype )
        {
            warning("Sorry, it is not possible to change" // (this is 8051 specific)
                    " the processor mode on the fly."
                    " Please reload the input file"
                    " if you want to change the processor.");
            return 0;
        }
        first_time = 0;
        ptype = prcnum;
    }
    break;

    case processor_t::newasm:    // new assembler type
    {
        char buf[MAXSTR];
        if ( helper.supval(-1, buf, sizeof(buf)) > 0 )
            set_device_name(buf, IORESP_NONE);
    }
    break;

    case processor_t::move_segm:// A segment is moved
        // Fix processor dependent address sensitive information
        // args: ea_t from - old segment address
        //       segment_t - moved segment
    {
        // ea_t from    = va_arg(va, ea_t);
        // segment_t *s = va_arg(va, segment_t *);

        // Add commands to adjust your internal variables here
        // Most of the time this callback will be empty
        //
        // If you keep information in a netnode's altval array, you can use
        //      node.altshift(from, s->startEA, s->endEA - s->startEA);
        //
        // If you have a variables pointing to somewhere in the disassembled program memory,
        // you can adjust it like this:
        //
        //      asize_t size = s->endEA - s->startEA;
        //      if ( var >= from && var < from+size )
        //        var += s->startEA - from;
    }
    break;

    case processor_t::is_sane_insn:
        // is the instruction sane for the current file type?
        // arg:  int no_crefs
        // 1: the instruction has no code refs to it.
        //    ida just tries to convert unexplored bytes
        //    to an instruction (but there is no other
        //    reason to convert them into an instruction)
        // 0: the instruction is created because
        //    of some coderef, user request or another
        //    weighty reason.
        // The instruction is in 'cmd'
        // returns: 1-ok, <=0-no, the instruction isn't
        // likely to appear in the program
    {
        int no_crefs = va_arg(va, int);
        return is_sane_insn(no_crefs);
    }
    }
    va_end(va);

    return(1);
}
示例#9
0
文件: reg.cpp 项目: nealey/vera
// The kernel event notifications
// Here you may take desired actions upon some kernel events
static int notify(processor_t::idp_notify msgid, ...)
{
    va_list va;
    va_start(va, msgid);

    // A well behavior processor module should call invoke_callbacks()
    // in his notify() function. If this function returns 0, then
    // the processor module should process the notification itself
    // Otherwise the code should be returned to the caller:

    int code = invoke_callbacks(HT_IDP, msgid, va);
    if ( code ) return code;

    switch ( msgid ) {
        case processor_t::init:
            // this processor is big endian
            inf.mf = 1;
            refresh_idpflags();
            {
              char buf[MAXSTR];
              if ( helper.supval(-1, buf, sizeof(buf)) > 0 )
                set_device_name(buf, IORESP_ALL);
            }
            break;

        case processor_t::term:
            free_reg_names();
        default:
            break;

        case processor_t::newfile:
            // default configuration
            idpflags = CONF_GR_DEC;
            // patch general registers names
            patch_general_registers(true);
            break;

       case processor_t::newseg:
            {
              segment_t *s = va_arg(va, segment_t *);
              // set RW/RP segment registers initial values
              s->defsr[rRW-ph.regFirstSreg] = 0;
              s->defsr[rRP-ph.regFirstSreg] = BADSEL;
            }
            break;

        case processor_t::oldfile:
            patch_general_registers();
            break;

        case processor_t::closebase:
        case processor_t::savebase:
            helper.altset(-1, idpflags);
            helper.supset(-1, device);
            break;
    }

    va_end(va);

    return(1);
}
示例#10
0
// The kernel event notifications
// Here you may take desired actions upon some kernel events
static int idaapi notify(processor_t::idp_notify msgid, ...)
{
	va_list va;
	va_start(va, msgid);

	// A well behavior processor module should call invoke_callbacks()
	// in his notify() function. If this function returns 0, then
	// the processor module should process the notification itself
	// Otherwise the code should be returned to the caller:

	int code = invoke_callbacks(HT_IDP, msgid, va);
	if ( code ) return code;

	switch ( msgid )
	{
	case processor_t::init:
		inf.mf = 1;
		helper.create("$ fr");
	default:
		break;

	case processor_t::term:
		free_ioports(ports, numports);
		break;

	case processor_t::newfile:
		choose_device();
		set_device_name(device, IORESP_ALL);
		break;

	case processor_t::oldfile:
		{
			char buf[MAXSTR];
			if ( helper.supval(-1, buf, sizeof(buf)) > 0 )
				set_device_name(buf, IORESP_NONE);
		}
		break;

	case processor_t::closebase:
	case processor_t::savebase:
		helper.supset(-1, device);
		break;

	case processor_t::is_basic_block_end:
		return is_basic_block_end() ? 2 : 0;


#ifdef FR_TYPEINFO_SUPPORT
		// +++ TYPE CALLBACKS
	case processor_t::max_ptr_size:
		return 4+1;

	case processor_t::get_default_enum_size: // get default enum size
		// args:  cm_t cm
		// returns: sizeof(enum)
		{
			//        cm_t cm        =  va_argi(va, cm_t);
			return 1; // inf.cc.size_e;
		}

	case processor_t::based_ptr:
		{
			uint ptrt      = va_arg(va, unsigned int); qnotused(ptrt);
			char **ptrname = va_arg(va, char **);
			*ptrname = NULL;
			return 0;                       // returns: size of type
		}

	case processor_t::get_stkarg_offset2:
		// get offset from SP to the first stack argument
		// args: none
		// returns: the offset+2
		return 0x00 + 2;

	case processor_t::calc_cdecl_purged_bytes2:
		// calculate number of purged bytes after call
		{
			//ea_t ea = va_arg(va, ea_t);
			return 0x00 + 2;
		}

#endif // FR_TYPEINFO_SUPPORT 
#ifdef FR_TINFO_SUPPORT
	case processor_t::decorate_name3:
		{
			qstring *outbuf  = va_arg(va, qstring *);
			const char *name = va_arg(va, const char *);
			bool mangle      = va_argi(va, bool);
			cm_t cc          = va_argi(va, cm_t);
			return gen_decorate_name3(outbuf, name, mangle, cc) ? 2 : 0;
		}

	case processor_t::calc_retloc3:
		//msg("calc_retloc3\n");
		{
			const tinfo_t *type = va_arg(va, const tinfo_t *);
			cm_t cc             = va_argi(va, cm_t);
			argloc_t *retloc    = va_arg(va, argloc_t *);
			return calc_fr_retloc(*type, cc, retloc) ? 2 : -1;
		}
		break;  

	case processor_t::calc_varglocs3:
		return 1; // not implemented
		break;

	case processor_t::calc_arglocs3:
		{
			//msg("calc_arglocs3\n");
			func_type_data_t *fti = va_arg(va, func_type_data_t *);
			return calc_fr_arglocs(fti) ? 2 : -1;
		}

	case processor_t::use_stkarg_type3:
		{
			//msg("use_stkarg_type3\n");
			ea_t ea               = va_arg(va, ea_t);
			const funcarg_t *arg  = va_arg(va, const funcarg_t* );
		}
		return false;
		break;

	case processor_t::use_regarg_type3:
		//msg("use_regarg_type3\n");
		{
			int *used                 = va_arg(va, int *);
			ea_t ea                   = va_arg(va, ea_t);
			const funcargvec_t *rargs = va_arg(va, const funcargvec_t *);
			*used = use_fr_regarg_type(ea, *rargs);
			return 2;
		}
		break;

	case processor_t::use_arg_types3:
		{
			ea_t ea               = va_arg(va, ea_t);
			func_type_data_t *fti = va_arg(va, func_type_data_t *);
			funcargvec_t *rargs   = va_arg(va, funcargvec_t *);
			use_fr_arg_types(ea, fti, rargs);
			return 2;
		}
#ifdef IDA65
	case processor_t::get_fastcall_regs2:
	case processor_t::get_varcall_regs2:
		{
			const int **regs = va_arg(va, const int **);
			return get_fr_fastcall_regs(regs) + 2;
		}

	case processor_t::get_thiscall_regs2:
		{
			const int **regs = va_arg(va, const int **);
			*regs = NULL;
			return 2;
		}
#else
	case processor_t::get_fastcall_regs3:
	case processor_t::get_varcall_regs3:
		{
			const int *regs;
			get_fr_fastcall_regs(&regs);
			callregs_t *callregs = va_arg(va, callregs_t *);
			callregs->set(ARGREGS_INDEPENDENT, regs, NULL);
			return callregs->nregs + 2;
		}

	case processor_t::get_thiscall_regs3:
		{
			callregs_t *callregs = va_arg(va, callregs_t *);
			callregs->reset();
			return 2;
		}
#endif IDA65
#endif // FR_TINFO_SUPPORT
	}

    va_end(va);

    return(1);
}
示例#11
0
文件: reg.cpp 项目: nealey/vera
//----------------------------------------------------------------------
static int notify(processor_t::idp_notify msgid, ...) { // Various messages:
  va_list va;
  va_start(va, msgid);

// A well behaving processor module should call invoke_callbacks()
// in his notify() function. If this function returns 0, then
// the processor module should process the notification itself
// Otherwise the code should be returned to the caller:

  int code = invoke_callbacks(HT_IDP, msgid, va);
  if ( code ) return code;

  int retcode = 1;
  segment_t *sptr;
  static uchar first = 0;

  switch(msgid) {
    case processor_t::newseg:
      sptr = va_arg(va, segment_t *);
      sptr->defsr[rVds-ph.regFirstSreg] = find_selector(inf.start_cs); //sptr->sel;
      break;

    case processor_t::init:
      ovrtrans.create(ovrtrans_name);   // it makes no harm to create it again
    default:
      break;

    case processor_t::oldfile:
      m.asect_top = (ushort)ovrtrans.altval(n_asect);
      m.ovrcallbeg = (ushort)ovrtrans.altval(n_ovrbeg);
      m.ovrcallend = (ushort)ovrtrans.altval(n_ovrend);
      if(ovrtrans.altval(n_asciiX))
         ash.XlatAsciiOutput = macro11.XlatAsciiOutput = NULL;
      m.ovrtbl_base = (uint32)ovrtrans.altval(n_ovrbas);
    case processor_t::newfile:
      first = 1;
      break;

    case processor_t::loader:
      {
        pdp_ml_t **ml = va_arg(va, pdp_ml_t **);
        netnode  **mn  = va_arg(va, netnode **);
        if(ml && mn) {
          *ml = &m;
          *mn = &ovrtrans;
          retcode = 0;
        }
      }
      break;

    case processor_t::move_segm:
                                // A segment is moved
                                // Fix processor dependent address sensitive information
                                // args: ea_t from - old segment address
                                //       segment_t - moved segment
      {
        ea_t from    = va_arg(va, ea_t);
        segment_t *s = va_arg(va, segment_t *);
        ovrtrans.altshift(from, s->startEA, s->size()); // i'm not sure about this
      }
      break;
  }
  va_end(va);

  return(retcode);
}
示例#12
0
static int notify(processor_t::idp_notify msgid, ...)
{
  va_list va;
  va_start(va, msgid);

// A well behaving processor module should call invoke_callbacks()
// in his notify() function. If this function returns 0, then
// the processor module should process the notification itself
// Otherwise the code should be returned to the caller:

  int code = invoke_callbacks(HT_IDP, msgid, va);
  if ( code ) return code;

  switch(msgid)
  {
    case processor_t::init:
//      __emit__(0xCC);   // debugger trap
      helper.create("$ f2mc");
      {
        char buf[MAXSTR];
        if ( helper.supval(0, buf, sizeof(buf)) > 0 )
          f2mc_set_device_name(buf, IORESP_NONE);
      }
      inf.wide_high_byte_first = 1;
      break;

    case processor_t::term:
      free_ioports(ports, numports);
    default:
      break;

    case processor_t::newfile:   // new file loaded
      set_segm_name(get_first_seg(), "CODE");
      if ( choose_ioport_device(cfgname, device, sizeof(device), parse_area_line0) )
        f2mc_set_device_name(device, IORESP_ALL);
      for ( int i = DTB; i <= rVds; i++ )
      {
        for ( segment_t *s=get_first_seg(); s != NULL; s=get_next_seg(s->startEA) )
          SetDefaultRegisterValue(s, i, 0);
      }
      break;

    case processor_t::oldfile:   // old file loaded
      idpflags = (ushort)helper.altval(-1);
      break;

    case processor_t::closebase:
    case processor_t::savebase:
      helper.altset(-1, idpflags);
      break;

    case processor_t::newprc:    // new processor type
      {
        ptype = ptypes[va_arg(va, int)];
        switch ( ptype )
        {
          case F2MC16L:
            cfgname = "f2mc16l.cfg";
            break;
          case F2MC16LX:
            cfgname = "f2mc16lx.cfg";
            break;
          default:
            error("interr: setprc");
            break;
        }
        device[0] = '\0';
        if ( get_first_seg() != NULL )
          choose_device(NULL, 0);
      }
      break;

    case processor_t::newasm:    // new assembler type
      break;

    case processor_t::newseg:    // new segment
      break;

  }
  va_end(va);
  return 1;
}
示例#13
0
static int notify(processor_t::idp_notify msgid, ...)
{
  va_list va;
  va_start(va, msgid);

// A well behaving processor module should call invoke_callbacks()
// in his notify() function. If this function returns 0, then
// the processor module should process the notification itself
// Otherwise the code should be returned to the caller:

  int code = invoke_callbacks(HT_IDP, msgid, va);
  if ( code ) return code;

  switch(msgid)
  {
    case processor_t::init:
//      __emit__(0xCC);   // debugger trap
      helper.create("$ hppa");
      inf.mf = 1;         // always big endian
      syscalls = read_ioports(&nsyscalls, "hpux.cfg", NULL, 0, NULL);
      break;

    case processor_t::term:
      free_ioports(syscalls, nsyscalls);
      break;

    case processor_t::newfile:      // new file loaded
      handle_new_flags();
      setup_got();
      break;

    case processor_t::oldfile:      // old file loaded
      idpflags = helper.altval(-1);
      handle_new_flags();
      setup_got();
      break;

    case processor_t::newprc:    // new processor type
      break;

    case processor_t::newasm:    // new assembler type
      break;

    case processor_t::newseg:    // new segment
      {
        segment_t *sptr = va_arg(va, segment_t *);
        sptr->defsr[ rVds-ph.regFirstSreg] = find_selector(sptr->sel);
        sptr->defsr[DPSEG-ph.regFirstSreg] = 0;
      }
      break;

    case processor_t::is_sane_insn:
      return is_sane_insn(va_arg(va, int));

    case processor_t::may_be_func:
                                // can a function start here?
                                // arg: none, the instruction is in 'cmd'
                                // returns: probability 0..100
                                // 'cmd' structure is filled upon the entrace
                                // the idp module is allowed to modify 'cmd'
      return may_be_func();

    case processor_t::is_basic_block_end:
      return is_basic_block_end() ? 2 : 0;

// +++ TYPE CALLBACKS (only 32-bit programs for the moment)
    case processor_t::decorate_name:
      {
        const til_t *ti    = va_arg(va, const til_t *);
        const char *name   = va_arg(va, const char *);
        const type_t *type = va_arg(va, const type_t *);
        char *outbuf       = va_arg(va, char *);
        size_t bufsize     = va_arg(va, size_t);
        bool mangle        = va_argi(va, bool);
        cm_t real_cc       = va_argi(va, cm_t);
        return gen_decorate_name(ti, name, type, outbuf, bufsize, mangle, real_cc);
      }

    case processor_t::max_ptr_size:
      return 4+1;

    case processor_t::based_ptr:
      {
        /*unsigned int ptrt =*/ va_arg(va, unsigned int);
        char **ptrname    = va_arg(va, char **);
        *ptrname = NULL;
        return 0;                       // returns: size of type
      }

    case processor_t::get_default_enum_size: // get default enum size
                                // args:  cm_t cm
                                // returns: sizeof(enum)
      {
//        cm_t cm        =  va_arg(va, cm_t);
        return inf.cc.size_e;
      }

    case processor_t::calc_arglocs:
      {
        const type_t **type = va_arg(va, const type_t **);
        ulong *arglocs      = va_arg(va, ulong *);
        int maxn            = va_arg(va, int);
        return hppa_calc_arglocs(*type, arglocs, maxn);
      }

    // this callback is never used because the stack pointer does not
    // change for each argument
    // we use ph.use_arg_types instead
    case processor_t::use_stkarg_type:
                                    // use information about a stack argument
      {
        return false;               // say failed all the time
                                    // so that the kernel attaches a comment
      }

    case processor_t::use_regarg_type:
      {
        ea_t ea                     = va_arg(va, ea_t);
        const type_t * const *types = va_arg(va, const type_t * const *);
        const char * const *names   = va_arg(va, const char * const *);
        const ulong *regs           = va_arg(va, const ulong *);
        int n                       = va_arg(va, int);
        return hppa_use_regvar_type(ea, types, names, regs, n);
      }

    case processor_t::use_arg_types:
      {
        ea_t ea                     = va_arg(va, ea_t);
        const type_t * const *types = va_arg(va, const type_t * const *);
        const char * const *names   = va_arg(va, const char * const *);
        const ulong *arglocs        = va_arg(va, const ulong *);
        int n                       = va_arg(va, int);
        const type_t **rtypes       = va_arg(va, const type_t **);
        const char **rnames         = va_arg(va, const char **);
        ulong *regs                 = va_arg(va, ulong *);
        int rn                      = va_arg(va, int);
        return hppa_use_arg_types(ea, types, names, arglocs, n,
                                  rtypes, rnames, regs, rn);
      }

    case processor_t::get_fastcall_regs:
      {
        const int **regs = va_arg(va, const int **);
        static const int fregs[] = { R26, R25, R24, R23, -1 };
        *regs = fregs;
        return qnumber(fregs) - 1;
      }

    case processor_t::get_thiscall_regs:
      {
        const int **regs = va_arg(va, const int **);
        *regs = NULL;
        return 0;
      }

    case processor_t::calc_cdecl_purged_bytes:
                                // calculate number of purged bytes after call
      {
        // ea_t ea                     = va_arg(va, ea_t);
        return 0;
      }

    case processor_t::get_stkarg_offset:
                                // get offset from SP to the first stack argument
                                // args: none
                                // returns: the offset
      return -0x34;

// --- TYPE CALLBACKS
    case processor_t::loader:
      break;
  }
  va_end(va);
  return 1;
}
示例#14
0
static int notify(processor_t::idp_notify msgid, ...)
{
  va_list va;
  va_start(va, msgid);

// A well behaving processor module should call invoke_callbacks()
// in his notify() function. If this function returns 0, then
// the processor module should process the notification itself
// Otherwise the code should be returned to the caller:

  int code = invoke_callbacks(HT_IDP, msgid, va);
  if ( code ) return code;

  switch ( msgid )
  {
    case processor_t::init:
//      __emit__(0xCC);   // debugger trap
      helper.create("$ h8/500");
      inf.mf = 1;
    default:
      break;

    case processor_t::term:
      free_syms();
      break;

    case processor_t::oldfile:   // old file loaded
      idpflags = ushort(helper.altval(-1) + 1);
      create_segment_registers();
      // no break
    case processor_t::newfile:   // new file loaded
      load_symbols("h8500.cfg");
      inf.mf = 1;
      break;

    case processor_t::closebase:
    case processor_t::savebase:
      helper.altset(-1, idpflags - 1);
      break;

    case processor_t::newseg:    // new segment
      {
        segment_t *sptr = va_arg(va, segment_t *);
        sptr->defsr[BR-ph.regFirstSreg] = 0;
        sptr->defsr[DP-ph.regFirstSreg] = 0;
      }
      break;

    case processor_t::is_jump_func:
      {
        const func_t *pfn = va_arg(va, const func_t *);
        ea_t *jump_target = va_arg(va, ea_t *);
        return is_jump_func(pfn, jump_target);
      }

    case processor_t::is_sane_insn:
      return is_sane_insn(va_arg(va, int));

    case processor_t::may_be_func:
                                // can a function start here?
                                // arg: none, the instruction is in 'cmd'
                                // returns: probability 0..100
                                // 'cmd' structure is filled upon the entrace
                                // the idp module is allowed to modify 'cmd'
      return may_be_func();

  }
  va_end(va);
  return 1;
}
示例#15
0
static int idaapi notify(processor_t::idp_notify msgid, ...)
{
  va_list va;
  va_start(va, msgid);

// A well behaving processor module should call invoke_callbacks()
// in his notify() function. If this function returns 0, then
// the processor module should process the notification itself
// Otherwise the code should be returned to the caller:

  int code = invoke_callbacks(HT_IDP, msgid, va);
  if ( code ) return code;

  switch ( msgid )
  {
    case processor_t::init:
      helper.create("$ st20");
      helper.supval(0, device, sizeof(device));
      break;

    case processor_t::term:
      free_ioports(ports, numports);
    default:
      break;

    case processor_t::newfile:  // new file loaded
    case processor_t::oldfile:  // old file loaded
      load_symbols();
      break;

    case processor_t::savebase:
    case processor_t::closebase:
      helper.supset(0, device);
      break;

    case processor_t::newprc:   // new processor type
      procnum = va_arg(va, int);
      if ( isc4() ) ph.retcodes = retcodes4;
      break;

    case processor_t::is_jump_func:
      {
        const func_t *pfn = va_arg(va, const func_t *);
        ea_t *jump_target = va_arg(va, ea_t *);
        return is_jump_func(pfn, jump_target);
      }

    case processor_t::is_sane_insn:
      return is_sane_insn(va_arg(va, int));

    case processor_t::may_be_func:
                                // can a function start here?
                                // arg: none, the instruction is in 'cmd'
                                // returns: probability 0..100
                                // 'cmd' structure is filled upon the entrace
                                // the idp module is allowed to modify 'cmd'
      return may_be_func();

  }
  va_end(va);
  return 1;
}
示例#16
0
文件: reg.cpp 项目: nealey/vera
// The kernel event notifications
// Here you may take desired actions upon some kernel events
static int notify(processor_t::idp_notify msgid, ...)
{
    va_list va;
    va_start(va, msgid);

    // A well behavior processor module should call invoke_callbacks()
    // in his notify() function. If this function returns 0, then
    // the processor module should process the notification itself
    // Otherwise the code should be returned to the caller:

    int code = invoke_callbacks(HT_IDP, msgid, va);
    if ( code ) return code;

    switch ( msgid ) {
        case processor_t::newfile:
            helper.create("$ m7700");
            if ( choose_device() )
                set_device_name(device, IORESP_ALL);
            //  Set the default segment register values :
            //      -1 (badsel) for DR
            //      0 for fM and fX
            for ( segment_t *s=get_first_seg(); s != NULL; s=get_next_seg(s->startEA) )
            {
                SetDefaultRegisterValue(s, rDR, BADSEL);
                SetDefaultRegisterValue(s, rfM, 0);
                SetDefaultRegisterValue(s, rfX, 0);
            }
            info(m7700_help_message);
            break;

        case processor_t::term:
            free_ioports(ports, numports);
        default:
            break;

        case processor_t::newprc:
            ptype = processor_subtype_t(va_arg(va, int));
            break;

        case processor_t::setsgr:
          {
            ea_t ea1 = va_arg(va, ea_t);
            ea_t ea2 = va_arg(va, ea_t);
            int reg  = va_arg(va, int);
            sel_t v  = va_arg(va, sel_t);
            sel_t ov = va_arg(va, sel_t);
            if ( (reg == rfM || reg == rfX) && v != ov )
              set_sreg_at_next_code(ea1, ea2, reg, ov);
          }
          break;

        case processor_t::oldfile:
            helper.create("$ m7700");
            {
              char buf[MAXSTR];
              if ( helper.supval(-1, buf, sizeof(buf)) > 0 )
                set_device_name(buf, IORESP_ALL);
            }
            break;

        case processor_t::savebase:
        case processor_t::closebase:
            helper.supset(-1, device);
            break;
    }

    va_end(va);

    return(1);
}
示例#17
0
文件: reg.cpp 项目: nealey/vera
//----------------------------------------------------------------------
static int idaapi nec850_notify(processor_t::idp_notify msgid, ...)
{
  va_list va;
  va_start(va, msgid);

  // A well behaving processor module should call invoke_callbacks()
  // in his notify() function. If this function returns 0, then
  // the processor module should process the notification itself
  // Otherwise the code should be returned to the caller:

  int code = invoke_callbacks(HT_IDP, msgid, va);
  if ( code )
    return code;

  switch(msgid)
  {
  case processor_t::init:
    inf.mf = 0;
    prog_pointers.create("$ prog pointers");
    break;

  case processor_t::is_sane_insn:
    {
      int no_crefs = va_arg(va, int);
      return nec850_is_sane_insn(no_crefs);
    }

  case processor_t::newprc:
    {
      int procnum = va_arg(va, int);
      is_v850e = procnum == 0;
      break;
    }
  case processor_t::term:
    break;

  // save database
  case processor_t::closebase:
  case processor_t::savebase:
    prog_pointers.altset(GP_EA_IDX, g_gp_ea);
    break;

  // old file loaded
  case processor_t::oldfile:
    g_gp_ea = prog_pointers.altval(GP_EA_IDX);
    break;

  case processor_t::newseg:
    {
      segment_t *s = va_arg(va, segment_t *);
      // Set default value of DS register for all segments
      set_default_dataseg(s->sel);
    }
  // A segment is moved
  //case processor_t::move_segm:
  //  // Fix processor dependent address sensitive information
  //  // args: ea_t from - old segment address
  //  //       segment_t - moved segment
  //  {
  //    ea_t from    = va_arg(va, ea_t);
  //    segment_t *s = va_arg(va, segment_t *);
  //    // adjust gp_ea
  //  }
  //  break;
  default:
    break;
  }
  va_end(va);
  return 1;
}