示例#1
0
int
PrefixSum::setupCL(void)
{
    cl_int status = 0;
    cl_device_type dType;

    if(deviceType.compare("cpu") == 0)
    {
        dType = CL_DEVICE_TYPE_CPU;
    }
    else //deviceType = "gpu" 
    {
        dType = CL_DEVICE_TYPE_GPU;
        if(isThereGPU() == false)
        {
            std::cout << "GPU not found. Falling back to CPU device" << std::endl;
            dType = CL_DEVICE_TYPE_CPU;
        }
    }
     /*
     * Have a look at the available platforms and pick either
     * the AMD one if available or a reasonable default.
     */
    cl_platform_id platform = NULL;
    int retValue = sampleCommon->getPlatform(platform, platformId, isPlatformEnabled());
    CHECK_ERROR(retValue, SDK_SUCCESS, "sampleCommon->getPlatform() failed");

    // Display available devices.
    retValue = sampleCommon->displayDevices(platform, dType);
    CHECK_ERROR(retValue, SDK_SUCCESS, "sampleCommon::displayDevices() failed");

    /*
     * If we could find our platform, use it. Otherwise use just available platform.
     */

    cl_context_properties cps[3] = 
    {
        CL_CONTEXT_PLATFORM, 
        (cl_context_properties)platform, 
        0
    };

    context = clCreateContextFromType(
                  cps,
                  dType,
                  NULL,
                  NULL,
                  &status);
    CHECK_OPENCL_ERROR(status, "clCreateContextFromType failed.");

    status = sampleCommon->getDevices(context, &devices, deviceId, isDeviceIdEnabled());
    CHECK_ERROR(status, SDK_SUCCESS, "sampleCommon::getDevices() failed");

    //Set device info of given cl_device_id
    status = deviceInfo.setDeviceInfo(devices[deviceId]);
    CHECK_ERROR(status, SDK_SUCCESS, "SDKDeviceInfo::setDeviceInfo() failed"); 

    {
        // The block is to move the declaration of prop closer to its use
        cl_command_queue_properties prop = 0;
        commandQueue = clCreateCommandQueue(
                           context, 
                           devices[deviceId], 
                           prop, 
                           &status);
        CHECK_OPENCL_ERROR(status, "clCreateCommandQueue failed.");  
    }

    // Set Presistent memory only for AMD platform
    cl_mem_flags inMemFlags = CL_MEM_READ_ONLY;
    if(isAmdPlatform())
        inMemFlags |= CL_MEM_USE_PERSISTENT_MEM_AMD;

    inputBuffer = clCreateBuffer(
                      context, 
                      inMemFlags,
                      sizeof(cl_float) * length,
                      NULL, 
                      &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (inputBuffer)");  

    outputBuffer = clCreateBuffer(
                      context, 
                      CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR,
                      sizeof(cl_float) * length,
                      NULL, 
                      &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (outputBuffer)");  

   // create a CL program using the kernel source 
    streamsdk::buildProgramData buildData;
    buildData.kernelName = std::string("PrefixSum_Kernels.cl");
    buildData.devices = devices;
    buildData.deviceId = deviceId;
    buildData.flagsStr = std::string("");

    if(isLoadBinaryEnabled())
        buildData.binaryName = std::string(loadBinary.c_str());

    if(isComplierFlagsSpecified())
        buildData.flagsFileName = std::string(flags.c_str());

    retValue = sampleCommon->buildOpenCLProgram(program, context, buildData);
    CHECK_ERROR(retValue, SDK_SUCCESS, "sampleCommon::buildOpenCLProgram() failed");

    // get a kernel object handle for a kernel with the given name
    kernel = clCreateKernel(program, "prefixSum", &status);
    CHECK_OPENCL_ERROR(status, "clCreateKernel failed.");
    return SDK_SUCCESS;
}
int
DwtHaar1D::setupCL(void)
{
    cl_int status = 0;
    cl_device_type dType;

    if(deviceType.compare("cpu") == 0)
    {
        dType = CL_DEVICE_TYPE_CPU;
    }
    else //deviceType = "gpu" 
    {
        dType = CL_DEVICE_TYPE_GPU;
        if(isThereGPU() == false)
        {
            std::cout << "GPU not found. Falling back to CPU device" << std::endl;
            dType = CL_DEVICE_TYPE_CPU;
        }
    }

    /*
     * Have a look at the available platforms and pick either
     * the AMD one if available or a reasonable default.
     */
    cl_platform_id platform = NULL;
    int retValue = sampleCommon->getPlatform(platform, platformId, isPlatformEnabled());
    CHECK_ERROR(retValue, SDK_SUCCESS, "sampleCommon::getPlatform() failed");

    // Display available devices.
    retValue = sampleCommon->displayDevices(platform, dType);
    CHECK_ERROR(retValue, SDK_SUCCESS, "sampleCommon::displayDevices() failed");

    // If we could find our platform, use it. Otherwise use just available platform.

    cl_context_properties cps[3] = 
    {
        CL_CONTEXT_PLATFORM, 
        (cl_context_properties)platform, 
        0
    };

    context = clCreateContextFromType(cps,
        dType,
        NULL,
        NULL,
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateContextFromType failed.");

    // getting device on which to run the sample
    status = sampleCommon->getDevices(context, &devices, deviceId, isDeviceIdEnabled());
    CHECK_ERROR(status, SDK_SUCCESS, "sampleCommon::getDevices() failed");


    commandQueue = clCreateCommandQueue(context, 
        devices[deviceId], 
        0, 
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateCommandQueue failed.");

    //Set device info of given cl_device_id
    retValue = deviceInfo.setDeviceInfo(devices[deviceId]);
    CHECK_ERROR(retValue, 0, "SDKDeviceInfo::setDeviceInfo() failed");

    // Set Presistent memory only for AMD platform
    cl_mem_flags inMemFlags = CL_MEM_READ_ONLY;
    if(isAmdPlatform())
        inMemFlags |= CL_MEM_USE_PERSISTENT_MEM_AMD;

    inDataBuf = clCreateBuffer(context,
        inMemFlags,
        sizeof(cl_float) * signalLength,
        NULL,
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (inDataBuf)");

    dOutDataBuf = clCreateBuffer(context, 
        CL_MEM_WRITE_ONLY,
        signalLength * sizeof(cl_float),
        NULL, 
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (dOutDataBuf)");

    dPartialOutDataBuf = clCreateBuffer(context, 
        CL_MEM_WRITE_ONLY,
        signalLength * sizeof(cl_float),
        NULL, 
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (dPartialOutDataBuf)");

    // create a CL program using the kernel source 
    streamsdk::buildProgramData buildData;
    buildData.kernelName = std::string("DwtHaar1DCPPKernel_Kernels.cl");
    buildData.devices = devices;
    buildData.deviceId = deviceId;
    buildData.flagsStr = std::string("-x clc++ ");
    if(isLoadBinaryEnabled())
        buildData.binaryName = std::string(loadBinary.c_str());

    if(isComplierFlagsSpecified())
        buildData.flagsFileName = std::string(flags.c_str());

    retValue = sampleCommon->buildOpenCLProgram(program, context, buildData);
    CHECK_ERROR(retValue, 0, "sampleCommon::buildOpenCLProgram() failed");

    // get a kernel object handle for a kernel with the given name 
    kernel = clCreateKernel(program, "dwtHaar1D", &status);
    CHECK_OPENCL_ERROR(status, "clCreateKernel failed.");

    status = kernelInfo.setKernelWorkGroupInfo(kernel,devices[deviceId]);
    CHECK_ERROR(status, SDK_SUCCESS, " setKernelWorkGroupInfo() failed");

    return SDK_SUCCESS;
}
int
EigenValue::setupCL(void)
{
    cl_int status = 0;

    cl_device_type dType;

    if(deviceType.compare("cpu") == 0)
    {
        dType = CL_DEVICE_TYPE_CPU;
    }
    else //deviceType = "gpu" 
    {
        dType = CL_DEVICE_TYPE_GPU;
        if(isThereGPU() == false)
        {
            std::cout << "GPU not found. Falling back to CPU device" << std::endl;
            dType = CL_DEVICE_TYPE_CPU;
        }
    }

    /*
     * Have a look at the available platforms and pick either
     * the AMD one if available or a reasonable default.
     */
    cl_platform_id platform = NULL;
    int retValue = sampleCommon->getPlatform(platform, platformId, isPlatformEnabled());
    CHECK_ERROR(retValue, SDK_SUCCESS, "sampleCommon::getPlatform() failed");

    // Display available devices.
    retValue = sampleCommon->displayDevices(platform, dType);
    CHECK_ERROR(retValue, SDK_SUCCESS, "sampleCommon::displayDevices() failed");

    // If we could find our platform, use it. Otherwise use just available platform.
    cl_context_properties cps[3] = 
    {
        CL_CONTEXT_PLATFORM, 
        (cl_context_properties)platform,
        0
    };

    context = clCreateContextFromType(
                  cps,
                  dType,
                  NULL,
                  NULL,
                  &status);
    CHECK_OPENCL_ERROR(status, "clCreateContextFromType failed.");

    // getting device on which to run the sample
    status = sampleCommon->getDevices(context, &devices, deviceId, isDeviceIdEnabled());
    CHECK_ERROR(status, 0, "sampleCommon::getDevices() failed");


    {
        // The block is to move the declaration of prop closer to its use
        cl_command_queue_properties prop = 0;
        commandQueue = clCreateCommandQueue(
                           context, 
                           devices[deviceId], 
                           prop, 
                           &status);
        CHECK_OPENCL_ERROR(status, "clCreateCommandQueue failed.");
    }

    // Set Presistent memory only for AMD platform
    cl_mem_flags inMemFlags = CL_MEM_READ_ONLY;
    if(isAmdPlatform())
        inMemFlags |= CL_MEM_USE_PERSISTENT_MEM_AMD;

    // cl mem to store the diagonal elements of the matrix
    diagonalBuffer = clCreateBuffer(
                      context, 
                      inMemFlags,
                      sizeof(cl_float) * length,
                      NULL, 
                      &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (diagonalBuffer)");

    // cl mem to store the number of eigenvalues in each interval
    numEigenValuesIntervalBuffer = clCreateBuffer(
                                    context, 
                                    CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR,
                                    sizeof(cl_uint) * length,
                                    NULL, 
                                    &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (diagonalBuffer)");

    // cl mem to store the offDiagonal elements of the matrix
    offDiagonalBuffer = clCreateBuffer(
                         context, 
                         inMemFlags,
                         sizeof(cl_float) * (length-1),
                         NULL, 
                         &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (offDiagonalBuffer)");

    // cl mem to store the eigenvalue intervals
    for(int i = 0 ; i < 2 ; ++ i)
    {
        eigenIntervalBuffer[i] = clCreateBuffer(
                                 context, 
                                 CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR,
                                 sizeof(cl_uint) * length * 2,
                                 NULL, 
                                 &status);
       CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (eigenIntervalBuffer)");
    }

    // create a CL program using the kernel source 
    streamsdk::buildProgramData buildData;
    buildData.kernelName = std::string("EigenValue_Kernels.cl");
    buildData.devices = devices;
    buildData.deviceId = deviceId;
    buildData.flagsStr = std::string("-x clc++");
    if(isLoadBinaryEnabled())
        buildData.binaryName = std::string(loadBinary.c_str());

    if(isComplierFlagsSpecified())
        buildData.flagsFileName = std::string(flags.c_str());

    retValue = sampleCommon->buildOpenCLProgram(program, context, buildData);
    CHECK_ERROR(retValue, 0, "sampleCommon::buildOpenCLProgram() failed");

    // get a kernel object handle for a kernel with the given name
    kernel[0] = clCreateKernel(program, "calNumEigenValueInterval", &status);
    if(sampleCommon->checkVal(
            status,
            CL_SUCCESS,
            "clCreateKernel failed."))
        return SDK_FAILURE;

    // get a kernel object handle for a kernel with the given name
    kernel[1] = clCreateKernel(program, "recalculateEigenIntervals", &status);
    if(sampleCommon->checkVal(
            status,
            CL_SUCCESS,
            "clCreateKernel failed."))
        return SDK_FAILURE;

    return SDK_SUCCESS;
}
int
FluidSimulation2D::setupCL()
{
    cl_int status = CL_SUCCESS;
    cl_device_type dType;

    if(deviceType.compare("cpu") == 0)
    {
        dType = CL_DEVICE_TYPE_CPU;
    }
    else //deviceType = "gpu" 
    {
        dType = CL_DEVICE_TYPE_GPU;
        if(isThereGPU() == false)
        {
            std::cout << "GPU not found. Falling back to CPU device" << std::endl;
            dType = CL_DEVICE_TYPE_CPU;
        }
    }

    /*
     * Have a look at the available platforms and pick either
     * the AMD one if available or a reasonable default.
     */
    cl_platform_id platform = NULL;
    int retValue = sampleCommon->getPlatform(platform, platformId, isPlatformEnabled());
    CHECK_ERROR(retValue, SDK_SUCCESS, "sampleCommon::getPlatform() failed");

    // Display available devices.
    retValue = sampleCommon->displayDevices(platform, dType);
    CHECK_ERROR(retValue, SDK_SUCCESS, "sampleCommon::displayDevices() failed");


    // If we could find our platform, use it. Otherwise use just available platform.

    cl_context_properties cps[3] = 
    {
        CL_CONTEXT_PLATFORM, 
        (cl_context_properties)platform, 
        0
    };

    context = clCreateContextFromType(
                  cps,
                  dType,
                  NULL,
                  NULL,
                  &status);
    CHECK_OPENCL_ERROR( status, "clCreateContextFromType failed.");

    // getting device on which to run the sample
    status = sampleCommon->getDevices(context, &devices, deviceId, isDeviceIdEnabled());
    CHECK_ERROR(status, SDK_SUCCESS, "sampleCommon::getDevices() failed");

    {
        // The block is to move the declaration of prop closer to its use 
        cl_command_queue_properties prop = 0;
        commandQueue = clCreateCommandQueue(
                context, 
                devices[deviceId], 
                prop, 
                &status);
        CHECK_OPENCL_ERROR( status, "clCreateCommandQueue failed.");
    }

    //Set device info of given cl_device_id
    retValue = deviceInfo.setDeviceInfo(devices[deviceId]);
    CHECK_ERROR(retValue, 0, "SDKDeviceInfo::setDeviceInfo() failed");

    
    std::string buildOptions = std::string("");
    // Check if cl_khr_fp64 extension is supported 
    if(strstr(deviceInfo.extensions, "cl_khr_fp64"))
    {
        buildOptions.append("-D KHR_DP_EXTENSION");
    }
    else
    {
        // Check if cl_amd_fp64 extension is supported 
        if(!strstr(deviceInfo.extensions, "cl_amd_fp64"))
        {
            reqdExtSupport = false;
            OPENCL_EXPECTED_ERROR("Device does not support cl_amd_fp64 extension!");
        }
    }

    
    /*
    * Create and initialize memory objects
    */

    size_t temp = dims[0] * dims[1];
    d_if0 = clCreateBuffer(context, 
        CL_MEM_READ_WRITE, 
        sizeof(cl_double) * temp, 
        0, 
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (d_if0)");

    status = clEnqueueWriteBuffer(commandQueue,
        d_if0,
        1,
        0,
        sizeof(cl_double) * temp,
        h_if0,
        0, 0, 0);
    CHECK_OPENCL_ERROR(status, "clEnqueueWriteBuffer failed. (d_if0)");

    d_if1234 = clCreateBuffer(context, 
        CL_MEM_READ_WRITE, 
        sizeof(cl_double4) * temp, 
        0, 
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (d_if1234)");

    status = clEnqueueWriteBuffer(commandQueue,
        d_if1234,
        1,
        0,
        sizeof(cl_double4) * temp,
        h_if1234,
        0, 0, 0);
    CHECK_OPENCL_ERROR(status, "clEnqueueWriteBuffer failed. (d_if1234)");

    d_if5678 = clCreateBuffer(context, 
        CL_MEM_READ_WRITE, 
        sizeof(cl_double4) * temp, 
        0, 
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (d_if5678)");

    status = clEnqueueWriteBuffer(commandQueue,
        d_if5678,
        1,
        0,
        sizeof(cl_double4) * temp,
        h_if5678,
        0, 0, 0);
    CHECK_OPENCL_ERROR(status, "clEnqueueWriteBuffer failed. (d_if5678)");

    d_of0 = clCreateBuffer(context, 
        CL_MEM_READ_WRITE, 
        sizeof(cl_double) * temp, 
        0, 
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (d_of0)");

    d_of1234 = clCreateBuffer(context, 
        CL_MEM_READ_WRITE, 
        sizeof(cl_double4) * temp, 
        0, 
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (d_of1234)");

    d_of5678 = clCreateBuffer(context, 
        CL_MEM_READ_WRITE, 
        sizeof(cl_double4) * temp, 
        0, 
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (d_of5678)");

    status = clEnqueueCopyBuffer(commandQueue,
        d_if0,
        d_of0,
        0, 0, sizeof(cl_double) * temp,
        0, 0, 0);
    CHECK_OPENCL_ERROR(status, "clEnqueueCopyBuffer failed. (d_if0->d_of0)");

    status = clEnqueueCopyBuffer(commandQueue,
        d_if1234,
        d_of1234,
        0, 0, sizeof(cl_double4) * temp,
        0, 0, 0);
    CHECK_OPENCL_ERROR(status, "clEnqueueCopyBuffer failed. (d_if1234->d_of1234)");

    status = clEnqueueCopyBuffer(commandQueue,
        d_if5678,
        d_of5678,
        0, 0, sizeof(cl_double4) * temp,
        0, 0, 0);
    CHECK_OPENCL_ERROR(status, "clEnqueueCopyBuffer failed. (d_if5678->d_of5678)");

    status = clFinish(commandQueue);
    CHECK_OPENCL_ERROR(status, "clFinish failed.");

    // Set Presistent memory only for AMD platform
    cl_mem_flags inMemFlags = CL_MEM_READ_ONLY;
    if(isAmdPlatform())
        inMemFlags |= CL_MEM_USE_PERSISTENT_MEM_AMD;

    //Constant arrays
    type = clCreateBuffer(context, 
        inMemFlags, 
        sizeof(cl_bool) * temp,
        0,
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (type)");

    weight = clCreateBuffer(context,
        CL_MEM_READ_ONLY,
        sizeof(cl_double) * 9,
        0,
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (weight)");

    status = clEnqueueWriteBuffer(commandQueue,
        weight, 
        1, 0, sizeof(cl_double) * 9,
        w,
        0, 0, 0);
    CHECK_OPENCL_ERROR(status, "clEnqueueWriteBuffer failed. (weight)");

    velocity = clCreateBuffer(context,
        CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR,
        sizeof(cl_double2) * temp,
        0, &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (velocity)");

    // create a CL program using the kernel source 
    streamsdk::buildProgramData buildData;
    buildData.kernelName = std::string("FluidSimulation2D_Kernels.cl");
    buildData.devices = devices;
    buildData.deviceId = deviceId;
    buildData.flagsStr = std::string("");
    if(isLoadBinaryEnabled())
        buildData.binaryName = std::string(loadBinary.c_str());

    if(isComplierFlagsSpecified())
        buildData.flagsFileName = std::string(flags.c_str());

    retValue = sampleCommon->buildOpenCLProgram(program, context, buildData);
    CHECK_ERROR(retValue, 0, "sampleCommon::buildOpenCLProgram() failed");

    // get a kernel object handle for a kernel with the given name 
    kernel = clCreateKernel(
        program,
        "lbm",
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateKernel failed.");

    return SDK_SUCCESS;
}
示例#5
0
int
Lucas::setupCL (void)
{
  cl_int status = 0;
  cl_device_type dType;

  if (deviceType.compare ("cpu") == 0)
    dType = CL_DEVICE_TYPE_CPU;
  else				//deviceType = "gpu" 
    {
      dType = CL_DEVICE_TYPE_GPU;
      if (isThereGPU () == false)
	{
	  std::cout << "GPU not found. Falling back to CPU device" << std::
	    endl;
	  dType = CL_DEVICE_TYPE_CPU;
	}
    }

  /*
   * Have a look at the available platforms and pick either
   * the AMD one if available or a reasonable default.
   */
  status = cl::Platform::get (&platforms);
  CHECK_OPENCL_ERROR (status, "Platform::get() failed.");

  std::vector < cl::Platform >::iterator i;
  if (platforms.size () > 0)
    {
      if (isPlatformEnabled ())
	{
	  i = platforms.begin () + platformId;
	}
      else
	{
	  for (i = platforms.begin (); i != platforms.end (); ++i)
	    {
	      if (!strcmp ((*i).getInfo < CL_PLATFORM_VENDOR > ().c_str (),
			   "Advanced Micro Devices, Inc."))
		{
		  break;
		}
	    }
	}
    }

  cl_context_properties cps[3] = {
    CL_CONTEXT_PLATFORM,
    (cl_context_properties) (*i) (),
    0
  };

  if (NULL == (*i) ())
    {
      sampleCommon->error ("NULL platform found so Exiting Application.");
      return SDK_FAILURE;
    }

  context = cl::Context (dType, cps, NULL, NULL, &status);
  CHECK_OPENCL_ERROR (status, "Context::Context() failed.");

  devices = context.getInfo < CL_CONTEXT_DEVICES > ();
  CHECK_OPENCL_ERROR (status, "Context::getInfo() failed.");

  std::cout << "Platform :" << (*i).getInfo < CL_PLATFORM_VENDOR >
    ().c_str () << "\n";
  int deviceCount = (int) devices.size ();
  int j = 0;
  for (std::vector < cl::Device >::iterator i = devices.begin ();
       i != devices.end (); ++i, ++j)
    {
      std::cout << "Device " << j << " : ";
      std::string deviceName = (*i).getInfo < CL_DEVICE_NAME > ();
      std::cout << deviceName.c_str () << "\n";
    }
  std::cout << "\n";

  if (deviceCount == 0)
    {
      std::cerr << "No device available\n";
      return SDK_FAILURE;
    }

  if (sampleCommon->validateDeviceId (deviceId, deviceCount))
    {
      sampleCommon->error ("sampleCommon::validateDeviceId() failed");
      return SDK_FAILURE;
    }

  std::string extensions =
    devices[deviceId].getInfo < CL_DEVICE_EXTENSIONS > ();

  std::string buildOptions = std::string ("");
  // Check if cl_khr_fp64 extension is supported 
  if (strstr (extensions.c_str (), "cl_khr_fp64"))
    {
      buildOptions.append ("-D KHR_DP_EXTENSION");
    }
  else
    {
      // Check if cl_amd_fp64 extension is supported 
      if (!strstr (extensions.c_str (), "cl_amd_fp64"))
	{
	  OPENCL_EXPECTED_ERROR
	    ("Device does not support cl_amd_fp64 extension!");
	}
    }
    cl_uint localMemType;
    // Get device specific information 
    status = devices[deviceId].getInfo<cl_uint>(
             CL_DEVICE_LOCAL_MEM_TYPE,
            &localMemType);
    CHECK_OPENCL_ERROR(status, "Device::getInfo CL_DEVICE_LOCAL_MEM_TYPE) failed.");
    
    // If scratchpad is available then update the flag 
    if(localMemType != CL_LOCAL)
	  OPENCL_EXPECTED_ERROR ("Device does not support local memory.");

    // Get Device specific Information 
    status = devices[deviceId].getInfo<size_t>(
              CL_DEVICE_MAX_WORK_GROUP_SIZE, 
              &maxWorkGroupSize);

    CHECK_OPENCL_ERROR(status, "Device::getInfo(CL_DEVICE_MAX_WORK_GROUP_SIZE) failed.");
    if(threads > maxWorkGroupSize)
	  OPENCL_EXPECTED_ERROR ("Device does not support threads.");
    
    status = devices[deviceId].getInfo<cl_uint>(
             CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS,
             &maxDimensions);
    CHECK_OPENCL_ERROR(status, "Device::getInfo(CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS) failed.");
    

    maxWorkItemSizes = (size_t*)malloc(maxDimensions * sizeof(size_t));
    
    std::vector<size_t> workItems = devices[deviceId].getInfo<CL_DEVICE_MAX_WORK_ITEM_SIZES>();

    for(cl_uint i = 0; i < maxDimensions; ++i)
        maxWorkItemSizes[i] = workItems[i];

    status = devices[deviceId].getInfo<cl_ulong>(
             CL_DEVICE_LOCAL_MEM_SIZE,
             &totalLocalMemory);
    CHECK_OPENCL_ERROR(status, "Device::getInfo(CL_DEVICE_LOCAL_MEM_SIZES) failed.");

  // Set command queue properties
  cl_command_queue_properties prop = 0;
  if (!eAppGFLOPS)
    prop |= CL_QUEUE_PROFILING_ENABLE;

  commandQueue = cl::CommandQueue (context, devices[deviceId], prop, &status);
  CHECK_OPENCL_ERROR (status, "CommandQueue::CommandQueue() failed.");

  // Set Presistent memory only for AMD platform
  cl_mem_flags inMemFlags = CL_MEM_READ_ONLY;
  if (isAmdPlatform ())
    inMemFlags |= CL_MEM_USE_PERSISTENT_MEM_AMD;

  device.push_back (devices[deviceId]);

  // create a CL program using the kernel source
  streamsdk::SDKFile kernelFile;
  std::string kernelPath = sampleCommon->getPath ();

  kernelPath.append ("Kernels.cl");
  if (!kernelFile.open (kernelPath.c_str ()))
  {
      std::cout << "Failed to load kernel file : " << kernelPath <<
      std::endl;
      return SDK_FAILURE;
  }
  cl::Program::Sources programSource (1,
					  std::make_pair (kernelFile.
							  source ().data (),
							  kernelFile.
							  source ().size ()));

  program = cl::Program (context, programSource, &status);
  CHECK_OPENCL_ERROR (status, "Program::Program(Source) failed.");

  std::string flagsStr = std::string ("");

  status = program.build (device, flagsStr.c_str ());

  if (status != CL_SUCCESS)
    {
      if (status == CL_BUILD_PROGRAM_FAILURE)
	{
	  std::string str =
	    program.getBuildInfo < CL_PROGRAM_BUILD_LOG > (devices[deviceId]);

	  std::cout << " \n\t\t\tBUILD LOG\n";
	  std::cout << " ************************************************\n";
	  std::cout << str << std::endl;
	  std::cout << " ************************************************\n";
	}
    }
  CHECK_OPENCL_ERROR (status, "Program::build() failed.");

  // Create kernel  

  // If local memory is present then use the specific kernel 
  mul_kernel = cl::Kernel (program, "mul_Kernel", &status);

  CHECK_OPENCL_ERROR (status, "cl::Kernel failed.");
  status = mul_kernel.getWorkGroupInfo < cl_ulong > (devices[deviceId],
						 CL_KERNEL_LOCAL_MEM_SIZE,
						 &usedLocalMemory);
  CHECK_OPENCL_ERROR (status,
		      "Kernel::getWorkGroupInfo(CL_KERNEL_LOCAL_MEM_SIZE) failed"
		      ".(usedLocalMemory)");

  // Create normalize_kernel  

  // If local memory is present then use the specific kernel 
  normalize_kernel = cl::Kernel (program, "normalize_Kernel", &status);

  CHECK_OPENCL_ERROR (status, "cl::Kernel failed.");

  // Create normalize2_kernel  

  // If local memory is present then use the specific kernel 
  normalize2_kernel = cl::Kernel (program, "normalize2_Kernel", &status);

  CHECK_OPENCL_ERROR (status, "cl::Kernel failed.");

  return SDK_SUCCESS;
}
int 
BoxFilterSeparable::setupCL()
{
    cl_int status = 0;
    cl_device_type dType;
    
    if(deviceType.compare("cpu") == 0)
    {
        dType = CL_DEVICE_TYPE_CPU;
    }
    else //deviceType = "gpu" 
    {
        dType = CL_DEVICE_TYPE_GPU;
        if(isThereGPU() == false)
        {
            std::cout << "GPU not found. Falling back to CPU device" << std::endl;
            dType = CL_DEVICE_TYPE_CPU;
        }
    }

    /*
     * Have a look at the available platforms and pick either
     * the AMD one if available or a reasonable default.
     */
    cl_platform_id platform = NULL;
    int retValue = sampleCommon->getPlatform(platform, platformId, isPlatformEnabled());
    CHECK_ERROR(retValue, SDK_SUCCESS, "sampleCommon::getPlatform() failed");

    // Display available devices.
    retValue = sampleCommon->displayDevices(platform, dType);
    CHECK_ERROR(retValue, SDK_SUCCESS, "sampleCommon::displayDevices() failed");


    // If we could find our platform, use it. Otherwise use just available platform.

    cl_context_properties cps[3] = 
    {
        CL_CONTEXT_PLATFORM, 
        (cl_context_properties)platform, 
        0
    };

    context = clCreateContextFromType(
                  cps,
                  dType,
                  NULL,
                  NULL,
                  &status);
    CHECK_OPENCL_ERROR( status, "clCreateContextFromType failed.");

    // getting device on which to run the sample
    status = sampleCommon->getDevices(context, &devices, deviceId, isDeviceIdEnabled());
    CHECK_ERROR(status, SDK_SUCCESS, "sampleCommon::getDevices() failed");

    {
        // The block is to move the declaration of prop closer to its use
        cl_command_queue_properties prop = 0;
        commandQueue = clCreateCommandQueue(
                context, 
                devices[deviceId], 
                prop, 
                &status);
        CHECK_OPENCL_ERROR( status, "clCreateCommandQueue failed.");
    }

    //Set device info of given cl_device_id
    retValue = deviceInfo.setDeviceInfo(devices[deviceId]);
    CHECK_ERROR(retValue, 0, "SDKDeviceInfo::setDeviceInfo() failed");

    // Create and initialize memory objects

    // Set Presistent memory only for AMD platform
    cl_mem_flags inMemFlags = CL_MEM_READ_ONLY;
    if(isAmdPlatform())
        inMemFlags |= CL_MEM_USE_PERSISTENT_MEM_AMD;

    // Create memory object for input Image
    inputImageBuffer = clCreateBuffer(
        context,
        inMemFlags,
        width * height * pixelSize,
        NULL,
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (inputImageBuffer)");

    // Create memory object for temp Image
    tempImageBuffer = clCreateBuffer(
        context,
        CL_MEM_READ_WRITE,
        width * height * pixelSize,
        0,
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (tempImageBuffer)");

    // Create memory objects for output Image
    outputImageBuffer = clCreateBuffer(context,
        CL_MEM_WRITE_ONLY,
        width * height * pixelSize,
        NULL,
        &status);
    CHECK_OPENCL_ERROR(status, "clCreateBuffer failed. (outputImageBuffer)");

    // create a CL program using the kernel source 
    streamsdk::buildProgramData buildData;
    buildData.kernelName = std::string("BoxFilter_Kernels.cl");
    buildData.devices = devices;
    buildData.deviceId = deviceId;
    buildData.flagsStr = std::string("");
    if(isLoadBinaryEnabled())
        buildData.binaryName = std::string(loadBinary.c_str());
    if(isComplierFlagsSpecified())
        buildData.flagsFileName = std::string(flags.c_str());

    retValue = sampleCommon->buildOpenCLProgram(program, context, buildData);
    CHECK_ERROR(retValue, 0, "sampleCommon::buildOpenCLProgram() failed");

    // get a kernel object handle for a kernel with the given name
    verticalKernel = clCreateKernel(program,
                                    "box_filter_vertical",
                                    &status);
    CHECK_OPENCL_ERROR(status, "clCreateKernel failed. (vertical)");

#ifdef USE_LDS
    horizontalKernel = clCreateKernel(program,
                                      "box_filter_horizontal_local",
                                      &status);
#else
    horizontalKernel = clCreateKernel(program,
                                      "box_filter_horizontal",
                                      &status);
#endif
    CHECK_OPENCL_ERROR(status, "clCreateKernel failed. (horizontal)");

    status =  kernelInfoH.setKernelWorkGroupInfo(horizontalKernel, devices[deviceId]);
    CHECK_ERROR(status, SDK_SUCCESS, "setKErnelWorkGroupInfo() failed");

    status =  kernelInfoV.setKernelWorkGroupInfo(verticalKernel, devices[deviceId]);
    CHECK_ERROR(status, SDK_SUCCESS, "setKErnelWorkGroupInfo() failed");

    if((blockSizeX * blockSizeY) > kernelInfoV.kernelWorkGroupSize)
    {
        if(!quiet)
        {
            std::cout << "Out of Resources!" << std::endl;
            std::cout << "Group Size specified : "
                      << blockSizeX * blockSizeY << std::endl;
            std::cout << "Max Group Size supported on the kernel : "
                      << kernelInfoV.kernelWorkGroupSize << std::endl;
            std::cout << "Falling back to " << kernelInfoV.kernelWorkGroupSize << std::endl;
        }

        // Three possible cases
        if(blockSizeX > kernelInfoV.kernelWorkGroupSize)
        {
            blockSizeX = kernelInfoV.kernelWorkGroupSize;
            blockSizeY = 1;
        }
    }
    return SDK_SUCCESS;
}
int
MatrixMulDouble::setupCL(void)
{
    cl_int status = 0;
    cl_device_type dType;
    
    if(deviceType.compare("cpu") == 0)
        dType = CL_DEVICE_TYPE_CPU;
    else //deviceType = "gpu" 
    {
        dType = CL_DEVICE_TYPE_GPU;
        if(isThereGPU() == false)
        {
            std::cout << "GPU not found. Falling back to CPU device" << std::endl;
            dType = CL_DEVICE_TYPE_CPU;
        }
    }

    /*
     * Have a look at the available platforms and pick either
     * the AMD one if available or a reasonable default.
     */
    status = cl::Platform::get(&platforms);
    CHECK_OPENCL_ERROR(status, "Platform::get() failed.");
    
    std::vector<cl::Platform>::iterator i;
    if(platforms.size() > 0)
    {
        if(isPlatformEnabled())
        {
            i = platforms.begin() + platformId;
        }
        else
        {
            for(i = platforms.begin(); i != platforms.end(); ++i)
            {
                if(!strcmp((*i).getInfo<CL_PLATFORM_VENDOR>().c_str(), 
                    "Advanced Micro Devices, Inc."))
                {
                    break;
                }
            }
        }
    }

    cl_context_properties cps[3] = 
    { 
        CL_CONTEXT_PLATFORM, 
        (cl_context_properties)(*i)(),
        0 
    };


    if(NULL == (*i)())
    {
        sampleCommon->error("NULL platform found so Exiting Application.");
        return SDK_FAILURE;
    }

    context = cl::Context(dType, cps, NULL, NULL, &status);
    CHECK_OPENCL_ERROR(status, "Context::Context() failed.");
    
    devices = context.getInfo<CL_CONTEXT_DEVICES>();
    CHECK_OPENCL_ERROR(status, "Context::getInfo() failed.");
    
    std::cout << "Platform :" << (*i).getInfo<CL_PLATFORM_VENDOR>().c_str() << "\n";
    int deviceCount = (int)devices.size();
    int j = 0;
    for (std::vector<cl::Device>::iterator i = devices.begin(); i != devices.end(); ++i, ++j)
    {
        std::cout << "Device " << j << " : ";
        std::string deviceName = (*i).getInfo<CL_DEVICE_NAME>();
        std::cout << deviceName.c_str() << "\n";
    }
    std::cout << "\n";

    if (deviceCount == 0) 
    {
        std::cerr << "No device available\n";
        return SDK_FAILURE;
    }

    if(sampleCommon->validateDeviceId(deviceId, deviceCount))
    {
        sampleCommon->error("sampleCommon::validateDeviceId() failed");
        return SDK_FAILURE;
    }

    std::string extensions = devices[deviceId].getInfo<CL_DEVICE_EXTENSIONS>();

    std::string buildOptions = std::string("");
    // Check if cl_khr_fp64 extension is supported 
    if(strstr(extensions.c_str(), "cl_khr_fp64"))
    {
        buildOptions.append("-D KHR_DP_EXTENSION");
    }
    else
    {
        // Check if cl_amd_fp64 extension is supported 
        if(!strstr(extensions.c_str(), "cl_amd_fp64"))
        {
            OPENCL_EXPECTED_ERROR("Device does not support cl_amd_fp64 extension!");
        }
    }
    cl_uint localMemType;
    // Get device specific information 
    status = devices[deviceId].getInfo<cl_uint>(
             CL_DEVICE_LOCAL_MEM_TYPE,
            &localMemType);
    CHECK_OPENCL_ERROR(status, "Device::getInfo CL_DEVICE_LOCAL_MEM_TYPE) failed.");
    
    // If scratchpad is available then update the flag 
    if(localMemType == CL_LOCAL)
        lds = true;

    // Get Device specific Information 
    status = devices[deviceId].getInfo<size_t>(
              CL_DEVICE_MAX_WORK_GROUP_SIZE, 
              &maxWorkGroupSize);

    CHECK_OPENCL_ERROR(status, "Device::getInfo(CL_DEVICE_MAX_WORK_GROUP_SIZE) failed.");
    
    status = devices[deviceId].getInfo<cl_uint>(
             CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS,
             &maxDimensions);
    CHECK_OPENCL_ERROR(status, "Device::getInfo(CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS) failed.");
    

    maxWorkItemSizes = (size_t*)malloc(maxDimensions * sizeof(size_t));
    
    std::vector<size_t> workItems = devices[deviceId].getInfo<CL_DEVICE_MAX_WORK_ITEM_SIZES>();

    for(cl_uint i = 0; i < maxDimensions; ++i)
        maxWorkItemSizes[i] = workItems[i];

    status = devices[deviceId].getInfo<cl_ulong>(
             CL_DEVICE_LOCAL_MEM_SIZE,
             &totalLocalMemory);
    CHECK_OPENCL_ERROR(status, "Device::getInfo(CL_DEVICE_LOCAL_MEM_SIZES) failed.");
    
    // Set command queue properties
    cl_command_queue_properties prop = 0;
    if(!eAppGFLOPS)
        prop |= CL_QUEUE_PROFILING_ENABLE;

    commandQueue = cl::CommandQueue(context, devices[deviceId], prop, &status);
    CHECK_OPENCL_ERROR(status, "CommandQueue::CommandQueue() failed.");
    
    // Set Presistent memory only for AMD platform
    cl_mem_flags inMemFlags = CL_MEM_READ_ONLY;
    if(isAmdPlatform())
        inMemFlags |= CL_MEM_USE_PERSISTENT_MEM_AMD;

    // Create buffer for matrix A 
    inputBufA = cl::Buffer(
                    context, 
                    inMemFlags, 
                    sizeof(cl_double) * widthA * heightA, 
                    NULL, 
                    &status);
    CHECK_OPENCL_ERROR(status, "cl::Buffer failed. (inputBufA)");
    
    // Create buffer for matrix B 
    inputBufB = cl::Buffer(
                    context,
                    inMemFlags,
                    sizeof(cl_double) * widthB * heightB,
                    NULL,
                    &status);
    CHECK_OPENCL_ERROR(status, "cl::Buffer failed. (inputBufB)");
    
    outputBuf = cl::Buffer(
                    context,
                    CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR,
                    sizeof(cl_double) * heightA * widthB,
                    NULL,
                    &status);
    CHECK_OPENCL_ERROR(status, "cl::Buffer failed. (outputBuf)");
   
    device.push_back(devices[deviceId]);

    // create a CL program using the kernel source
    streamsdk::SDKFile kernelFile;
    std::string kernelPath = sampleCommon->getPath();

    if(isLoadBinaryEnabled())
    {
        kernelPath.append(loadBinary.c_str());
        if(!kernelFile.readBinaryFromFile(kernelPath.c_str()))
        {
            std::cout << "Failed to load kernel file : " << kernelPath << std::endl;
            return SDK_FAILURE;
        }
        cl::Program::Binaries programBinary(1,std::make_pair(
                                              (const void*)kernelFile.source().data(), 
                                              kernelFile.source().size()));
        
        program = cl::Program(context, device, programBinary, NULL, &status);
        CHECK_OPENCL_ERROR(status, "Program::Program(Binary) failed.");
        
    }
    else
    {
        kernelPath.append("MatrixMulDouble_Kernels.cl");
        if(!kernelFile.open(kernelPath.c_str()))
        {
            std::cout << "Failed to load kernel file : " << kernelPath << std::endl;
            return SDK_FAILURE;
        }
        cl::Program::Sources programSource(
                                1,
                                std::make_pair(kernelFile.source().data(), 
                                kernelFile.source().size()));
        
        program = cl::Program(context, programSource, &status);
        CHECK_OPENCL_ERROR(status, "Program::Program(Source) failed.");
        
    }

    std::string flagsStr = std::string("");

    // Get build options if any
    flagsStr.append(buildOptions.c_str());

    // Get additional options
    if(isComplierFlagsSpecified())
    {
        streamsdk::SDKFile flagsFile;
        std::string flagsPath = sampleCommon->getPath();
        flagsPath.append(flags.c_str());
        if(!flagsFile.open(flagsPath.c_str()))
        {
            std::cout << "Failed to load flags file: " << flagsPath << std::endl;
            return SDK_FAILURE;
        }
        flagsFile.replaceNewlineWithSpaces();
        const char * flags = flagsFile.source().c_str();
        flagsStr.append(flags);
    }

    if(flagsStr.size() != 0)
        std::cout << "Build Options are : " << flagsStr.c_str() << std::endl;

    status = program.build(device, flagsStr.c_str());

    if(status != CL_SUCCESS)
    {
        if(status == CL_BUILD_PROGRAM_FAILURE)
        {
            std::string str = program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(devices[deviceId]);

            std::cout << " \n\t\t\tBUILD LOG\n";
            std::cout << " ************************************************\n";
            std::cout << str << std::endl;
            std::cout << " ************************************************\n";
        }
    }
    CHECK_OPENCL_ERROR(status, "Program::build() failed.");

    // Create kernel  

    // If local memory is present then use the specific kernel 
    if(lds)
        kernel = cl::Kernel(program, "mmmKernel_local", &status);
    else
        kernel = cl::Kernel(program, "mmmKernel", &status);

    CHECK_OPENCL_ERROR(status, "cl::Kernel failed.");
    status =  kernel.getWorkGroupInfo<cl_ulong>(

        devices[deviceId],
                CL_KERNEL_LOCAL_MEM_SIZE,
                &usedLocalMemory);
    CHECK_OPENCL_ERROR(status, "Kernel::getWorkGroupInfo(CL_KERNEL_LOCAL_MEM_SIZE) failed"
                ".(usedLocalMemory)");

    availableLocalMemory = totalLocalMemory - usedLocalMemory;
    if(lds)
        neededLocalMemory = (blockSize * 4) * (blockSize * 4) * sizeof(cl_double); 
    else
        neededLocalMemory = 0; 

    if(neededLocalMemory > availableLocalMemory)
    {
        std::cout << "Unsupported: Insufficient local memory on device." << std::endl;
        return SDK_FAILURE;
    }

    // Check group size against group size returned by kernel 
    kernelWorkGroupSize = kernel.getWorkGroupInfo<CL_KERNEL_WORK_GROUP_SIZE>(devices[deviceId], &status);
    CHECK_OPENCL_ERROR(status, "Kernel::getWorkGroupInfo()  failed.");
    
    if((cl_uint)(blockSize * blockSize) > kernelWorkGroupSize)
    {
       if(kernelWorkGroupSize >= 64)
            blockSize = 8; 
        else if(kernelWorkGroupSize >= 32)
            blockSize = 4; 
        else
        {
            std::cout << "Out of Resources!" << std::endl;
            std::cout << "Group Size specified : " << blockSize * blockSize << std::endl;
            std::cout << "Max Group Size supported on the kernel : " 
                      << kernelWorkGroupSize<<std::endl;
            return SDK_FAILURE;
        }
    }

    if(blockSize > maxWorkItemSizes[0] ||
       blockSize > maxWorkItemSizes[1] ||
       blockSize * blockSize > maxWorkGroupSize)
    {
        sampleCommon->error("Unsupported: Device does not support requested number of work items.");
        return SDK_FAILURE;
    }

     return SDK_SUCCESS;
}
int 
GaussianNoise::setupCL()
{
    cl_int err = CL_SUCCESS;
    cl_device_type dType;

    if(deviceType.compare("cpu") == 0)
    {
        dType = CL_DEVICE_TYPE_CPU;
    }
    else //deviceType = "gpu" 
    {
        dType = CL_DEVICE_TYPE_GPU;
        if(isThereGPU() == false)
        {
            std::cout << "GPU not found. Falling back to CPU device" << std::endl;
            dType = CL_DEVICE_TYPE_CPU;
        }
    }

    /*
     * Have a look at the available platforms and pick either
     * the AMD one if available or a reasonable default.
     */
    err = cl::Platform::get(&platforms);
    CHECK_OPENCL_ERROR(err, "Platform::get() failed.");

    std::vector<cl::Platform>::iterator i;
    if(platforms.size() > 0)
    {
        if(isPlatformEnabled())
        {
            i = platforms.begin() + platformId;
        }
        else
        {
            for(i = platforms.begin(); i != platforms.end(); ++i)
            {
                if(!strcmp((*i).getInfo<CL_PLATFORM_VENDOR>().c_str(), 
                    "Advanced Micro Devices, Inc."))
                {
                    break;
                }
            }
        }
    }

    cl_context_properties cps[3] = 
    { 
        CL_CONTEXT_PLATFORM, 
        (cl_context_properties)(*i)(),
        0 
    };

    context = cl::Context(dType, cps, NULL, NULL, &err);
    CHECK_OPENCL_ERROR(err, "Context::Context() failed.");

    devices = context.getInfo<CL_CONTEXT_DEVICES>();
    CHECK_OPENCL_ERROR(err, "Context::getInfo() failed.");

    std::cout << "Platform :" << (*i).getInfo<CL_PLATFORM_VENDOR>().c_str() << "\n";
    int deviceCount = (int)devices.size();
    int j = 0;
    for (std::vector<cl::Device>::iterator i = devices.begin(); i != devices.end(); ++i, ++j)
    {
        std::cout << "Device " << j << " : ";
        std::string deviceName = (*i).getInfo<CL_DEVICE_NAME>();
        std::cout << deviceName.c_str() << "\n";
    }
    std::cout << "\n";

    if (deviceCount == 0) 
    {
        std::cerr << "No device available\n";
        return SDK_FAILURE;
    }

    if(sampleCommon->validateDeviceId(deviceId, deviceCount))
    {
        sampleCommon->error("sampleCommon::validateDeviceId() failed");
        return SDK_FAILURE;
    }

    commandQueue = cl::CommandQueue(context, devices[deviceId], 0, &err);
    CHECK_OPENCL_ERROR(err, "CommandQueue::CommandQueue() failed.");

    /*
    * Create and initialize memory objects
    */

    // Set Presistent memory only for AMD platform
    cl_mem_flags inMemFlags = CL_MEM_READ_ONLY;
    if(isAmdPlatform())
        inMemFlags |= CL_MEM_USE_PERSISTENT_MEM_AMD;

    // Create memory object for input Image 
    inputImageBuffer = cl::Buffer(context, 
                                  inMemFlags, 
                                  width * height * pixelSize,
                                  0,
                                  &err);
    CHECK_OPENCL_ERROR(err, "Buffer::Buffer() failed. (inputImageBuffer)");

    // Create memory object for output Image 
    outputImageBuffer = cl::Buffer(context, 
                                   CL_MEM_WRITE_ONLY, 
                                   width * height * pixelSize,
                                   NULL,
                                   &err);
    CHECK_OPENCL_ERROR(err, "Buffer::Buffer() failed. (outputImageBuffer)");    

    device.push_back(devices[deviceId]);

    // create a CL program using the kernel source 
    streamsdk::SDKFile kernelFile;
    std::string kernelPath = sampleCommon->getPath();

    if(isLoadBinaryEnabled())
    {
        kernelPath.append(loadBinary.c_str());
        if(!kernelFile.readBinaryFromFile(kernelPath.c_str()))
        {
            std::cout << "Failed to load kernel file : " << kernelPath << std::endl;
            return SDK_FAILURE;
        }
        cl::Program::Binaries programBinary(1,std::make_pair(
                                              (const void*)kernelFile.source().data(), 
                                              kernelFile.source().size()));

        program = cl::Program(context, device, programBinary, NULL, &err);
        CHECK_OPENCL_ERROR(err, "Program::Program(Binary) failed.");
    }
    else
    {
        kernelPath.append("GaussianNoise_Kernels.cl");
        if(!kernelFile.open(kernelPath.c_str()))
        {
            std::cout << "Failed to load kernel file : " << kernelPath << std::endl;
            return SDK_FAILURE;
        }

        cl::Program::Sources programSource(1, 
            std::make_pair(kernelFile.source().data(), 
            kernelFile.source().size()));

        program = cl::Program(context, programSource, &err);
        CHECK_OPENCL_ERROR(err, "Program::Program(Source) failed.");
        
    }

    std::string flagsStr = std::string("");

    // Get additional options
    if(isComplierFlagsSpecified())
    {
        streamsdk::SDKFile flagsFile;
        std::string flagsPath = sampleCommon->getPath();
        flagsPath.append(flags.c_str());
        if(!flagsFile.open(flagsPath.c_str()))
        {
            std::cout << "Failed to load flags file: " << flagsPath << std::endl;
            return SDK_FAILURE;
        }
        flagsFile.replaceNewlineWithSpaces();
        const char * flags = flagsFile.source().c_str();
        flagsStr.append(flags);
    }

    if(flagsStr.size() != 0)
        std::cout << "Build Options are : " << flagsStr.c_str() << std::endl;

    err = program.build(device, flagsStr.c_str());
    if(err != CL_SUCCESS)
    {
        if(err == CL_BUILD_PROGRAM_FAILURE)
        {
            std::string str = program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(devices[deviceId]);

            std::cout << " \n\t\t\tBUILD LOG\n";
            std::cout << " ************************************************\n";
            std::cout << str << std::endl;
            std::cout << " ************************************************\n";
        }
    }
    CHECK_OPENCL_ERROR(err, "Program::build() failed.");

    // Create kernel 
    kernel = cl::Kernel(program, "gaussian_transform",  &err);
    CHECK_OPENCL_ERROR(err, "Kernel::Kernel() failed.");


    // Check group size against group size returned by kernel 
    kernelWorkGroupSize = kernel.getWorkGroupInfo<CL_KERNEL_WORK_GROUP_SIZE>(devices[deviceId], &err);
    CHECK_OPENCL_ERROR(err, "Kernel::getWorkGroupInfo()  failed.");

    if((blockSizeX * blockSizeY) > kernelWorkGroupSize)
    {
        if(!quiet)
        {
            std::cout << "Out of Resources!" << std::endl;
            std::cout << "Group Size specified : "
                      << blockSizeX * blockSizeY << std::endl;
            std::cout << "Max Group Size supported on the kernel : "
                      << kernelWorkGroupSize << std::endl;
            std::cout << "Falling back to " << kernelWorkGroupSize << std::endl;
        }

        if(blockSizeX > kernelWorkGroupSize)
        {
            blockSizeX = kernelWorkGroupSize;
            blockSizeY = 1;
        }
    }

    return SDK_SUCCESS;
}
int 
HDRToneMapping::setupCL()
{
    cl_int err = CL_SUCCESS;
    cl_device_type dType;

    if(deviceType.compare("cpu") == 0)
    {
        dType = CL_DEVICE_TYPE_CPU;
    }
    else //deviceType = "gpu" 
    {
        dType = CL_DEVICE_TYPE_GPU;
        if(isThereGPU() == false)
        {
            std::cout << "GPU not found. Falling back to CPU device" << std::endl;
            dType = CL_DEVICE_TYPE_CPU;
        }
    }
    
    /*
     * Have a look at the available platforms and pick either
     * the AMD one if available or a reasonable default.
     */
    err = cl::Platform::get(&platforms);
    CHECK_OPENCL_ERROR(err, "Platform::get() failed.");

    std::vector<cl::Platform>::iterator i;
    if(platforms.size() > 0)
    {
        if(isPlatformEnabled())
        {
            i = platforms.begin() + platformId;
        }
        else
        {
            for(i = platforms.begin(); i != platforms.end(); ++i)
            {
                if(!strcmp((*i).getInfo<CL_PLATFORM_VENDOR>().c_str(), 
                    "Advanced Micro Devices, Inc."))
                {
                    break;
                }
            }
        }
    }

    cl_context_properties cps[3] = 
    { 
        CL_CONTEXT_PLATFORM, 
        (cl_context_properties)(*i)(),
        0 
    };

    context = cl::Context(dType, cps, NULL, NULL, &err);
    CHECK_OPENCL_ERROR(err, "Context::Context() failed.");

    devices = context.getInfo<CL_CONTEXT_DEVICES>();
    CHECK_OPENCL_ERROR(err, "Context::getInfo() failed.");

    std::cout << "Platform :" << (*i).getInfo<CL_PLATFORM_VENDOR>().c_str() << "\n";
    int deviceCount = (int)devices.size();
    int j = 0;
    for (std::vector<cl::Device>::iterator i = devices.begin(); i != devices.end(); ++i, ++j)
    {
        std::cout << "Device " << j << " : ";
        std::string deviceName = (*i).getInfo<CL_DEVICE_NAME>();
        std::cout << deviceName.c_str() << "\n";
    }
    
    std::cout << "\n";

    if (deviceCount == 0) 
    {
        std::cout << "No device available\n";
        return SDK_FAILURE;
    }

    if(sampleCommon->validateDeviceId(deviceId, deviceCount) != SDK_SUCCESS)
    {
        std::cout << "sampleCommon::validateDeviceId() failed";
        return SDK_FAILURE;
    }

    // Get Device specific Information 
    err = devices[deviceId].getInfo<size_t>(
              CL_DEVICE_MAX_WORK_GROUP_SIZE, 
              &maxWorkGroupSize);
    CHECK_OPENCL_ERROR(err, "Device::getInfo(CL_DEVICE_MAX_WORK_GROUP_SIZE) failed.");
    
    err = devices[deviceId].getInfo<cl_uint>(
             CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS,
             &maxDimensions);
    CHECK_OPENCL_ERROR(err, "Device::getInfo(CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS) failed.");

    maxWorkItemSizes = (size_t*)malloc(maxDimensions * sizeof(size_t));
    
    std::vector<size_t> workItems = devices[deviceId].getInfo<CL_DEVICE_MAX_WORK_ITEM_SIZES>();

    for(cl_uint i = 0; i < maxDimensions; ++i)
        maxWorkItemSizes[i] = workItems[i];

    err = devices[deviceId].getInfo<cl_ulong>(
             CL_DEVICE_LOCAL_MEM_SIZE,
             &totalLocalMemory);
    CHECK_OPENCL_ERROR(err, "Device::getInfo(CL_DEVICE_LOCAL_MEM_SIZES) failed.");

    commandQueue = cl::CommandQueue(context, devices[deviceId], 0, &err);
    CHECK_OPENCL_ERROR(err, "CommandQueue::CommandQueue() failed.");
    
    /*
    * Create and initialize memory objects
    */

    // Set Presistent memory only for AMD platform
    cl_mem_flags inMemFlags = CL_MEM_READ_ONLY;
    if(isAmdPlatform())
        inMemFlags |= CL_MEM_USE_PERSISTENT_MEM_AMD;

    // Create memory object for input Image 
    /**
    * We use CL_MEM_USE_HOST_PTR for CPU as the CPU device is running the kernel 
    * on the actual buffer provided by the application 
    */
    if (dType == CL_DEVICE_TYPE_CPU)
    {
        inputImageBuffer = cl::Buffer(context,
                                CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY,
                                width * height * numChannels * sizeof(cl_float),
                                input,
                                &err);
        CHECK_OPENCL_ERROR(err, "Buffer::Buffer() failed. (inputImageBuffer)");
        // Create memory object for output Image 
        outputImageBuffer = cl::Buffer(context, 
                                       CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR, 
                                       width * height * numChannels * sizeof(cl_float),
                                       output,
                                       &err);
        CHECK_OPENCL_ERROR(err, "Buffer::Buffer() failed. (outputImageBuffer)");
    }
    else if (dType == CL_DEVICE_TYPE_GPU)
    {
        inputImageBuffer = cl::Buffer(context, 
                                      inMemFlags, 
                                      width * height * numChannels * sizeof(cl_float),
                                      0,
                                      &err);
        CHECK_OPENCL_ERROR(err, "Buffer::Buffer() failed. (inputImageBuffer)");
        // Create memory object for output Image 
        outputImageBuffer = cl::Buffer(context, 
                                       CL_MEM_WRITE_ONLY, 
                                       width * height * numChannels * sizeof(cl_float),
                                       NULL,
                                       &err);
        CHECK_OPENCL_ERROR(err, "Buffer::Buffer() failed. (outputImageBuffer)");
    }

    device.push_back(devices[deviceId]);

    // create a CL program using the kernel source 
    streamsdk::SDKFile kernelFile;
    std::string kernelPath = sampleCommon->getPath();

    if(isLoadBinaryEnabled())
    {
        kernelPath.append(loadBinary.c_str());
        if(kernelFile.readBinaryFromFile(kernelPath.c_str()))
        {
            std::cout << "Failed to load kernel file : " << kernelPath << std::endl;
            return SDK_FAILURE;
        }
        cl::Program::Binaries programBinary(1,std::make_pair(
                                              (const void*)kernelFile.source().data(), 
                                              kernelFile.source().size()));
        
        program = cl::Program(context, device, programBinary, NULL, &err);
        CHECK_OPENCL_ERROR(err, "Program::Program(Binary) failed.");
    }
    else
    {
        kernelPath.append("HDRToneMapping_Kernels.cl");
        if(!kernelFile.open(kernelPath.c_str()))
        {
            std::cout << "Failed to load kernel file : " << kernelPath << std::endl;
            return SDK_FAILURE;
        }

        cl::Program::Sources programSource(1, 
            std::make_pair(kernelFile.source().data(), 
            kernelFile.source().size()));

        program = cl::Program(context, programSource, &err);
        CHECK_OPENCL_ERROR(err, "Program::Program(Source) failed.");
    }

    std::string flagsStr = std::string("");

    // Get additional options
    if(isComplierFlagsSpecified())
    {
        streamsdk::SDKFile flagsFile;
        std::string flagsPath = sampleCommon->getPath();
        flagsPath.append(flags.c_str());
        if(!flagsFile.open(flagsPath.c_str()))
        {
            std::cout << "Failed to load flags file: " << flagsPath << std::endl;
            return SDK_FAILURE;
        }
        flagsFile.replaceNewlineWithSpaces();
        const char * flags = flagsFile.source().c_str();
        flagsStr.append(flags);
    }

    if(flagsStr.size() != 0)
        std::cout << "Build Options are : " << flagsStr.c_str() << std::endl;

    err = program.build(device, flagsStr.c_str());
    if(err != CL_SUCCESS)
    {
        if(err == CL_BUILD_PROGRAM_FAILURE)
        {
            std::string str = program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(devices[deviceId]);

            std::cout << " \n\t\t\tBUILD LOG\n";
            std::cout << " ************************************************\n";
            std::cout << str << std::endl;
            std::cout << " ************************************************\n";
        }
    }

    CHECK_OPENCL_ERROR(err, "Program::build() failed.");

    // Create kernel 
    kernel = cl::Kernel(program, "toneMappingPattanaik",  &err);
    CHECK_OPENCL_ERROR(err, "Kernel::Kernel() failed.");

    // Check group size against group size returned by kernel 
    kernelWorkGroupSize = kernel.getWorkGroupInfo<CL_KERNEL_WORK_GROUP_SIZE>(devices[deviceId], &err);
    CHECK_OPENCL_ERROR(err, "Kernel::getWorkGroupInfo()  failed.");

    /**
    * For CPU device the kernel work group size is 1024.
    * Workgroup creation/replacement is an overhead - 
    * avoid workgroups with small number of workitems (we pay more for replacing a WG than running more WI in a for loop).
    */
    if (kernelWorkGroupSize >= 1024)
    {
        blockSizeX = 32;
        blockSizeY = 32;
    }

    if((cl_uint)(blockSizeX * blockSizeY) > kernelWorkGroupSize)
    {
        if(kernelWorkGroupSize >= 64)
        {
            blockSizeX = 8;
            blockSizeY = 8;
        }
        else if(kernelWorkGroupSize >= 32)
        {
            blockSizeX = 4;
            blockSizeY = 4;
        }
        else
        {
            std::cout << "Out of Resources!" << std::endl;
            std::cout << "Group Size specified : " << blockSizeX * blockSizeY << std::endl;
            std::cout << "Max Group Size supported on the kernel : " 
                      << kernelWorkGroupSize<<std::endl;
            return SDK_FAILURE;
        }
    }

    if(blockSizeX > maxWorkItemSizes[0] ||
       blockSizeY > maxWorkItemSizes[1] ||
       blockSizeX * blockSizeY > maxWorkGroupSize)
    {
        std::cout << "Unsupported: Device does not support requested number of work items." << std::endl;
        return SDK_FAILURE;
    }

    return SDK_SUCCESS;
}