fint MemObj::total_size_in_oops() { if (is_activation()) { return ((ActivationObj*)this)->total_size_in_oops(); } else if (is_byteVector()) { return ((ByteVectorObj*)this)->total_size_in_oops(); } else { oop_t* start = (oop_t*)this; oop_t* end = start; while ( !is_mark(*++end) ) {} return end - start; } }
network parse_network_cfg(char *filename) { list *sections = read_cfg(filename); node *n = sections->front; if(!n) error("Config file has no sections"); network net = make_network(sections->size - 1); size_params params; section *s = (section *)n->val; list *options = s->options; if(!is_network(s)) error("First section must be [net] or [network]"); parse_net_options(options, &net); params.h = net.h; params.w = net.w; params.c = net.c; params.inputs = net.inputs; params.batch = net.batch; params.time_steps = net.time_steps; size_t workspace_size = 0; n = n->next; int count = 0; free_section(s); while(n){ params.index = count; fprintf(stderr, "%d: ", count); s = (section *)n->val; options = s->options; layer l = {0}; if(is_convolutional(s)){ l = parse_convolutional(options, params); }else if(is_local(s)){ l = parse_local(options, params); }else if(is_activation(s)){ l = parse_activation(options, params); }else if(is_deconvolutional(s)){ l = parse_deconvolutional(options, params); }else if(is_rnn(s)){ l = parse_rnn(options, params); }else if(is_gru(s)){ l = parse_gru(options, params); }else if(is_crnn(s)){ l = parse_crnn(options, params); }else if(is_connected(s)){ l = parse_connected(options, params); }else if(is_crop(s)){ l = parse_crop(options, params); }else if(is_cost(s)){ l = parse_cost(options, params); }else if(is_detection(s)){ l = parse_detection(options, params); }else if(is_softmax(s)){ l = parse_softmax(options, params); }else if(is_normalization(s)){ l = parse_normalization(options, params); }else if(is_batchnorm(s)){ l = parse_batchnorm(options, params); }else if(is_maxpool(s)){ l = parse_maxpool(options, params); }else if(is_avgpool(s)){ l = parse_avgpool(options, params); }else if(is_route(s)){ l = parse_route(options, params, net); }else if(is_shortcut(s)){ l = parse_shortcut(options, params, net); }else if(is_dropout(s)){ l = parse_dropout(options, params); l.output = net.layers[count-1].output; l.delta = net.layers[count-1].delta; #ifdef GPU l.output_gpu = net.layers[count-1].output_gpu; l.delta_gpu = net.layers[count-1].delta_gpu; #endif }else{ fprintf(stderr, "Type not recognized: %s\n", s->type); } l.dontload = option_find_int_quiet(options, "dontload", 0); l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0); option_unused(options); net.layers[count] = l; if (l.workspace_size > workspace_size) workspace_size = l.workspace_size; free_section(s); n = n->next; ++count; if(n){ params.h = l.out_h; params.w = l.out_w; params.c = l.out_c; params.inputs = l.outputs; } } free_list(sections); net.outputs = get_network_output_size(net); net.output = get_network_output(net); if(workspace_size){ //printf("%ld\n", workspace_size); #ifdef GPU net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1); #else net.workspace = calloc(1, workspace_size); #endif } return net; }