示例#1
0
fint MemObj::total_size_in_oops() {
  if (is_activation()) {
    return ((ActivationObj*)this)->total_size_in_oops();
  } else if (is_byteVector()) {
    return ((ByteVectorObj*)this)->total_size_in_oops();
  } else {
    oop_t* start = (oop_t*)this;
    oop_t*   end = start;
    while ( !is_mark(*++end) ) {}
    return end - start;
  }
}
示例#2
0
文件: parser.c 项目: EricDoug/darknet
network parse_network_cfg(char *filename)
{
    list *sections = read_cfg(filename);
    node *n = sections->front;
    if(!n) error("Config file has no sections");
    network net = make_network(sections->size - 1);
    size_params params;

    section *s = (section *)n->val;
    list *options = s->options;
    if(!is_network(s)) error("First section must be [net] or [network]");
    parse_net_options(options, &net);

    params.h = net.h;
    params.w = net.w;
    params.c = net.c;
    params.inputs = net.inputs;
    params.batch = net.batch;
    params.time_steps = net.time_steps;

    size_t workspace_size = 0;
    n = n->next;
    int count = 0;
    free_section(s);
    while(n){
        params.index = count;
        fprintf(stderr, "%d: ", count);
        s = (section *)n->val;
        options = s->options;
        layer l = {0};
        if(is_convolutional(s)){
            l = parse_convolutional(options, params);
        }else if(is_local(s)){
            l = parse_local(options, params);
        }else if(is_activation(s)){
            l = parse_activation(options, params);
        }else if(is_deconvolutional(s)){
            l = parse_deconvolutional(options, params);
        }else if(is_rnn(s)){
            l = parse_rnn(options, params);
        }else if(is_gru(s)){
            l = parse_gru(options, params);
        }else if(is_crnn(s)){
            l = parse_crnn(options, params);
        }else if(is_connected(s)){
            l = parse_connected(options, params);
        }else if(is_crop(s)){
            l = parse_crop(options, params);
        }else if(is_cost(s)){
            l = parse_cost(options, params);
        }else if(is_detection(s)){
            l = parse_detection(options, params);
        }else if(is_softmax(s)){
            l = parse_softmax(options, params);
        }else if(is_normalization(s)){
            l = parse_normalization(options, params);
        }else if(is_batchnorm(s)){
            l = parse_batchnorm(options, params);
        }else if(is_maxpool(s)){
            l = parse_maxpool(options, params);
        }else if(is_avgpool(s)){
            l = parse_avgpool(options, params);
        }else if(is_route(s)){
            l = parse_route(options, params, net);
        }else if(is_shortcut(s)){
            l = parse_shortcut(options, params, net);
        }else if(is_dropout(s)){
            l = parse_dropout(options, params);
            l.output = net.layers[count-1].output;
            l.delta = net.layers[count-1].delta;
#ifdef GPU
            l.output_gpu = net.layers[count-1].output_gpu;
            l.delta_gpu = net.layers[count-1].delta_gpu;
#endif
        }else{
            fprintf(stderr, "Type not recognized: %s\n", s->type);
        }
        l.dontload = option_find_int_quiet(options, "dontload", 0);
        l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
        option_unused(options);
        net.layers[count] = l;
        if (l.workspace_size > workspace_size) workspace_size = l.workspace_size;
        free_section(s);
        n = n->next;
        ++count;
        if(n){
            params.h = l.out_h;
            params.w = l.out_w;
            params.c = l.out_c;
            params.inputs = l.outputs;
        }
    }   
    free_list(sections);
    net.outputs = get_network_output_size(net);
    net.output = get_network_output(net);
    if(workspace_size){
    //printf("%ld\n", workspace_size);
#ifdef GPU
        net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
#else
        net.workspace = calloc(1, workspace_size);
#endif
    }
    return net;
}